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Crack Growth Resistance in
Metallic Alloys: The Role of
Isotropic Versus Kinematic
Hardening
The sensitivity of crack growth resistance to the choice of isotropic or kinematic harden-
ing is investigated. Monotonic mode I crack advance under small scale yielding condi-
tions is modeled via a cohesive zone formulation endowed with a traction–separation
law. R-curves are computed for materials that exhibit linear or power law hardening.
Kinematic hardening leads to an enhanced crack growth resistance relative to isotropic
hardening. Moreover, kinematic hardening requires greater crack extension to achieve
the steady-state. These differences are traced to the nonproportional loading of material
elements near the crack tip as the crack advances. The sensitivity of the R-curve to the
cohesive zone properties and to the level of material strain hardening is explored for
both isotropic and kinematic hardening. [DOI: 10.1115/1.4040696]
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1 Introduction

It is well established that material elements near a mode I crack
tip undergo nonproportional straining due to crack advance, see
for example the early analysis of crack growth by Rice and Soren-
sen [1]. The degree of hysteresis associated with this nonpropor-
tional loading is sensitive to the nature of the hardening law of the
solid. For example, it is to be expected that kinematic hardening
leads to greater hysteresis than isotropic hardening. Consequently,
one might expect that the choice of plastic hardening law will
influence the stress intensity factor K versus crack extension Da
response, widely known as the R-curve. However, little attention
has been paid to the effect of the hardening law upon crack growth
resistance and no clear picture emerges from the literature. Lam
and McMeeking [2] analyzed steady-state crack tip fields and con-
cluded from a crack opening displacement criterion that isotropic
hardening augments crack growth resistance. Carpinteri [3] per-
formed finite element analyses of crack propagation by means of a
strain-based criterion and observed a greater amount of crack
extension in the kinematic hardening case for a given remote
load; this also suggests that isotropic hardening increases crack
growth resistance. In contrast, we shall demonstrate that kinematic
hardening significantly raises the level of plastic dissipation and,
thereby, elevates the R-curve along with the steady-state fracture
toughness KSS.

2 Numerical Model

We consider the small-scale yielding problem of a plane strain
mode I crack subjected to a remote stress intensity factor K. The
elasto-plastic solid is isotropic with a Young’s modulus E, a
Poisson’s ratio �, and an initial yield strength r0. Throughout our
study, we shall take �¼ 0.3 and r0/E¼ 0.003. We denote the
Cauchy stress by rij and define sij as its deviatoric part such that
sij ¼ rij � dijrkk=3. The plastic response involves either isotropic
or kinematic hardening, as follows.

Isotropic hardening. The yield condition reads

U ¼ re � rY ¼ 0 (1)

where re is the von Mises effective stress and the current yield
strength rY is a function of the accumulated von Mises plastic
strain ee. Accordingly, the effective stress re in J2 plasticity is
defined as

r2
e ¼

3

2
sijsij (2)

The increment in plastic strain _ep
ij is computed from the normality

hypothesis

_ep
ij ¼ _ee

@U
@rij
¼ _ee

3

2

sij

rY
(3)

in terms of the increment in effective plastic strain _ee. The relation
between rY and ee is given by the uniaxial tensile response such
that the true tensile stress r is related to the true tensile plastic
strain ep by

r ¼ r0 1þ Eep

r0

� �N

(4)

where N is the strain hardening exponent. In addition to this power
law description, we also consider the case of linear hardening by
taking N¼ 1 and by replacing E in Eq. (4) with the tangent modu-
lus Et.

Kinematic hardening. Assume that the center of the yield surface
is located at the point aij in deviatoric stress space. We shall refer
to aij as a back stress, and assume that the Armstrong–Frederick
nonlinear rule [4] defines the evolution of this back stress such
that

_aij ¼ c
sij � aijð Þ

r0

_ee � caij _ee (5)

where c and c are material constants. This rule reproduces ratchet-
ting when a material element is subjected to a nonzero mean stress
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and cyclic loading but predicts a particular shape of the
stress–strain curve (for example, see Ref. [5]). In order to model a
more general shape of the uniaxial tensile response, the constitu-
tive statement (5) has been extended by Chaboche [6]. He
replaced the single back stress aij by a finite number n of back
stresses ak

ij such that

aij ¼
Xn

k¼1

ak
ij (6)

Each back stress ak
ij evolves with _ep

ij according to the independent
hardening rule

_ak
ij ¼ ck

rij � aijð Þ
r0

_ee � ckak
ij _ee no sum on kð Þ (7)

in terms of the material constants ck and ck. The resulting
Chaboche–Armstrong–Frederick (CAF) model has been widely
used to capture ratchetting effects and nonlinear hardening under
nonproportional cyclic loading [7,8]. We consider here the case of
power law hardening (4) and select the values of ck; ck

