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Mode II Fracture of an Elastic-
Plastic Sandwich Layer
The shear strength of a pre-cracked sandwich layer is predicted, assuming that the layer is
linear elastic or elastic-plastic, with yielding characterized either by the J2 plasticity theory
or by a strip-yield model. The substrates are elastic and of dissimilar modulus to that of the
layer. Two geometries are analyzed: (i) a semi-infinite crack in a sandwich layer, subjected
to a remote mode II K-field and (ii) a center-cracked sandwich plate of finite width under
remote shear stress. For the semi-infinite crack, the near-tip stress field is determined as
a function of elastic mismatch, and crack tip plasticity is either prevented (the elastic
case) or duly accounted for (the elastic-plastic case). Analytical and numerical solutions
are then obtained for the center-cracked sandwich plate of the finite width. First, a mode
II K-calibration is obtained for a finite crack in the elastic sandwich layer. Second, the anal-
ysis is extended to account for crack tip plasticity via a mode II strip-yield model of finite
strength and finite toughness. The analytical predictions are verified by finite element sim-
ulations, and a failure map is constructed in terms of specimen geometry and crack length.
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1 Introduction
Multi-material, multi-layer systems are increasingly used in engi-

neering components in order to confer a desired functionality, such
as electrical interconnection, thermal conductivity, and mechanical
strength. The sensitivity of fracture strength to the presence of
defects is a concern, and an appropriate fracture mechanics requires
development. In the present study, we consider the idealized case of
a compliant layer between two stiffer substrates. Adhesive lap joints
are of such a geometry. Adhesively bonded joints can offer signifi-
cant advantages over competing joining techniques: the advantages
include weight reduction, reduced through life maintenance, and
fewer sources of stress concentration. Accordingly, there is a con-
tinued interest in the use of an adhesive layer for bonding applica-
tions across the aerospace, transport, energy, and marine sectors
[1,2]. In many of these applications, the adhesive joint is subjected
to macroscopic shear loading. However, the shear fracture of adhe-
sives has received only limited attention in the mechanics literature;
this motivates the present study. A wide range of constitutive
behaviors are shown by adhesive layers depending on the material
choice. Ceramic or highly cross-linked polymers behave in an
essentially elastic, brittle manner. Soldered and brazed joints com-
prise a metallic layer, and it is natural to treat these by an elastic-
plastic solid. Polymeric adhesives cover an enormous range from
rubber-like behavior, with high failure strain (at temperatures
above the glass transition temperature), to visco-plastic or elastic-
brittle (at temperatures below the glass transition temperature).
The small strain response can be taken as elastic at temperatures
much below the glass transition temperature, to visco-elastic in
the vicinity of the glass transition. Thus, it is overly simplistic to
treat all polymers at all temperatures as visco-elastic. In the
present study, we shall consider the idealized extremes of behavior
of the adhesive layer: it is either treated as elastic-brittle with a finite
elastic modulus and finite toughness or treated as elastic-ideally
plastic, with a finite value of critical crack tip displacement for frac-
ture. The elastic-plastic idealization is an adequate representation

for thermosetting polymers such as toughened epoxy adhesives.
More sophisticated choices of adhesive are left to future studies,
as our present intent is to explore the role of layer compliance,
layer strength, and layer toughness upon the macroscopic fracture
strength of a layer containing a finite crack. The limiting case of a
semi-infinite crack within the layer and the substrates loaded by a
remote mode II K-field are also addressed.
Insight into the initiation and the growth of a mode II crack in an

adhesive layer has been gained through tests on End-Notched
Flexure and Butterfly specimen geometries, see Refs. [3–6], and
the references therein. Strip-yield models are used to characterize
the fracture response of the adhesive joint, based on an assumed
or measured traction-separation law of the adhesive, see, for
example, Refs. [7–10].
In the present study, we combine theoretical analysis with finite

element (FE) modeling to gain insight into the fracture of the pre-
cracked sandwich layer subjected to macroscopic shear loading.
The layer is characterized by linear elasticity, by ideally plastic, J2
flow theory of plasticity, or by a mode II strip-yield model [11].
The substrates are taken to be elastic and of sufficiently high strength
that they do not yield. Two geometries are considered: (i) a boundary
layer formulation, whereby a remote KII-field is prescribed on a
semi-infinite crack within a sandwich layer and (ii) a center-cracked
plate of finite width, comprising an adhesive layer sandwiched
between two elastic substrates and subjected to a remote shear
stress. The fracture criterion is the attainment of the mode II crack
tip toughness: a critical value of crack tip mode II stress intensity
for an elastic strip or a critical value of crack tip sliding displacement
for the strip-yield model or J2 plasticity theory.
The paper is organized as follows. Section 2 presents the analy-

sis of a sandwich layer containing a semi-infinite crack and sub-
jected to a remote mode II K-field. First, the layer is treated as
elastic but of different modulus to that of the substrates. Then,
the analysis is extended to an elastic-plastic layer, with plasticity
represented either by a strip-yield model or by the J2 flow
theory of plasticity. Section 3 presents the analytical derivation
of the fracture strength of a center-cracked sandwich panel of
finite width, containing a linear elastic layer or an elastic-plastic
layer. The mode II K-calibration is determined in order to
predict the failure strength of an elastic-brittle adhesive layer con-
taining a center crack but with no strip-yield zone present. Then,
the analysis is extended to account for a crack tip fracture

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received August 6, 2019; final manuscript
received September 7, 2019; published online September 18, 2019. Assoc. Editor: Alan
Needleman.

