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The crack tip mechanics of strain gradient plasticity solids is investigated analytically and numerically. A
first-order mechanism-based strain gradient (MSG) plasticity theory based on Taylor’s dislocation model
is adopted and implemented in the commercial finite element package ANSYS by means of a user subrou-
tine. Two boundary value problems are considered, a single edge tension specimen and a biaxially loaded
plate. First, crack tip fields are characterized. Strain gradient effects associated with dislocation hardening
mechanisms elevate crack tip stresses relative to conventional plasticity. A parametric study is conducted
and differences with conventional plasticity predictions are quantified. Moreover, the asymptotic nature
of the crack tip solution is investigated. The numerical results reveal that the singularity order predicted
by the first-order MSG theory is equal or higher to that of linear elastic solids. Also, the crack tip field
appears not to have a separable solution. Moreover, contrarily to what has been shown in the higher
order version of MSG plasticity, the singularity order exhibits sensitivity to the plastic material proper-
ties. Secondly, analytical and numerical approaches are employed to formulate novel amplitude factors
for strain gradient plasticity. A generalized J-integral is derived and used to characterize a nonlinear
amplitude factor. A closed-form equation for the analytical stress intensity factor is obtained.
Amplitude factors are also derived by decomposing the numerical solution for the crack tip stress field.
Nonlinear amplitude factor solutions are determined across a wide range of values for the material length
scale l and the strain hardening exponent N. The domains of strain gradient relevance are identified, set-
ting the basis for the application of first-order MSG plasticity for fracture and damage assessment.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction equal dimensions, are attributed to the presence of geometrically
Strain gradient plasticity models have enjoyed significant atten-
tion in the past 20 years. Constitutive theories accounting for the
role of plastic strain gradients, and their associated length scale
parameters, have enabled capturing the size effects observed in
metals at small scales as well as regularizing otherwise ill-posed
boundary value problems at the onset of material softening
(Engelen et al., 2006; Voyiadjis and Song, 2019). The need for con-
stitutive relations involving plastic strain gradients has been moti-
vated by micro-scale experiments such as wire torsion (Fleck et al.,
1994; Guo et al., 2017), or bending and constrained shear of thin
foils (Stölken and Evans, 1998; Mu et al., 2014). These and other
experiments have revealed a notable size effect in metals
(Aifantis, 1999), with the effective flow strength increasing 3-fold
by reducing specimen size (smaller is stronger). This strengthening
and hardening effects, not observed in uniaxial tension samples of
necessary dislocations (GNDs), which are induced by non-
homogeneous plastic deformation (Ashby, 1970). The observed
elevation of the flow stress with diminishing size can be quantita-
tively captured using strain gradient plasticity models, which
extend conventional J2 flow theory of plasticity by incorporating
a dependence on gradients of plastic strain (Fleck and
Hutchinson, 1997; Gurtin and Anand, 2005). To enable dimen-
sional matching, a characteristic material length scale parameter
l is introduced, which characterizes the capacity of the material
to harden due to the generation of GNDs.

Local strengthening due to plastic strain gradients can also be
observed in large (e.g., macro-scale) samples when plastic defor-
mation is heterogeneous and is confined to a small region, as near
the edge of an indenter (Poole et al., 1996) or at a crack tip (Wei
and Hutchinson, 1997; Martínez-Pañeda and Niordson, 2016). In
both stationary and propagating cracks, the use of strain gradient
plasticity reveals a notable stress elevation in the vicinity of the
crack tip, relative to conventional plasticity predictions (Wei and
Qiu, 2004; Komaragiri et al., 2008; Mikkelsen and Goutianos,
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Nomenclature

a crack length
Aasm
P asymptotic amplitude factor

AFEM
P FEM amplitude factor

AG
P general amplitude factor

AS
P second amplitude factor

b the Burgers vector
E Young’s modulus
In,i numerical integrals
K1 elastic stress intensity factor of a mode-I crack
KP the HRR plastic stress intensity factor
KFEM
P FEM stress intensity factor

KG
P general plastic stress intensity factor

KS
P second plastic stress intensity factor

l SGP intrinsic material length
n strain hardening exponent
N plastic work hardening exponent
r crack tip distance
r, h polar coordinates
Sij deviatoric stresses
W strain energy density

a strain hardening coefficient
b matching coefficient
c CMSG power of stress singularity
gP effective plastic strain gradient
k MSG power of stress singularity
qG geometrically necessary dislocations density
qS statistically stored dislocations density
re effective stress
rref reference stress in uniaxial tension
rflow tensile flow stress
r
�
ij the HRR dimensionless stress components

r̂FEM
ij SGP dimensionless angular stress functions

ry initial yield stress
CMSG conventional theory of mechanism-based strain gradi-