� �
for k 2

1; nð Þ such that the desired response in uniaxial tension is
obtained. The choice of n¼ 10 brings the CAF model into align-
ment with (4) to within 0.04% for the range of true tensile strain
0 � e � 2:0. The uniaxial stress–strain response for cyclic loading
is given in Fig. 1(a) for the case N¼ 0.2. In the case of linear
hardening, Eq. (5) is used instead of Eqs. (6) and (7), with c¼ 0

and c¼Et; this is the familiar Ziegler formulation [9]. The
hardening laws employed are shown in Fig. 1(b); power law hard-
ening for the choices N¼ 0.1 and N¼ 0.2, and linear hardening
for Et/r0¼ 5/3 and Et/r0¼ 50/3.

We model tensile fracture at the tip of a mode I crack by means
of a cohesive zone model, following Tvergaard and Hutchinson
[10]—see Fig. 2. Cohesive zone formulations have a long history
back to Dugdale [11] and Barenblatt [12]: fracture is regarded as a
gradual process in which separation takes place across an
extended cohesive zone, and is resisted by cohesive tractions.
As shown in Fig. 3, we shall make use of a trapezoidal
traction–separation law of strength r̂, with its shape being defined
by a critical cohesive separation dc and by two shape parameters
d1¼ 0.15 dc and d2¼ 0.5 dc. The work of fracture C0 is given by
the area under the traction–separation curve such that

C0 ¼
1

2
r̂ dc þ d2 � d1ð Þ (8)

A reference stress intensity factor for crack growth initiation fol-
lows immediately as

K0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EC0

1� �2ð Þ

s
(9)

along with a reference length R0, where

R0 ¼
1

3p 1� �2ð Þ
EC0

r2
0

¼ 1

3p
K0

r0

� �2

(10)

The crack tip is placed at the origin and the crack plane is aligned
with the negative x1 axis of the Cartesian reference frame (x1, x2).
A remote KI field is imposed by a boundary layer formulation, as
follows. The outer periphery of the mesh is subjected to the mode
I elastic K-field

ui ¼
KI

E
r1=2fi h; �ð Þ (11)

where r and h are polar coordinates centered at the crack tip and
the functions fi h; �ð Þ are given by

f1 ¼
1þ �ffiffiffiffiffiffi

2p
p 3� 4� � cos hð Þcos

h
2

� �
(12)

Fig. 1 Uniaxial stress strain response for (a) cyclic loading
of a nonlinear hardening solid with N 5 0.2 and (b) half-cycle
for linear and nonlinear hardening. Material properties:
r0/E 5 0.003.

Fig. 2 Schematic representation of the cohesive zone model
for fracture
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f2 ¼
1þ �ffiffiffiffiffiffi

2p
p 3� 4� � cos hð Þsin

h
2

� �
(13)

Upon exploiting the symmetry about the crack plane, only half of
the model is analyzed, as shown in Fig. 4. The finite element
model is implemented in the commercial finite element package
ABAQUS [13], and we solve the boundary value problem by an
implicit Backward Euler integration scheme. Plane strain quad-
ratic quadrilateral elements are employed, with the mesh compris-
ing 267,272 degrees-of-freedom. A refined mesh was used along
the cohesive zone in order to obtain a converged solution. The
characteristic length of the elements in the crack propagation
region is chosen to be equal to dc. Cohesive elements with 6 nodes
and 12 integration points are implemented by means of a user ele-
ment subroutine [14]. A control algorithm is used to avoid conver-
gence problems due to snap-back instabilities; see Refs. [15] and
[16] for details. Computations have been performed within an
infinitesimal deformation framework since strains remain small,
as argued by Tvergaard and Hutchinson [10] in their finite strain
analysis. Dimensional analysis shows that the solution, given in
terms of the remote KI ¼ KR Dað Þ, is a function F of the following
dimensionless quantities

KR

K0

¼ F
Da

R0

;
r0

E
;

r̂
r0

;
Et

E
; �; N;

d1

dc
;
d2

dc

� �
(14)

We will conduct calculations until steady-state crack growth at
constant KSS is attained. Tvergaard and Hutchinson [10] showed
that KSS is sensitive to the ratio of cohesive strength r̂ to material
yield strength r0. For an elastic, perfectly plastic solid, KSS/K0

raises steeply as r̂=r0 approaches 3. The interpretation is straight-
forward by considering a stationary crack in an elastic, ideally

plastic solid absent of a cohesive zone. The tensile stress directly
ahead of the crack tip equals 3r0 as given by the Prandtl field.
Consequently, if r̂=r0 exceeds 3, the crack tip blunts without
advance as the cohesive zone strength is not overcome.