Journal of Applied Mechanics MARCH 2020, Vol. 87 / 031001-1Copyright © 2019 by ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/87/3/031001/6448898/jam
_87_3_031001.pdf by Im

perial C
ollege London user on 25 N

ovem
ber 2019

mailto:mail@empaneda.com
mailto:iicuesta@ubu.es
mailto:naf1@cam.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4044898&amp;domain=pdf&amp;date_stamp=2019-11-20


process zone by making use of a mode II strip-yield model of finite
strength and finite toughness. Failure maps are derived for the
regimes of behavior, and the analytical predictions are verified
by finite element simulations of the strip-yield model. Additional
finite element simulations are used for which the layer satisfies
J2 flow theory, and the crack tip mode II displacement is compared
to that of the strip-yield model. Finally, concluding remarks are
given in Sec. 4.

2 An Adhesive Layer With a Semi-infinite Crack
Consider first an elastic layer of thickness h containing a semi-

infinite crack and two elastic substrates of modulus that differs
from that of the layer. The sandwich plate is subjected to a
remote mode II K-field of magnitude K∞, see Fig. 1. The crack
tip stress state is evaluated for a linear elastic layer in Sec. 2.1,
and the analysis is then extended to the case of an elastic-plastic
layer, with plasticity modeled in Sec. 2.2 either by a strip-yield
model or by the J2 flow theory.

2.1 An Elastic Sandwich Layer Containing a Semi-infinite
Crack. Assume plane strain conditions throughout this study
and write E as Young’s modulus, ν as Poisson’s ratio, and μ≡
E/(2 (1 + ν)) as the shear modulus. As shown in Fig. 1, the sub-
strates are made from material 1 (with elastic properties E1, ν1,
and μ1), and the adhesive layer is made from material 2 (with
elastic properties E2, ν2, and μ2). We investigate the role of the
elastic modulus mismatch between the layer and the substrates.
Consider first a crack located at mid-height of the layer, c/h= 0.5.
Then, symmetry dictates that the crack tip is in a state of pure
mode II. By path-independence of the J-integral [12], the remote
K∞

field is related to a local mode II Ktip
field by

Ktip =
E2 1 − ν21

( )
E1 1 − ν22

( )
[ ]1/2

K∞ (1)

Finite element computations of the shear stress distribution τ(x) at
a distance x directly ahead of the crack tip and of the crack tip dis-
placement profile δ(x) behind the crack tip are conducted for the
boundary layer formulation sketched in Fig. 1. A remote, elastic

mode II K∞
field is imposed by prescribing a mode II displacement

field on the outer periphery of the mesh of the form:

ui =
K∞

μ1
r1/2fi θ, ν( ) (2)

where the functions fi(θ, ν) are written in Cartesian form as follows
[13]:

fx =

��
2
π

√
2 − 2ν + cos2

θ

2

( )( )
sin

θ

2

( )
(3)

fy = −
��
2
π

√
1 − 2ν − sin2

θ

2

( )( )
cos

θ

2

( )
(4)

The finite element model is implemented in the commercial
package ABAQUS/STANDARD.2 We discretize the geometry by means
of fully integrated plane strain, quadratic, quadrilateral elements.
Symmetry about the crack plane is exploited when the crack is
located at mid-height of the adhesive thickness, such that only the
upper half of the domain is analyzed; typically, 350,000 degrees
of freedom are employed.

2.1.1 Crack Tip Field: Effect of Elastic Mismatch. Consider a
semi-infinite crack located at mid-height of the adhesive, as
sketched in Fig. 1. The finite element prediction for the shear
stress distribution τ(x) directly ahead of the crack tip is shown in
Fig. 2, for selected values of modulus mismatch E1/E2 from 1 to
1000; attention is limited, however, to the choice ν= ν1= ν2= 0.3.
The shear stress τ(x) directly ahead of the crack tip is normalized

by K∞ and Ktip in Figs. 2(a) and 2(b), respectively. Both inner and
outer K-fields exist, and each satisfy the usual r−1/2 singularity as
analyzed by Williams [13]. Thus, upon making use of the polar
coordinate system (r, θ) centered at the crack tip, the crack tip
shear stress distribution in the outer field, along θ= 0, is given by

τ =
K∞����
2πr

√ =
Ktip����
2πr

√ E1 1 − ν22
( )

E2 1 − ν21
( )

[ ]1/2

(5)

Likewise, the inner field is of the form

τ =
Ktip����
2πr

√ (6)

Note from Fig. 2(b) that the inner and outer K-fields are connected
by a region of almost constant shear stress τp of magnitude
τp

��
h

√
/Ktip ≈ 1. The extent of this zone enlarges with increasing

modulus mismatch between layer and substrate.
The relation τp

��
h

√
/Ktip ≈ 1 between plateau stress τp ahead of

the crack tip and Ktip agrees with the following analytical result
for an elastic strip of modulus E2 and Poisson ratio ν2 sandwiched
between two rigid substrates and subjected to a remote shear stress
τp. Following Rice [12], the upstream work density of the sandwich
layer of height h is given by