ent plasticity
FEM finite element method
MSG theory of mechanism-based strain gradient plasticity
SGP strain gradient plasticity
SIF stress intensity factor
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2009; Seiler et al., 2016; Kristensen et al., 2020). This stress eleva-
tion is grounded on local strengthening due to the role of strain
gradients and the associated large dislocation densities that origi-
nate near the tip of cracks. The high crack tip stresses predicted by
strain gradient models has provided a mechanistic rationale to
interpret a number of damage mechanisms, such as atomic deco-
hesion in the presence of plasticity (Qu et al., 2004; Fuentes-
Alonso and Martínez-Pañeda, 2020), fatigue (Sevillano, 2001;
Pribe et al., 2019), cleavage fracture of ferritic steels (Qian et al,
2011; Martínez-Pañeda et al., 2019a, 2019b) or hydrogen embrit-
tlement (Martínez-Pañeda et al., 2016a, 2016b; Fernández-Sousa
et al., 2020). The aim has been to link scales in fracture mechanics
by enriching continuum theories to properly characterize material
behavior at the small scales involved in crack tip deformation
(Hutchinson, 1997).

Attention has also been focused on understanding and charac-
terizing the asymptotic nature of the crack tip stress distribution
predicted by the various classes of strain gradient plasticity mod-
els. For example, Xia and Hutchinson (1996), Huang et al. (1995),
Huang et al. (1997) examined the crack tip singular behavior of
solids characterized by coupled-stress theories without stretch
gradients. Chen et al. (1999) investigated the crack tip asymptotic
behavior of a gradient model incorporating the gradients of the
elastic strains. These analyses follow a classic HRR (Hutchinson,
1968; Rice and Rosengren, 1968) approach, and determine the
asymptotic nature of the stress solution by neglecting elastic con-
tributions. More recently, Martínez-Pañeda and Fleck (2019)
showed, analytically and numerically, that phenomenological
higher-order theories (Gudmundson, 2004; Fleck and Willis,
2009) exhibit an elastic region adjacent to the crack tip, implying
that the solution cannot be simplified by ignoring the elastic con-
tribution. Alternative formulations to these phenomenological
models are the so-called mechanism-based strain gradient (MSG)
plasticity theories, which are grounded on Taylor’s dislocation
model (Taylor, 1938; Nix and Gao, 1998; Gao et al., 1999). Both
higher order and lower order formulations have been proposed,
the latter often referred to as conventional mechanism-based
strain gradient (CMSG) plasticity (Huang et al., 2004). Jiang et al.
(2001) and Shi et al. (2001) investigated the asymptotic behavior
predicted by MSG plasticity, revealing a stress singularity larger
than that predicted with linear elasticity.
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In the present work, analytical and numerical methodologies
are used to characterize the crack tip behavior of CMSG plasticity
solids. The finite element simulations conducted reveal notable dif-
ferences with its higher order counterpart; the crack tip field
appears not to have a separable solution and the singularity order
is sensitive to the plastic properties of the material. Also, a gener-
alized J-integral is defined and used to derive amplitude stress
intensity factors for the first time. A plastic stress intensity factor
(Hilton and Hutchinson, 1971) is defined for strain gradient plas-
ticity, using both numerical and analytical approaches. The poten-
tial applications of these fracture resistance parameters are
discussed.

2. Constitutive equations of conventional mechanism-based
strain gradient (CMSG) plasticity theory

The conventional theory of mechanism-based strain gradient
plasticity (CMSG) developed by Huang et al. (2004) has enjoyed
great popularity due to its simpler numerical implementation, rel-
ative to higher order models. The strain gradient effect comes into
play via the incremental plastic modulus not requiring the consid-
eration of higher order stresses and higher order boundary condi-
tions. Thus, it can be implemented numerically as a user material
using standard finite element formulations. Both MSG plasticity
(higher order) and CMSG plasticity (lower order) are based on
the same theoretical framework: Taylor (1938) dislocation model.
Thus, the shear flow stress s is defined as a function of the shear
modulus l, the Burgers vector b and the dislocation density q as:

s ¼ alb
ffiffiffiffi
q

p ð1Þ
where a is an empirical coefficient ranging from 0.3 to 0.5. The dis-
location density q is composed of the density qS for statistically
stored dislocations (SSDs), which accumulate by trapping each
other in a random manner, and density qG for geometrically neces-
sary dislocations (GNDs), which are required for compatible defor-
mation of various parts of the material, i.e.,

q ¼ qS þ qG ð2Þ

The SSD density is related to the flow stress and the material
stress–strain curve in uniaxial tension
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qS ¼ rref f eP
� �

=Malb
� �2 ð3Þ

The GND density is related to the curvature of plastic deforma-
tion, or the effective plastic strain gradient gP, by

qG ¼ r
� gP

b
ð4Þ

where r
�
is the Nye factor, which is around 1.90 for face-centered-

cubic polycrystals. The measure of the effective plastic strain gradi-
ent gP was reported by Gao et al. (1999) in the form of three quad-
ratic invariants of the plastic strain gradient tensor gp

ijk as:

gp ¼ c1gp
iikg

p
jjk þ c2gp

ijkg
p
ijk þ c3gp

ijkg
p
ijk

� �1=2
ð5Þ

The coefficients were determined to be equal to c1 ¼ 0, c2 ¼ 1=4
and c3 ¼ 0 from three dislocation models for bending, torsion and
void growth. The components of the plastic strain gradient tensor
gp
ijk are computed from the plastic strain tensor epij as:

gp
ijk ¼ epik;j þ epjk;i � epij;k ð6Þ
The tensile flow stress is related to the shear stress by

rflow ¼ Ms ¼ Malb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qS þ r

� gP

b

r
ð7Þ

whereM is the Taylor factor, taken to be 3.06 for fcc metals. Because
the plastic strain gradient gP vanishes in uniaxial tension, the den-
sity qS for SSDs is described by Eq. (3), and the flow stress becomes

rflow ¼ rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 ePð Þ þ lgP

q
ð8Þ

where

l ¼ 18a2 l
rref

	 
2

b ð9Þ

is the intrinsic material length in the strain gradient plasticity based
on parameters of elasticity (shear modulus l), plasticity (reference
stress rref), and atomic spacing (Burgers vector b). For metallic
materials, the internal material length is indeed on the order of
microns, consistent with the estimate by Fleck and Hutchinson
(1997). One should note that if the characteristic length of plastic
deformation is much larger than the intrinsic material length l,
the GNDs-related term lgp becomes negligible, such that the flow
stress degenerates to rref f ðepÞ, as in conventional plasticity. Also,
we emphasize that although the intrinsic material length l depends
on the choice of rref via Eq. (9), the flow stress in Eq. (8) is indepen-
dent of rref , as both terms inside of the square root are independent
of rref . A potential choice for the reference stress and the material
function f ðepÞ is

r ¼ rref f epð Þ ¼ ry
E
ry

	 
N

ep þ ry

E

� �N
ð10Þ

such that,

rref ¼ ry E=ry
� �N ð11Þ

and the nondimensional function of plastic strain f ðep) is deter-
mined from the uniaxial stress–strain curve, which for most ductile
materials can be written as a power law relation

f epð Þ ¼ ep þ ry=E
� �� �N ð12Þ

In Eqs. (10)–(12), ry denotes the initial yield stress, and N is the
plastic work hardening exponent (0 � N < 1).

The constitutive formulation described so far is common to
both MSG and CMSG plasticity theories. Suitable constitutive
choices were established by Huang et al. (2004) to circumvent
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the need to use higher order stresses work-conjugate to plastic
strain gradients. Namely, a viscoplastic formulation was presented,
in the form of the following constitutive equations

_ep ¼ _e
re

rflow

	 
m

¼ _e
re

rref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 epð Þ þ lgp

q
2
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3
75

m

ð13Þ

_rij ¼ K _ekkdij þ 2l _e0ij �
3 _e
2re

re

rflow

	 
m

r0
ij

� �
ð14Þ

where re is the effective stress, _e0ij is the deviatoric strain rate, andm
is the rate-sensitivity exponent. Values of m>5 have shown to pro-
vide a response very close to the rate-independent limit. In this
work, m ¼ 20 is adopted so as to simulate rate-independent behav-
ior. Huang et al. (2004) compared CMSG plasticity with its higher
order counterpart, MSG plasticity. The stress distributions predicted
by the lower and higher order theories are only different within a
thin boundary layer, whose thickness is approximately 10 nm.
CMSG plasticity is a continuum theory and is therefore bounded
at the lower end (e.g., it cannot be applied down to the nanometer
scale). As it represents a collective behavior of dislocations, the
lower limit of physical validity should be at least several times
the dislocation spacing; i.e., >10 nm. However, the fracture analyses
of this work reveal notable differences with MSG plasticity beyond
10 nm ahead of the crack tip.

3. Boundary value problems and finite element implementation

Numerical solutions are obtained for two boundary value prob-
lems of particular interest, see Fig. 1: a single edge tension (SET)
specimen and a biaxially loaded plate (BLP). The SET configuration
is a well-known benchmark that has been widely used for the
investigation of crack tip fields in strain gradient solids. The load
is prescribed by imposing a displacement on the pins. We model
the contact between the pins and the specimen by using a surface
to surface contact algorithm with finite sliding (Fig. 1a). The choice
of the BLP configuration is grounded on the well-known fact that a
platewith equibiaxial tension has a vanishing T-stress (Betegón and
Hancock, 1991; Shlyannikov, 2013). This enables a direct compar-
ison with the analytical results of the HRR theory when l ¼ 0. The
panel is subjected to two perpendicular and equal loads: one is par-
allel to the Y-axis, and the other one is parallel to the X-axis, i.e.,
forming an equibiaxial tension nominal stress state (Fig. 1b). The
initial crack is located at the center of the biaxially loaded panel.