Tvergaard and Hutchinson [10] also considered the role of iso-
tropic strain hardening on the R-curve. In this case, the stress field
ahead of the crack tip exceeds 3 r0 due to the presence of
strain hardening. For r̂=r0 < 3, a shallow R-curve is exhibited
and KSS/K0 is slightly above unity. In contrast, for r̂=r0 > 3, a
steeper R-curve is observed and KSS/K0 increases its sensitivity to
r̂. A major aim of the present study is to explore the sensitivity of
the R-curve to the nature of the hardening law: isotropic versus
kinematic hardening.

3 Results

R-curves are shown in Fig. 5 for linear hardening and
r̂=r0 ¼ 3:5; this value of r̂=r0 is close to the limiting value of
r̂=r0 ¼ 3 for an elastic, perfectly plastic solid, as discussed in
Sec. 2. Consider first the R-curve for a small level of strain hard-
ening Et/r0¼ 5/3. A steeply rising R-curve is predicted, which
will give rise to a large steady-state fracture toughness KSS/K0 and
a large value of the crack extension to achieve steady-state
Da=R0ð ÞSS. The steep R-curve is a consequence of plastic dissipa-

tion with crack advance. Little difference is observed between the
kinematic and isotropic hardening predictions since the degree of
hardening is small. We note in passing that for the elastic, ideally
plastic case, Et/r0¼ 0, and r̂=r0 ¼ 3:5 no crack advanced is
observed: the tensile traction ahead of the crack tip is insufficient
to overcome the cohesive zone strength. Now, consider the case
of a high strain hardening rate Et/r0¼ 50/3. The strain level near
the crack tip can now exceed the cohesive strength r̂ at a rela-
tively low value of plastic strain. A shallow R-curve is predicted.
Again, kinematic hardening elevates the R-curve compared to the
isotropic hardening case.

The predicted R-curves for the case of a power law hardening
solid are shown in Fig. 6 for the choice of N¼ 0.1. We consider
both isotropic and kinematic hardening, and selected values of the
cohesive strength r̂=r0 ¼ 3:2, 3.4, and 3.5. As expected, increas-
ing r̂=r0 elevates the K versus Da response for both hardening
laws. However, the R-curves are more sensitive to the cohesive
strength for the case of kinematic hardening. Also, as in the linear
hardening study, the R-curves are steeper for kinematic hardening,
implying a higher value of the steady-state fracture toughness
KSS. We note that there is no straightforward relationship between

Fig. 3 Cohesive traction T–separation d law characterizing the
fracture process

Fig. 4 Finite element mesh and configuration of the boundary
layer

Fig. 5 Crack growth resistance curves for linear isotropic and
kinematic hardening plasticity and different hardening levels.
Material properties: d1/dc 5 0.15, d2/dc 5 0.5, r0/E 5 0.003, m 5 0.3,
and r̂ 5 3:5r0.
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K0, KSS, and the crack initiation toughness KIc as defined in the
standard test methods for fracture toughness, such as the ASTM E
1820 [17]. The standard defines KIc as the value of K correspond-
ing to a crack growth increment, which is in the range of
0.2–0.5 mm; see Ref. [18] for a discussion. When the R-curve is
steep, KIc/K0 may be large.

The steady-state toughness is attained when KR reaches a pla-
teau value. Figure 7 shows the sensitivity of KSS to the strain hard-
ening exponent and to the cohesive strength. The isotropic curves
are in agreement with the results of Tvergaard and Hutchinson
[10]. First, note that for N¼ 0 a single KSS/K0 versus r̂=r0 curve
corresponds to the cases of isotropic and kinematic hardening.
The value of the steady-state toughness increases rapidly in the
vicinity of the limiting value of r̂=r0 ¼ 2:8. With increasing N,
kinematic and isotropic hardening theories give increasingly
divergent predictions. Consistently, for N> 0, kinematic harden-
ing leads to a higher value of KSS/K0 at a given r̂=r0 than does
isotropic hardening. Also, the value of the cohesive strength at
which KSS/K0 increases rapidly is lower for the case of kinematic
hardening.