WU =
1
2

τ2ph

μ2
(7)

per unit area of layer. Upon noting that the downstream work
density vanishes, the energy release rate is G=WU. Now make
use of the usual Irwin relation between G and the mode II crack
tip stress intensity factor Ktip such that

Ktip
( )2

=
E2

1 − ν22
( )G =

E2

2 1 − ν22
( )

μ2
τ2ph (8)

Fig. 1 Sketch of the boundary layer formulation for an adhesive
joint. The substrates are made from material #1, whereas the
adhesive layer is made from material #2. 2

ABAQUS/STANDARD 2017, Dassault Systemes SIMULIA, Providence, RI.
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It follows immediately that

τp
��
h

√

Ktip
= (1 − ν2)

1/2 (9)

Thus, the magnitude of the plateau shear stress τp
��
h

√
/Ktip depends

only on the Poisson’s ratio of the adhesive layer in the limit E2/E1→
0. The sensitivity of the stress distribution to the Poisson’s ratio is
investigated numerically in Fig. 3 for E1/E2= 1000. The plateau
stress τp increases slightly with decreasing ν, and the predictions
of Eq. (9) are in good agreement with the numerical predictions.
The boundary between the zone of dominance of the plateau

stress and that of the outer remote K-field occurs at a distance
r = λ from the crack tip. The magnitude of λ is estimated by equat-
ing the values of shear stress in Eqs. (5) and (9) at r= λ to give

λ
h
=

1
2π

E1 1 + ν2( )
E2 1 − ν21

( ) (10)

Thus, for the choice E1/E2= 1000 and ν= 0.3, the plateau stress
region extends a distance of λ/h= 227 ahead of the crack tip; the
finite element results agree with this estimation, see Fig. 2(b).
This large value of λ/h has an immediate practical implication:
the required crack length and in-plane structural dimensions in
order for a remote K-field to exist is on the order of meters for a
polymeric adhesive layer of height h= 5 mm sandwiched between
metallic or ceramic substrates. This puts a severe limitation on the
applicability of a conventional fracture mechanics assessment of

the fracture strength of a polymer-based adhesive layer sandwiched
between substrates of much higher modulus.

2.1.2 Mixed Mode Ratio: Influence of Crack Location and
Elastic Properties. Consider now the influence of the crack loca-
tion with respect to the height of the adhesive layer upon the
mode mix. The plane of the crack is quantified by the parameter
c/h, with c/h= 0.5 denoting a crack at mid-height and c/h= 0 denot-
ing a crack on the lower interface between the strip and the sub-
strate. As noted by Dundurs [14] (see also, the study by
Hutchinson and Suo [15]), a wide class of plane problems in isotro-
pic elasticity of bimaterial interfaces can be formulated in terms of
only two material parameters: α and β. For the case of plane strain,
the Dundur’s parameters read

α =
μ2 1 − ν1( ) − μ1 1 − ν2( )
μ2 1 − ν1( ) + μ1 1 − ν2( ) (11)

β =
1
2
μ2 1 − 2ν1( ) − μ1 1 − 2ν2( )
μ2 1 − ν1( ) + μ1 1 − ν2( ) (12)

Thus, β vanishes when both materials are incompressible (ν1= ν2=
0.5). The values of α and β corresponding to the elastic properties
assumed throughout this work are listed in Table 1.
In the present study, the mode mix in the vicinity of the crack tip

is characterized in terms of the relative opening displacement δI
to sliding displacement δII behind the crack tip. Consider first the
sensitivity of mode mix to c/h, for the choice E1/E2= 1000 and
ν1 = ν2= 0.3. Finite element predictions are shown in Fig. 4(a).
Remote mode II loading leads to mixed mode loading at the
crack tip (x= 0), with the ratio δI/δII increasing as the crack plane
approaches the interface, c/h→ 0. The presence of the finite mode
II stress intensity at the crack tip implies that the crack will tend
to kink into the interface. For all values of c/h considered, the

Table 1 Dundurs’ parameters for the values of ν and E1/E2
adopted

ν

E1/E2= 3 E1/E2= 10 E1/E2= 100 E1/E2= 1000

α β α β α β α β

0 0.500 0.250 0.818 0.409 0.980 0.490 0.998 0.499
0.3 0.500 0.140 0.818 0.234 0.980 0.280 0.998 0.285
0.49 0.500 0.010 0.818 0.016 0.980 0.019 0.998 0.020

Fig. 3 Influence of the Poisson’s ratio (ν= ν1= ν2) on the shear
stress ahead of a semi-infinite crack in an elastic adhesive. The
shear stress is normalized by the crack tip stress intensity
factor Ktip.