One of the key features of our study is the evaluation of cou-
pling material properties and strain gradient plasticity effects. To
this end, a wide range of values for the plastic work hardening
exponent N and for the intrinsic material length parameter l are
used in our numerical calculations. Namely, N is varied between
0.1 and 0.5 while the material length scale is varied between 1
and 10 lm. Changing the magnitude of the strain hardening expo-
nent enables us to compare the resulting trends with those of the
classic analytical HRR solution (Hutchinson, 1968, Rice and
Rosengren, 1968) for conventional elastic–plastic solids. Regarding
the length scale parameter, we aim at spanning the range of exper-
imentally reported length scales, l ¼ 1� 10 lm (Fuentes-Alonso
and Martínez-Pañeda, 2020), and we also consider the conven-
tional plasticity case (l ¼ 0). To compare results from the two dif-
ferent geometries, calculations will be presented as a function of
the remote stress intensity factor characterizing the stress state,
KI . The analysis will be restricted to pure mode I conditions and
the mode I stress intensity factor will often be normalized as

K1 ¼K1=ry

ffiffi
l

p
. The sensitivity of the results to the remote load will

be explored and the quantity K1=ry

ffiffi
l

p
will be varied across a wide



Fig. 1. Boundary value problems under consideration: (a) Single edge tension (SET) specimen, and (b) biaxially loaded plate.
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range; from 6.17 to 68.38. Stress quantities will be presented nor-
malized by the initial yield stress rY and the distance to the crack
tip is normalized by the characteristic material length: r=l. The
crack faces remain traction-free in the two boundary value prob-
lems considered. The elastic stress intensity factor, K1, of the remo-
tely applied field increases monotonically, such that there is no
unloading.

The theoretical framework described in Section 2 is imple-
mented in the commercial finite element package ANSYS (ANSYS,
2012). This is achieved by using a user material subroutine USE-
MAT. Recall that, unlike the higher-order theory of mechanism-
based strain gradient plasticity (Gao et al., 1999; Huang et al.,
2000), CMSG is a first-order theory, not involving higher order
stresses and with the same governing equations as conventional
plasticity. The effect of the plastic strain gradients is taken into
account by modifying the tangent modulus. Thus, a non-local for-
mulation is used by which the computation of the plastic strain
rate via (13) requires estimating the effective plastic strain gradi-
ent from the plastic strain components at the different integration
points within the element. Fortran modules are used to store the
plastic strain components across the Gaussian integration points,
and the plastic strain gradient is computed by numerical differen-
tiation within the element. This is accomplished by interpolating
the plastic strain increment within each element via the values
at Gaussian integration points in the isoparametric space, and sub-
sequently determining the gradient of the plastic strain increment
via differentiation of the shape function. The Newton-Raphson
method is used to solve the resulting non-linear problem, similar
convergence rates to those obtained using ANSYS’s in-built plastic-
ity models are observed. To the best of the authors’ knowledge, the
present work constitutes the first implementation of a mechanism-
based strain gradient plasticity theory in ANSYS.

Wemodel a SET specimen (Fig. 1a) of widthW = 35 mm and ini-
tial crack length a0 = 14 mm. For comparison with the HRR solution
for an infinite-sized cracked body, the BLP has a width
W = 1000 mm and an initial crack length a0 = 10 mm. In the finite
element models, an initial crack tip is defined as an ideally sharp
crack (mathematical notch). With the aim of accurately character-
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izing the influence of the plastic strain gradients, a highly refined
mesh is used near the crack tip – see Fig. 2. A mesh sensitivity anal-
ysis is conducting, revealing that a characteristic element size h
below 16 nm delivers mesh-independent results. Representative
results of the mesh sensitivity analysis are shown in Fig. 2. A char-
acteristic element size of h = 5 nm is chosen, ensuring mesh-
independent results (see Fig. 3).

Efforts were made to ensure an aspect ratio of one in the ele-
ments close to the crack tip. Quadrilateral, quadratic plane strain
elements were used, the typical number being approximately
550,000. The numerical implementation was validated by repro-
ducing the results of Qu et al. (2004) and Martínez-Pañeda and
Betegón (2015).
4. Crack tip fields

We begin our analysis by providing a finite element character-
ization of crack tip fields. First, attention is drawn to the crack tip
asymptotic behavior of CMSG plasticity solids. While the asymp-
totic behavior of solids characterized by phenomenological strain
gradient theories and by the higher order MSG plasticity model
is known (Shi et al., 2001; Martínez-Pañeda and Fleck, 2019), the
investigation of crack tip asymptotics in CMSG plasticity has not
been carried out yet. Finite element results for the effective von
Mises stress distribution re ahead of the crack tip are shown in
Fig. 4. Crack tip stresses are shown for both CMSG plasticity and
conventional plasticity for a wide range of strain hardening expo-
nent N values. The results corresponding to the conventional plas-
ticity solution are denoted as CPS. Numerical predictions for the
single edge tension (SET) sample are shown in Fig. 4(a) while the
results for the biaxially loaded plate (BLP) are shown in Fig. 4(b).

In both the SET and BLP cases, the remote stress equals
r1=rY ¼ 0:155, which corresponds to a normalized stress intensity

factor of K
�
1 = 30.58 and K

�
1 = 14.54, respectively. The material prop-

erties are rY=E ¼ 0:1%, m ¼ 0:3 and l ¼ 5 lm. Outside of the plastic
zone (re/rY � 1) the r�1=2 slope inherent to linear elastic singularity
is observed in all cases. For a given N value and an effective stress



Fig. 2. Hoop stress distribution ahead of the crack: mesh-sensitivity analysis. Each line corresponds to a different model with characteristic element size h; the total number
of degrees-of-freedom (DOFs) is also reported for each model.