It is instructive to consider the value of crack extension Dað ÞSS

that is required to achieve the steady-state toughness. The depend-
ence of Dað ÞSS upon r̂=r0 is shown in Fig. 8 for the power law
hardening solid, for both kinematic and isotropic hardening. Note
that both KSS/K0 and Dað ÞSS=R0 depend upon r̂=r0 in a highly
nonlinear manner for both hardening laws, recall Figs. 7 and 8. Is
there a simple relation between Dað ÞSS=R0 and KSS/K0? This
might be expected as the plastic zone size associated with
K¼KSS, is of the order

RSS ¼
1

3p
KSS

r0

� �2

(15)

Assume that Dað ÞSS is proportional to RSS

Dað ÞSS ¼ CRSS (16)

where the constant C is of order unity with some sensitivity to the
choice of the hardening law and to N. It follows immediately that

Dað ÞSS

R0

¼ C
RSS

R0

¼ C
KSS

K0

� �2

(17)

The accuracy of this prediction is shown by a cross-plot of
Dað ÞSS=R0 versus KSS/K0 in Fig. 9, with r̂=r0 as the parameter

trending variable. A curve fit reveals that C increases from 0.574
to 1.703 as N goes from 0.1 to 0.2 for kinematic hardening, and C
increases from 0.31 to 0.496 as N goes from 0.1 to 0.2 for iso-
tropic hardening. Our numerical predictions show that the iso-
tropic hardening idealization may significantly underestimate the
degree of subcritical crack propagation before catastrophic failure.
Note further that Eq. (17) can be re-expressed in the form

DaSS ¼
C

3p
KSS

r0

� �2

(18)

What is the physical basis for the steeper R-curve observed in the
case of kinematic hardening? We show in Fig. 10 that significant
nonproportional loading occurs in the vicinity of the crack tip, as
the crack advances. Consider a representative material point P at a
distance for 2R0 ahead of the initial crack tip and slightly above
the cracking plane (height of 0.1R0). Allow the crack to advance
by Da¼ 2R0 for both cases of isotropic and kinematic hardening.

Fig. 6 Crack growth resistance curves for power law isotropic
and kinematic hardening plasticity and different levels of the
cohesive strength. Material properties: d1/dc 5 0.15, d2/dc 5 0.5,
r0/E 5 0.003, m 5 0.3, and N 5 0.1.

Fig. 7 Steady-state toughness as a function of the cohesive
strength for isotropic and kinematic hardening at different N
levels. Material properties: d1/dc 5 0.15, d2/dc 5 0.5, r0/E 5 0.003,
and m 5 0.3.

Fig. 8 Crack extension at steady-state as a function of the
cohesive strength for isotropic and kinematic hardening at
different N levels. Material properties: d1/dc 5 0.15, d2/dc 5 0.5,
r0/E 5 0.003, and m 5 0.3.
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The active plastic zone is shown in Fig. 10(a) for Da¼ 0þ and
Da¼ 2R0. The plastic zone at Da¼ 0þ for kinematic hardening is
identical to that for isotropic hardening, whereas the plastic zone
at Da¼ 2R0 is much larger in the kinematic hardening case. Only
the isotropic hardening active plastic zone is shown at Da¼ 2R0

for the sake of clarity. The stress paths imposed on point P for iso-
tropic and kinematic hardening are given in Fig. 10(b). Differen-
ces between kinematic and isotropic stress paths arise soon after
cracking initiates (Da¼ 0þ), due to nonproportional straining in
the neighboring points. As the crack advances not only are the
stress paths nonproportional but they also deviate from each other,
with the greatest change in stress direction given by isotropic
hardening. The stronger path dependence of kinematic hardening
also plays an important role on localization in thin sheets and in
shear localization. For example, Tvergaard [19] showed that the
forming limit curves predicted by kinematic hardening are in bet-
ter agreement with experimental results than isotropic hardening
predictions. The dependence of the critical strain for shear local-
ization upon the local curvature of the yield surface has been
investigated by Mear and Hutchinson [20].

In addition, we investigate the level of energy dissipation in the
main plastic zone in the vicinity of the crack tip (denoted W1) and
in the secondary plastic zone that arises in the crack wake
(denoted as W2). Here, the energy dissipated due to plastic defor-
mation is computed for all material elements in the active plastic
zone as

W Dað Þ ¼
ðDa

0

ð
rij _e

p
ij dV

� �
da (19)

The predictions are given in Table 1 for various stages of crack
advance. Computations reveal that plastic work in the secondary
plastic region is negligible relative to the energy dissipated in the
vicinity of the crack. We conclude that differences between iso-
tropic and kinematic hardening responses are mainly due to non-
proportional deformation in the crack tip plastic zone. Also,
Table 1 shows that kinematic hardening involves much larger
plastic dissipation energy than isotropic hardening, and is consist-
ent with the steeper R-curve.

4 Conclusions

We investigated how the isotropic or kinematic nature of the
strain hardening influences crack growth resistance. Finite ele-
ment results show very significant differences between isotropic
and kinematic hardening laws that yield the same response under
uniaxial tension. We show that kinematic hardening notably
enhances plastic dissipation and the steady-state fracture tough-
ness KSS. These differences persist over different hardening lev-
els, cohesive strengths, and hardening profiles.
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