(a)

(b)

Fig. 2 Shear stress ahead of a semi-infinite crack in an elastic
adhesive, normalized by (a) the remote stress intensity factor
K∞ and (b) the crack tip stress intensity factor Ktip. Results are
shown for selected values of the modulus mismatch E1/E2, with
ν= ν1= ν2=0.3.
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magnitude of δI/δII drops sharply with the increasing distance from
the crack tip, with the local mode I contribution becoming negligi-
ble for |x| > 0.3h.
The sensitivity of mode mix at the crack tip to the value of c/h has

been analyzed previously by Fleck et al. [16]. They obtained the
asymptotic behavior of the crack tip phase angle ϕ= tan−1 (δII/δI).
They showed that ϕ depends on the crack plane location with
regard to the layer height c/h and to the Dundur’s parameters α
and β according to their Equation (10) and restated here as follows:

ϕ = ϵ ln
h − c

c

( )
+ 2

c

h
−
1
2

( )
ϕH α, β

( )
+ ω α, β

( )( )
(13)

where

ϵ =
1
2π

ln
1 − β

1 + β

( )
(14)

The functions ϕH(α, β) and ω(α, β) have been tabulated previously
in Refs. [17,18]. The numerically computed values of the crack tip
phase angle ϕ are compared with the asymptotic solution of Fleck
et al. [16] in Fig. 4(b); excellent agreement is observed, in
support of the accuracy of the finite element simulations of the
present study.
We proceed to investigate the effect of material mismatch E1/E2

and Poisson’s ratio ν= ν1= ν2 upon the near-tip displacement field
for a crack that lies very close to the lower interface, c/h= 0.001.
The mode mix, δI/δII, normalized by the mode mix at x= 0 is
plotted as a function of distance x/h behind the crack tip in
Fig. 5; for completeness, the numerical values obtained for δI/δII
(x= 0) are given in Table 2.
The finite element results, as presented in Figs. 5(a)–5(c), reveal

only a small influence of modulus mismatch and of Poisson’s ratio
upon the normalized mode mix, unless ν is close to the incompress-
ible limit of ν= 0.5. The ratio of crack opening to crack sliding dis-
placement is significant only close to the crack tip; this domain
decreases from approximately h to 0.01 h (with the precise value

(a)

(b)

Fig. 4 Mode mix as a function of the crack plane in relation to
the height of the layer: (a) crack tip displacement ratio and
(b) phase angle at the crack tip. Elastic modulus mismatch
E1/E2=1000 and Poisson’s ratio: ν1= ν2=0.3.

(a) (b)

(c)

Fig. 5 Ratio of opening to sliding displacements behind crack tip, for selected values of the
modulus mismatch. Results are shown for selected values of Poisson’s ratio ν= ν1= ν2: (a) ν=
0.49, (b) ν=0.3, and (c) ν=0. The crack plane is located at c/h=0.001.
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depending on the modulus mismatch) as ν approaches 0.5. These
results justify the choice of a pure mode II strip-yield model for
the analysis of crack growth in adhesive joints subjected to
remote mode II K∞ loading, provided that the strip-yield zone is
of length h or greater.

2.2 Elastic-Plastic Adhesive With a Semi-infinite Crack.
Consider now the influence of plastic deformation upon the crack
tip stress and strain state in the sandwich layer by assuming that
the layer behaves as an elastic, ideally plastic von Mises solid.

2.2.1 Influence of Plasticity on Crack Tip Mode Mix. First, we
assess the role of plasticity in influencing the tensile and shear crack
tip displacements. Thus, we conduct similar calculations to those
reported in Sec. 2.1 but with the sandwich layer now characterized
by the J2 plasticity theory, for the choice τy/μ1= 6.5 × 10−6. (Note
that the plastic zone size and the mode mix are insensitive to the
value of this parameter, whereas the crack tip displacement is sen-
sitive to its value.) The distribution of mode ratio δI/δII behind the
crack tip is shown in Fig. 6. Results are presented for selected
values of load intensity K∞/(τy

��
h

√
). The dominance of mode II

over mode I displacements increases with the degree of plasticity
and with increasing c/h (up to 0.5, for which δI= 0), see
Fig. 6(b). These results strengthen the conclusions of the previous
section: crack tip plasticity ensures that the crack tip is close to
mode II in nature, provided the remote loading is mode II.

2.2.2 Strip-Yield Model to Represent Crack Tip Plasticity. We
shall now show that the strip-yield model provides a good approx-
imation to the plastic zone size as obtained for the J2 flow theory.
Specifically, we employ the shear yield version of Dugdale’s
strip-yield model [11]. The traction-separation law is characterized
by a finite shear strength τy. The strip-yield model is implemented
in ABAQUS/STANDARD by making use of cohesive elements, see
Ref. [19] for details. In brief, mode I opening is suppressed
within the cohesive zone by a penalty function, and only mode
II sliding along the cohesive zone surfaces is permitted. A total
of approximately 20,000 plane strain, quadratic elements with
full integration have been used, with the same mesh employed
for the strip-yield calculation and for the case of the J2 flow
theory (absent a cohesive zone). A sketch of both approaches is
given in Fig. 7.
Finite element predictions of the plastic zone size Rp are shown in

Fig. 8 as a function of remote stress intensity for selected values of
Young’s modulus mismatch: E1/E2= 1, 10, 100, and 1000. The
numerical predictions obtained with J2 plasticity theory and the
strip-yield model approximation are in excellent agreement.
Two distinct regimes can be identified: regime I, as given by

Rp =
1
π

Ktip

τy

( )2

(15)

and regime II, as given by

Rp =
1
π

K∞

τy

( )2

(16)

These regimes are shown by dashed lines in Fig. 8, and the asymp-
totic behaviors are supported by the finite element predictions. Note
that Rp is independent of the modulus mismatch in regime II but is
sensitive to E1/E2 in regime I.
It is clear from Fig. 8 that the transition from regime I to regime II

occurs at a transition value of K∞/ τy
��
h

√( )
that scales linearly with

Table 2 Numerically computed values of mixed mode ratio of
crack tip displacement δI/δII at the crack tip (x=0) as a function
of the values of ν and E1/E2. The crack plane is located at c/h=
0.001.