Fig. 3. Detail of the finite element mesh used in the vicinity of the crack tip. The
characteristic element size is on the order of 5 nm.
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magnitude slightly higher than the yield stress, the result follows
the classic HRR solution for both CMSG and conventional plasticity
(CPS).

However, when as r gets smaller the effect of the plastic strain
gradients becomes apparent and notable differences can be
observed with the conventional plasticity predictions. Plastic strain
gradients significantly elevate the stresses close to the crack tip,
with re being up to an order of magnitude larger than the conven-
tional plasticity solution. Strain gradient effects become important
within a distance of 0.1l to l of the crack tip, depending on the
strain hardening exponent. This is in agreement with Xia and
Hutchinson’s (1996) estimate of the size of the gradient dominated
zone and with Jiang et al. (2001) numerical calculations for MSG
plasticity. Interestingly, the results shown in Fig. 4 for the CMSG
plasticity predictions show sensitivity of the asymptotic stress sin-
gularity to the strain hardening exponent N. The stress distribution
within a small distance to the crack tip r/l � 0.1 exhibits a slope
higher than that of linear elastic solids, except for very high values
of N (>0.4) where the solution resembles that of linear elasticity.
This behavior is observed for both the SET and BLP cases and has
important implications. First, a stress singularity larger than the
classic linear elastic result r�1=2 entails a different asymptotic
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behavior relative to other classes of strain gradient models. As
shown by Martínez-Pañeda and Fleck (2019), phenomenological
higher order strain gradient plasticity models such as those devel-
oped by Gudmundson (2004), Gurtin and Anand (2005) and Fleck
and Willis (2009) exhibit an inner elastic K field such that the
stresses scale as r�1=2 close to the crack tip. Shi et al. (2001) also
found a higher stress singularity than linear elasticity in the case
of the higher-order MSG plasticity model; they combined numeri-
cal and analytical techniques and concluded that the stresses
scaled as r�2=3 in the vicinity of the crack tip. This was used by
Martínez-Pañeda et al. (2017) to develop enriched numerical
schemes based on the extended finite element method. Thus, strain
gradient plasticity models based on Taylor’s dislocation theory
appear to predict a stronger singularity than linear elastic solids,
for both lower order and higher order formulations. Secondly, the
stress singularity appears to be dependent on the strain hardening
exponent, as it is the case of the HRR solution. This result is in dis-
agreement with the numerical analyses by Jiang et al. (2001) and
Shi et al. (2001), and would indicate a greater role of higher order
stresses than previously anticipated.

The influence of the remote load, the yield stress and the mate-
rial length parameter are assessed in Fig. 5. Dimensional analysis
shows that the non-dimensional set governing the role of plastic
strain gradients is l=R0, where R0 is the plastic zone size as defined
by Irwin’s approximation:
R0 ¼ 1
3p

KI

rY

	 
2

ð15Þ

First, in Fig. 5a, crack tip stress distributions are shown for a
fixed value of l=R0 but two selected values of the normalized

remote load KI=ry

ffiffi
l

p
: 3.2 and 14.7. Also, the strain hardening expo-

nent is varied between 0.1 and 0.5. In agreement with expecta-
tions, the overall stress level increases with the remote load.

Fig. 5 represents the effect of the remote load KI=ry

ffiffi
l

p
on the

effective normalized stress re/rY distribution ahead of the crack
tip in the SET specimen. In Fig. 5a, the applied stress intensity fac-

tors are K
�
1 = 6.71 and K

�
1 = 30.58 with the specified intrinsic

parameter value l = 5 lm, and the plastic work hardening exponent
being equal to N = 0.1, 0.2, and 0.5. The stress level increases with
the applied load, in agreement with expectations, and both the
plastic zone and the gradient-dominated region augment in size
by raising KI . The trends observed in Fig. 4 persist for different KI



Fig. 4. Effective stress distribution re ahead of the crack tip for CMSG plasticity and conventional von Mises plasticity as a function of the strain hardening exponent: (a) SET
sample for K

�
1 = 30.58 (r1=rY ¼ 0:155) and (b) BLP sample for K

�
1 = 14.54 (r1=rY ¼ 0:155). For N < 0.5, the stress singularity exceeds that of elastic solids. Material properties:

rY=E ¼ 0:001; m ¼ 0:3 and l ¼ 5 lm.
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levels; the singularity order exceeds that of linear elasticity and the
asymptotic crack tip fields appear to be sensitive to the strain hard-
ening exponent. Fig. 5b shows the dimensionless effective stress
relative to the normalized distance to the crack tip ahead of the
crack tip for three normalized values of the internal material
length l/R0 = 0.0087, 0.043, and 0.087, with the work hardening
exponent being equal to N = 0.075 and 0.5. For the case of
N ¼ 0:5, the stress distribution follows the r�1=2 singularity order
of linear elastic solids. A more singular behavior is observed for
the case of N ¼ 0:075; the numerical solution is not as smooth as
for N ¼ 0:5 but for the three load levels a higher slope can be
observed. Also, the slope appears to be similar, suggesting a solu-
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tion of similar nature to that of the HRR field, with the singular
order being a constant value for a fixed value of N.