δI/δII(x= 0)

ν E1/E2= 3 E1/E2= 10 E1/E2= 100 E1/E2= 1000

0 0.59 1.21 1.84 1.93
0.3 0.29 0.48 0.55 0.62
0.49 0.06 0.10 0.09 0.02

Fig. 7 Sketch of the strip-yield and J2 plasticity theory idealiza-
tions for modeling plasticity within the layer

(a)

(b)

Fig. 6 (a) Ratio of opening to sliding displacements versus dis-
tance from crack tip, for selected values of remote K-value, with
plasticity present and (b) ratio of opening to sliding displacement
at the crack tip
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(E1/E2)
1/2. In other words, the transition value occurs when

Ktip/(τy
��
h

√
) attains a specific value, upon noting the identity (1).

This transition is explained as follows.
Recall the trajectory of the shear stress τ(r) versus distance r

ahead of the crack tip for the case of an elastic layer, as summarized
in Fig. 2(b). With the increasing distance r from the crack tip, τ(r)
scales as τ = Ktip/

����
2πr

√
, then τ equals τp, as given in Eq. (9), and

then τ scales as τ = K∞/
����
2πr

√
.

In regime I, the crack tip plastic zone resides within the Ktip
field

and τy> τp, implying via Eq. (9) that

Ktip <
τy

��
h

√

1 − ν2( )1/2 (17)

This criterion, when re-phrased in terms of an inequality of h,

h > 1 − ν22
( ) Ktip

τy

( )2

(18)

is in good agreement with the usual ASTM size criterion [20] for the
existence of a crack tip K-field in the presence of crack tip plasticity,

h > 2.5
Ktip

τy

( )2

(19)

upon taking h to be the leading structural dimension. The small dif-
ference in the constants contained within Eqs. (18) and (19) is
noted, but does not imply an inconsistency within the analysis:
Eq. (19) is slightly more restrictive than Eq. (18). Now make use
of Eq. (15) to re-write Eq. (17) in the form

Rp <
1
π

h

1 − ν2( ) (20)

thereby confirming the interpretation that regime I exists when the
plastic zone size Rp is smaller than the layer thickness.
Now consider regime II. It pre-supposes that the plastic zone Rp

resides within the outer K-field, such that τy < τp in Fig. 2(b). This
inequality can be re-written in terms of K∞ via Eqs. (1) and (9)
as follows:

K∞

τ
��
h

√ >
1

1 − ν2( )1/2
E1

E2

( )1/2

(21)

This transition value of K∞/(τy
��
h

√
) is in good agreement with the

finite element predictions of Fig. 8.
The large jump in value of Rp at the transition from regime I to

regime II (see Fig. 8) is associated with the jump in value of the
plastic zone size as determined by the intersection point of the hor-
izontal line τ= τy and the τ(x) curve of Fig. 2(b). As τy is decreased
from a value above τp to a value below τp, there is a discontinuous
jump in the intersection point.
Consider now the case where the crack is not located on the mid-

plane but resides along the upper or lower interface of the layer. The
dependence of the plastic zone size upon K∞ is shown in Fig. 9 for
E1/E2= 1000. The predictions for upper or lower interfacial cracks
are identical, as dictated by symmetry. However, interfacial cracks
have larger plastic zones than mid-plane cracks at low remote loads
(regime I). In regime II, the size of the plastic zone is independent of
the location of the crack. The shape of the plastic zones is shown in
Fig. 10 for a crack at mid-height of the sandwich layer and for a
crack along the lower interface. In all cases, the strip-yield model
gives an excellent approximation to the plastic zone size as pre-
dicted by the J2 flow theory.

3 Fracture Strength of a Center-Cracked Adhesive
Joint
We proceed to explore the strength of a centered-cracked sand-

wich plate subjected to a remote shear stress τ∞. Consider a sand-
wich layer of height h and width 2W, sandwiched between two
substrates and containing a center crack of length 2a. We first
derive in Sec. 3.1 an analytical solution for the fracture strength
by assuming that the sandwich layer is linear elastic and then
extend the analysis to the elastic-plastic case in Sec. 3.2 by
means of a strip-yield model of fracture energy Γ and cohesive
strength τy. We emphasize that the cohesive shear strength is
taken to equal the shear yield strength. This is a consequence of
the elastic, ideally plastic assumption for the bulk behavior of
the adhesive. This assumption also finds experimental support:
commonly, the measured value of fracture strength of polymeric
adhesives is comparable to their yield strength [21–26]. The anal-
ysis extends the recent work of Van Loock et al. [27] from mode I
fracture of a center-cracked sandwich layer to the mode II case.
It is recognized that, in general, layer toughness may not only

depend on h but also on the degree of crack extension if the adhe-
sive joint exhibits significant crack growth resistance. However, a
negligible R-curve is observed for thin, polymer-based adhesive
joints; see the studies by Tvergaard and Hutchinson [28,29] and
Van Loock et al. [27].