Further insight is gained by inspecting the angular variation of
the stress distributions in the SET specimen. For this purpose, a
dimensionless effective stress can be defined as:
Se ¼ re hð Þ
re;max

ð16Þ

Dimensionless plots of Se can be shown by considering
x ¼ Se cos h and y ¼ Se cos h. First, Fig. 6 shows the angular stress
variations at different r=l values. Angular stress plots are shown



Fig. 5. Stress distributions ahead of the crack for the SET specimen for different
values of the strain hardening exponent N: (a) influence of the remote load KI=ry

ffiffi
l

p
;

and (b) influence of the l=R0 ratio.
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for five different values of the strain hardening exponent N ranging

from 0.1 to 0.5. The applied stress intensity factor is K
�
1 ¼ 21:62,

the intrinsic parameter value is l = 5 lm, the applied nominal stress
level is r1/rY = 0.155, and the plastic work hardening exponents
are N = 0.1, 0.2, 0.3, and 0.5.

Fig. 6 shows how the contour plots of the dimensionless effec-
tive stresses change shape and increase in size with a gradual
increase in the crack tip distance r/l. Far from the crack tip, close
to the elastic–plastic boundary (r=l ¼ 5, Fig. 6d), the angular stress
distributions show a very small sensitivity to the strain hardening
exponent N, in agreement with expectations. Noticeable differ-
ences are shown as we approach the crack tip, with Fig. 6c
(r=l ¼ 0:5) showing similar angular distributions in the range
N ¼ 0:1� 0:4 but a very different response to the case N ¼ 0:5. This
behavior agrees with the results observed for h ¼ 0

�
(see, e.g.,

Fig. 4), as the N ¼ 0:5 case shows a stress distribution close to that
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predicted by linear elasticity while for N < 0:5 the stress distribu-
tions follow that of conventional plasticity before local strengthen-
ing due to strain gradient effects is observed.

Within the strain gradient dominated zone ðr=l < 0:1, Fig. 6a
and b) the angular distributions of the normalized effective stress
show notable sensitivity to the value of N, revealing again a sensi-
tivity of the stress field close to the crack tip to the plastic proper-
ties of the material. This is further shown in Fig. 7, where it can be
seen that angular stress distributions are almost insensitive to the
ratio r=l for N ¼ 0:5 but show noticeable differences for N < 0:5. It
is evident from Fig. 7a–c that the angular stress distribution in the
singularity dominated region is sensitive to the value of the strain
hardening exponent. This result would suggest that either the GND
term in Eq. (8) is on the same order as the strain related term, or
that the strain gradient term lgp is sensitive to the strain hardening
exponent.

We proceed to use the biaxially loaded plate (BLP) and a
Ramberg-Osgood hardening law to establish a direct comparison
with the analytical HRR solution. Recall that a plate under equibi-
axial tension has a T-stress equal to zero. Two values of the strain
hardening exponent are considered N ¼ 0:1 and N ¼ 0:5, so as to
showcase the influence of material hardening on the angular stress
distribution. As with the SET sample results, the normalized effec-
tive stress Se is shown at selected r=l ratios: 0.004, 0.06 and 0.5. The
results are shown in Fig. 8.

Three constitutive models are considered. The CMSG plasticity
computations using the constitutive model described in Section 2
are denoted as CMSG; the finite element results obtained using
conventional J2 flow theory with a Ramberg-Osgood hardening
law are denoted as CPS; and the analytical HRR (Hutchinson,
1968; Rice and Rosengren, 1968) solution is denoted as HRR.

The results reveal a very good agreement between the J2 flow
theory results and the analytical HRR solution, in agreement with
expectations. Also, little differences between models are observed
when the strain hardening exponent is equal to N ¼ 0:5 or higher,
as the solution is close to the elastic one. However, notable differ-
ences are observed between conventional plasticity and CMSG
plasticity for the case of N ¼ 0:1. Unlike the conventional plasticity
case (both HRR and our finite element results), the CMSG
plasticity-based analysis shows significant differences with
decreasing the r=l ratio.

The sensitivity of the angular stress distributions to the plastic
material properties is investigated in Fig. 9. Both the cases of CMSG
plasticity and conventional J2 flow theory are considered. The cal-

culated angular distributions of hoop stresses r̂FEM
h r; h;Nð Þ, with the

normalization condition r̂FEM
e;max ¼ 3

2 S
FEM
ij SFEMij

� �1=2
max

¼ 1, are plotted in

Fig. 9 for hardening exponents of N = 0.1, 0.2, 0.3, and 0.5. The

applied stress intensity factor is K
�
1 ¼ 21:62, the intrinsic parame-

ter value is l = 5 lm, and the applied nominal stress level is r/
rY = 0.155. The difference between dimensionless stress fields in
strain-gradient plasticity is significant, especially for N = 0.1, and
this difference gradually disappears with an increase in the degree
of hardening.