Fig. 8 Plastic zone size as a function of the remote stress inten-
sity factor for the strip-yield model and for the J2 flow theory, for
selected values of modulus mismatch

Fig. 9 Plastic zone size as a function of the stress intensity
factor at the crack tip and the crack location, according to the
strip-yield model and the J2 flow theory

031001-6 / Vol. 87, MARCH 2020 Transactions of the ASME

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/87/3/031001/6448898/jam
_87_3_031001.pdf by Im

perial C
ollege London user on 25 N

ovem
ber 2019



3.1 Crack in an Elastic Layer. Write the compliance C of
a center-cracked sandwich plate in terms of the shear displace-
ment u and load P, such that C= u/P. Then, the extra compliance
due to the presence of the crack of length 2a is ΔC(a)=C(a)−
C(0), and the energy release rate for crack advance G is given
by [30]:

G =
P2

4
∂ ΔC( )
∂a

(22)

We proceed to use the superposition principle and idealize the
adhesive joint system by the summation of the two problems, as
depicted in Fig. 11: (1) a homogeneous plate with the elastic
properties of the substrates and (2) an adhesive joint with shear
modulus μ̂ constrained between two rigid substrates. Accordingly,
the variation of the compliance reads,

∂ ΔC( )
∂a

=
∂ ΔC(1)
( )
∂a

+
∂ ΔC(2)
( )
∂a

(23)

We seek expressions for ∂(ΔC(1))/∂a and ∂(ΔC(2))/∂a. As shown
in Ref. [30], ∂(ΔC(1))/∂a is given by

∂ ΔC(1)
( )
∂a

=
πaF2 1 − ν21

( )
W2E1

(24)

with the finite width correction factor being [30]

F = 1 − 0.025
a

W

( )2
+ 0.06

a

W

( )4[ ]
sec

π

2
a

W

( )[ ]1/2
(25)

For the second problem, the extra compliance due to the presence
of the crack, ΔC (a), can be readily derived as follows:

ΔC(2) a( ) = h

2W μ̂(1 − a/W)
(26)

and consequently,

∂ΔC(2)

∂a
=

h

2W2μ̂(1 − a/W)2
(27)

where the shear modulus of the adhesive μ̂ is given by

1
μ̂
=

1
μ2

−
1
μ1

(28)

Considering Eq. (22) and making use of the Irwin relationship,
Ktip =

���������������
E2G/(1 − ν22)

√
, the crack tip stress intensity factor

(assumed mode II) is given by

Ktip =
P

2
E2

(1 − ν22)

∂ ΔC( )
∂a

( )1/2

(29)

We now introduce the normalized shear strength as follows:

�τ =
τ∞f

��
h

√
��������������
E2Γ/(1 − ν22)

√ =
P

2W

��
h

√

Ktip
(30)

Fig. 11 Sketch of the superposition procedure employed to calculate the macroscopic shear
strength of a center-cracked sandwich layer

Fig. 10 The crack tip plastic zone for a crack located in the mid-plane and along the lower
interface. The left side shows results obtained at K∞=22τy

��
h

√
, while the right side shows

results obtained at K∞=68τy
��
h

√
.
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Finally, we substitute Eqs. (24), (27), and (29) into Eq. (30) in order
to obtain a general formula for the strength of an adhesive joint with
a center crack subjected to shear loading:

�τ =
E2 1 − ν21

( )
E1 1 − ν22

( ) a
h
πF2 +

1
1 − ν2( ) 1 −

μ2
μ1

( )
1 −

a

W

( )−2[ ]−1/2

(31)

This general result can be simplified by assuming ν1= ν2 to give

�τ =
E2

E1

a

h
πF2 +

1
1 − ν2( ) 1 −

μ2
μ1

( )
1 −

a

W

( )−2[ ]−1/2
(32)

and, consistent with Eq. (9), the limiting case where a≪W and
μ2≪ μ1 reads

�τ =
τ

��
h

√

Ktip
= 1 − ν2( )1/2 (33)

The accuracy of Eq. (32) is verified by computing the crack
tip stress intensity factor using a finite element formulation with
h/W = 0.01 and selected values of modulus mismatch E1/E2= 10,
100, 1000. The model is implemented in the commercial finite ele-
ment package ABAQUS, employing a total of approximately 15,000
quadratic quadrilateral elements with full integration. The mode
II stress intensity factor Ktip is computed by means of an interac-
tion integral method. Results are shown in Fig. 12. Excellent agree-
ment is observed for a crack semi-length a exceeding the layer
thickness h.