The comparison of these r̂FEM
h r; h;Nð Þ variations to each other as

a function of the radial coordinate r/l leaves little doubt that the
strain gradient plasticity fields produced in this section are not of
separable form (except for N�0.5), i.e.,

r
�CMSG

ij r; hð Þ– A
rk
r
�
ij hð Þ ð17Þ

where (r,h) are the polar coordinates centered at the crack tip, rij is

the stress and r
�
ij hð Þ the corresponding angular function, k is the

power of stress singularity, and A is the amplitude factor depending
on the applied loading, cracked body configuration, and material



Fig. 6. Angular distributions of the normalized effective stress predicted by CMSG plasticity as a function of the strain hardening exponent and different locations ahead of the
crack tip: (a) r=l ¼0.004, (b) r=l ¼ 0:04, (c) r=l ¼0.5, (d) r=l ¼ 5. Remote load r1=rY ¼ 0:155. Material properties: rY=E ¼ 0:1%; m ¼ 0:3 and l ¼ 5 lm.
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properties. Similar dependences of the angular distributions on the
radial coordinate have been found in the analytical and numerical
results of Xia and Hutchinson (1996) for Mode I and II crack tip
fields for plane strain deformations of an elastic–plastic solid whose
constitutive behavior is described by a phenomenological, higher-
order strain gradient plasticity theory.

This is in remarkable contrast to the results obtained for l ¼ 0,
conventional J2 flow theory. The results denoted as HRR in Fig. 9
indicate that for the same loading conditions, the normalized stress
distributions depend only on the polar angle h and the strain
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hardening exponent but are roughly insensitive to the crack tip
distance r/l in the range 0.004 to 1.0. In other words, the computa-
tional results shown in Fig. 9 confirm the structure of the corre-
sponding HRR field, which is the separable or self-similar
asymptotic singular crack tip fields:

r
�HRR

ij r; hð Þ ¼ KPr
�1
nþ1r

�
ij hð Þ ð18Þ

where n = 1/N is the power of stress singularity, and KP is the plastic
stress intensity factor (Hilton and Hutchinson, 1971).



Fig. 7. Angular distributions of the normalized effective stress predicted by CMSG plasticity as a function of the distance ahead of the crack tip and strain hardening exponent:
(a) N ¼0.1, (b) N ¼ 0:2, (c) N ¼0.3, N ¼ 0:5. Remote load r1=rY ¼ 0:155: Material properties: rY=E ¼ 0:1%; m ¼ 0:3 and l ¼ 5 lm.
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5. Formulation of fracture resistance parameters

We proceed to formulate new fracture resistance parameters
for CMSG plasticity. We distinguish between amplitude coeffi-
cients and plastic stress intensity factors by making use of both
numerical and analytical formulations. In the framework of the
analytical solution of the problem, we must connect the structure
of the fields at the crack tip with a governing parameter in the form
of a suitable path-independent J-integral.
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5.1. FEM-amplitude and stress intensity factors.

Let us consider the structure of the numerical (FEM) crack tip
stress fields to be of the following form

r
�FEM

ij r; hð Þ ¼ AFEM
P r; h ¼ 0ð Þr̂FEM

ij r; hð Þ ð19Þ

where AFEM
P r; h ¼ 0ð Þ is denoted as quantitative, and r̂FEM

ij r; hð Þ is the
qualitative component of the general solution (19). The angular dis-

tributions of the qualitative component r̂FEM
ij r; hð Þ are normalized,



Fig. 8. Angular distributions of the normalized effective stress in the BLP specimen for CMSG plasticity, conventional plasticity and the HRR solution. Results are shown for
two values of the strain hardening exponent (N ¼ 0:1;0:5) and three r=l ratios (0.004, 0.06 and 0.5). Remote load r1=rY ¼ 0:155: Material properties: rY=E ¼ 0:1%; m ¼ 0:3
and l ¼ 5 lm.
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such that r̂FEM
hh





h¼0

¼ 1 or r̂FEM
e;max ¼ 3

2 S
FEM
ij SFEMij

� �1=2
max

¼ 1. Solving equa-

tion (19) with respect to the amplitude factor, we obtain

AFEM
P r; h ¼ 0ð Þ ¼ r

�FEM

ij r; hð Þ
r̂FEM

ij r; hð Þ
ð20Þ

For the purpose of comparison with the stress field structures at
the crack tip known in the literature, we assume that

AFEM
P ¼ KFEM

P r
�c; c < 0 ð21Þ
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and

KFEM
P ¼ AFEM

P =r
�c ð22Þ

where r
� ¼ r=l is the normalized crack tip distance, c is the power of

stress singularity, and AFEM
P r; hð Þ and KFEM

P are the amplitude and
plastic stress intensity factors, respectively, which depend on the
applied loading, cracked body configuration, and material proper-
ties. The structure of the crack tip stress fields in Eq. (19) agrees
with that found by Xia and Hutchinson (1996) for the deformation
theory of phenomenological higher order strain gradient plasticity