3.2 Strip-Yield Model for a Crack in an Elastic-Plastic
Layer. We now consider a center-cracked sandwich plate contain-
ing an elastic-plastic layer. Assume that fracture occurs at a critical
value of the mode II displacement at the crack tip; analytical solu-
tions for the fracture strength of the sandwich plate are derived, and
the resulting failure maps are displayed to give the strength as a
function of geometry and crack length. The analytical predictions
are based on a strip-yield model, and the accuracy of these predic-
tions is subsequently verified by a finite element analysis of the
same strip yield model.
Consider again the center-cracked sandwich layer as sketched on

the left-hand side of Fig. 11. We idealize crack tip plasticity by the
strip-yield model [11], as characterized by a rectangular traction-
separation law of shear strength τy and toughness Γ. The critical
separation δc follows immediately from the relation Γ= τyδc. It is
convenient to introduce a reference length scale ls in the form [31]

ls =
1

π(1 − ν22)

E2Γ
τ2y

(34)

which has the interpretation of a representative plastic zone size
at the onset of fracture for a long crack. By making use of the
strategy of Van Loock et al. [27] (who considered the mode I
case), our analysis of the mode II problem is split into three parts.
First, we derive the analytical solution for the case of a short
crack (Sec. 3.2.1). Then, we consider an intermediate and long crack
length (Sec. 3.2.2). Finally, we construct a failure maps to identify
competing regimes of behavior, Sec. 3.2.3, and verify the analytical
results by a series of finite element calculations (Sec. 3.2.4).

3.2.1 Short Cracks. Consider first the case where the crack
length a is much smaller than both the material length scale ls
and the layer thickness h. Then, the strength of the adhesive joint
can be predicted by ignoring the presence of the substrate. Accord-
ingly, one can then make direct use of Dugdale’s approximation for
the crack tip displacement, as given by

δtip =
8τya(1 − ν22)

πE2
ln sec

πτ∞

2τy

( )[ ]
(35)

Now, δc is the value of δtip at τ∞ = τ∞f . Then, we can re-write
Eq. (35) in the form

ls
h
=

8
π2

a

h
ln sec

πτ∞

2τy

( )[ ]
(36)

for the characteristic length of the process zone if a+ ls≪ h and
h/W≤ 1.

3.2.2 Intermediate Crack Lengths. Now suppose that the crack
on the order of, or longer than, ls. As in Sec. 3.1, we suppose that the
crack tip sliding displacement is the sum of the displacements in the
two problems as depicted on the right side of Fig. 11,

δtip = δ(1) + δ(2) (37)

We first determine δ(1). The crack tip sliding displacement for a
crack of length 2a in a linear elastic solid, and subjected to a remote
shear stress τ∞, is given by

δ(1) =
8τya(1 − ν22)

πE2
ln sec

πτ∞

2τy

( )[ ]
(38)

In contrast, we deduce the crack tip sliding displacement for the
second problem, δ(2), from the value of the J-integral at the crack
tip,

Jtip = τyδ
(2) (39)

Path-independence of the J-integral implies that Jtip equals the
value of the J-integral taken around a remote contour, J∞. In addi-
tion, J∞ equals the energy release rate, G, which can be deduced
from the derivative of the compliance (27). Accordingly,

J∞ =
h τ∞( )2
2μ̂

1 −
a

W

( )−2
(40)

The crack tip sliding displacement, by superimposition of the
solution to problems (1) and (2), reads

δtip

h
=
8τy(1 − ν21)

πE1

a

h
ln sec

πτ∞

2τy

( )[ ]
+

τ∞( )2
2μ̂τy

1 −
a

W

( )−2
(41)

Now recall the definition of ls, Eq. (34), and the definition of the
fracture energy: Γ= τyδc. At fracture, τ∞ = τ∞f and δtip= δc, thereby

Fig. 12 K-calibration for a crack in an elastic sandwich layer
between elastic substrates, h/W=0.01
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giving

ls
h
=

8
π2

E2 1 − ν21
( )

E1 1 − ν22
( ) a

h
ln sec

πτ∞f
2τy

( )[ ]

+
1

π(1 − ν2)

τ∞f
τy

( )2

1 −
μ2
μ1

( )
1 −

a

W

( )−2 (42)

For the choice ν= ν1= ν2, this general result simplifies to

ls
h
=

8
π2

E2

E1

a

h
ln sec

πτ∞f
2τy

( )[ ]
+

1
π(1 − ν)

τ∞f
τy

( )2

1 −
μ2
μ1

( )
1 −

a

W

( )−2
(43)

Both Eqs. (43) and (32) lead to very similar predictions for τ∞ <
τy and small a/W values. In fact, one can readily show that both
equations predict almost identical results in the limit of τ∞/τy→ 0.
In this limit, Eq. (43) has the asymptotic form

1
�τ2

= π
E2

E1

a

h
+

1
(1 − ν)

1 −
μ2
μ1

( )
1 −

a

W

( )−2
(44)

while Eq. (32) reduces to

1
�τ2

= π
E2

E1

a

h
F2 +

1
(1 − ν)

1 −
μ2
μ1

( )
1 −

a

W

( )−2
(45)

Thus, the only difference is the presence of the finite width cor-
rection factor F in the first term on the right-hand side of Eq. (44).
As evident from Eq. (25), F≈ 1 for small values of a/W.

3.2.3 Failure Map: Regimes of Behavior. Upon making use of
Eqs. (36) and (43), failure maps can be constructed in terms of
specimen geometry and crack length, see Fig. 13 for the choice
h/W→ 0 and E1/E2= 100. Three selected values of τ∞f /τy are
assumed: 0.1, 0.4, and 0.95. The choice τ∞f /τy = 0.95 defines
the boundary between cohesive zone toughness-controlled fracture
(τ∞f /τy ≤ 0.95) and cohesive zone strength-controlled fracture
(τ∞f /τy > 0.95). It is also instructive to plot the boundary
between the regime in which failure is dictated by the elastic prop-
erties of the adhesive layer and the regime in which failure is dic-
tated by the elastic properties of the substrate. This condition is
approximated by the geometric relation:

ls + a( ) < 1.1 h (46)

Consequently, there are four regimes of behavior A–D for the
center-cracked sandwich plate. Regimes A and B satisfy the crite-
rion (46), and the fracture strength of the joint is given by
Eq. (36). In contrast, regimes C and D do not satisfy Eq. (46),
and the fracture strength of the joint is given by Eq. (43). The
shear strength of the joint is dictated by the cohesive zone strength
in regimes A and D and by the cohesive zone toughness in
regimes B and C. Sketches are included in Fig. 13 to illustrate
the relative magnitude of the length scales in regimes A–D,
where Rp is the length of the cohesive zone at fracture and is, in
general, different from the material length scale ls.

3.2.4 Numerical Verification. It remains to verify the accuracy
of the analytical formulae, Eqs. (36) and (43), by finite element cal-
culations of the strip-yield model. The strip-yield model is imple-
mented in ABAQUS/STANDARD by making use of cohesive elements,
see Ref. [19] for details. In brief, mode I opening is suppressed
by the cohesive zone by the imposition of a penalty function, and
only mode II sliding along the cohesive zone surfaces, of shear
strength τy, is permitted, as for the case of the semi-infinite crack

in the sandwich layer. A total of approximately 87,000 plane
strain, quadratic elements have been used. The crack tip sliding dis-
placement is determined as a function of increasing τ∞f /τy for
selected crack lengths, for h/W= 0.01 and E1/E2= 10 and 100.
Recall that the reference length is related directly to the crack tip
sliding displacement via

ls =
1

π(1 − ν22)

E2δc
τy

(47)

The analytical predictions (for the toughness-controlled regimes B
and C) are compared with the finite element predictions in
Fig. 14 for E1/E2= 10 and 100. The accuracy of the analytical for-
mulae is acceptable for the purpose of the construction of failure
maps.
The above analysis assumes that the shear version of the

strip-yield model is adequate for modeling the fracture process
zone at the crack tip. As already discussed above in the context of
the semi-infinite crack in a sandwich layer, the strip-yield model
also serves the purpose of an idealization for crack tip plasticity.
Indeed, we have already concluded that the strip-yieldmodel is accu-
rate for this purpose for the semi-infinite crack, for which a remote
K-field exists. A similar exercise can be performed for the center-
cracked sandwich plate for which a remote K-field may, or may
not, exist depending on the load level. A series of finite element cal-
culations have been performed whereby the layer is made from an

Fig. 13 Failure map of ls/h versus normalized crack length a/h
for h/W→ 0 and mismatch E1/E2=100. The contours of strength
are given by Eq. (32) in regimes A and B and by Eq. (43) in
regimes C and D.
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elastic, ideally plastic solid that satisfies the J2 flow theory in order
to determine whether the strip-yield model is able to predict the
crack tip sliding displacement. The comparison of the finite
element predictions for the strip-yield model and the J2 flow
theory (absent a cohesive zone) is included in Fig. 14. It is con-
cluded that the strip-yield model gives accurate insight into the
crack tip field for a wide range of load level and crack length.

4 Concluding Remarks
An analytical and numerical treatment of mode II fracture of

adhesive joints is reported. Two geometries are considered, a
boundary layer formulation whereby a remote KII field is prescribed
and a center-cracked plate subjected to remote shear stress. In both
cases, the adhesive layer is sandwiched between two elastic sub-
strates, and insight is gained into the role of the material mismatch
on the macroscopic fracture strength. Both elastic-brittle and elastic-
plastic sandwich layers are considered. New analytical solutions for
determining the strength of adhesive joints are presented and are
verified by detailed finite element calculations. These solutions
enable the prediction of macroscopic fracture strength as a function
of crack length, height of the sandwich layer, geometry of the plate,
elastic modulus mismatch, and toughness of the adhesive. The main
findings for a semi-infinite crack in the sandwich layer are as
follows:

(i) A region of constant shear stress exists ahead of the crack tip,
of size that scales with the layer height and the substrate/

layer modulus ratio. The existence of this extensive zone
of uniform stress compromises the existence of a remote
K-field and hinders the use of linear elastic fracture mechan-
ics for engineering assessment of adhesive joints.

(ii) The ratio between normal and shear crack tip displacement
δI/δII almost vanishes beyond a distance of approximately
0.4 times the layer thickness, independently of the elastic
mismatch and position of cracking plane within the adhesive
layer. This result justifies the use of a pure mode II strip-yield
model.

Fracture maps have been constructed for a center-cracked
sandwich plate; the predictions of simple analytical formulae
are in good agreement with detailed finite element calculations.
Regimes of behavior are identified, such as the regime wherein
failure is dictated by the modulus of the layer and a regime
wherein failure is dominated by the modulus of the substrate.
The sensitivity of the macroscopic shear strength of the panel
to the ratio of crack length to layer height is also made
quantitative.
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