Fig. 9. CMSG plasticity and HRR hoop stress angular distributions as a function of N for the SET specimen. Remote load r1=rY ¼ 0:155. Material properties: rY=E ¼ 0:1%;

m ¼ 0:3, l ¼ 5 lm.
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model employed in their work, which combines the symmetric part
of the Cauchy stress, the asymmetric coupled stress, and the defor-
mation curvature tensor. Their asymptotic analysis generates two
amplitude factors, one is the classical HRR solution plastic stress

intensity factor KP ¼ J= r0e0Inð Þð Þn= nþ1ð Þ, and the second, A, is related
to the dimensionless h-variations of the stress components r̂ij; ŝij.
Apart from the amplitude factors, Xia and Hutchinson (1996) intro-
duced the dominantly singular crack tip strain and stress fields,
where the dimensionless angular functions êij; v̂ij; r̂ij; ŝij; m̂ij

depend on the polar angle h, strain hardening exponent n, and the

normalized r
� ¼ r=l length parameter, characterizing the scale across

which gradient effects become important. The authors show that in
the outer field where the HRR solution is approached, êij and r̂ij

approach e
�
ij and r

�
ij, respectively, as defined by Eq. (18) in the

HRR theory.
Here, we proceed first to identify fracture parameters based on

the numerical results, as computed for the loading conditions and
material properties listed in Section 3. Recall that Fig. 4 shows the
normalized stress distribution ahead of the crack tip (h ¼ 0

�
) for

both CMSG plasticity and conventional plasticity. Focusing on the
CMSG plasticity results, it is evident that the singular behavior of
the asymptotic crack tip fields is the result of the combined influ-
ence of plastic strain gradients and plastic material properties of
the material. In other words, unlike previous works, we see a sen-
sitivity to the material strain hardening exponent N; this is quan-
tified by fitting the numerical results in Fig. 4 such that the
power of the stress singularity is given by the following equations:

for SET : c ¼ 1:08333N3 � 0:76785714N2

þ 0:3323809524N� 0:6196 ð23Þ

for BLB : c ¼ 0:0333N3 � 0:2193N2 þ 0:0517N� 0:6816 ð24Þ
The numerical amplitude factor AFEM and the plastic stress

intensity factor KFEM
P are shown in Fig. 10 for the case of the SET

sample as a function of the distance ahead of the crack tip r=l based
on Eqs. (20), (23) and (24). The results reveal that the numerical

values for amplitude factor AFEM
P significantly decrease as a function

of the normalized crack tip distance r/l, and all separate curves for
different N coincide with each other when r/l > 2. In contrast, when
the nondimensional distance to the crack tip is <0.1r/l, the behavior

of the plastic stress intensity factor KFEM
P ¼ AFEM

P =r
�c is almost uni-

form with respect to these dimensionless quantities for r/l ranging
from 0.001 to 0.1 and any value of the work hardening exponent N.
This steady state region of strain gradient effects may be regarded
as a domain of determination or domain of validity for CMSG plas-
ticity. Our numerical analysis confirms the results of Xia and
Hutchinson’s (1996) finite element studies, which clearly show
that HRR field is accurate for r/l > 5, the singular field for strain-
gradient plasticity is dominant for r/l < 5, and a gradual transition
region lies in between. The gradient dominated zone size remains
significantly larger than the dislocation spacing, such that the use
of continuum plasticity is justified. The same trends are observed
for the BLP specimen, as shown in Fig. 11.

5.2. Amplitude and stress intensity factors based on asymptotic crack
tip fields.

This study uses the conventional theory of the mechanism-
based strain gradient (CMSG) plasticity detailed by Huang et al.
(2004), which is a lower-order theory based on the Taylor disloca-
tion model. The solid is assumed to be homogeneous and isotropic
with an energy density W, which depends on scalar invariants of
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the strain tensor, while the deformation curvature tensor and cou-
pled stress are negligible. Our starting point is to look for a domi-
nant singular solution derived from an incompressible, irrotational
displacement field.

Numerous previous asymptotic fields around crack tips have
separable forms of solutions, such as the classical K field, the
HRR field, crack tip field in the couple-stress theory of strain gradi-
ent plasticity (Huang et al., 1995), as well as the crack tip field in
phenomenological theory of strain gradient plasticity (Fleck and
Hutchinson, 1997). These fields are all governed by the path-
independent J-integral. To formulate the problem for the asymp-
totic strain-gradient crack tip fields, Chen et al. (1999) and Shi
et al. (2000), employed a displacement potential / similar to the
HRR field in classical plasticity. A separable form for / is taken as

/ ¼ rp /
�

hð Þ ð25Þ

where p is the power of stress singularity (p > 0) and /
�

hð Þ is the
angular distribution of /. Huang et al. (1995) and Xia and
Hutchinson (1996) analytically obtained the asymptotic fields near
a Mode I crack tip in rotation-gradient-based strain gradient plastic-
ity. They established that the crack tip deformation field is irrota-
tional, such that the strains and stresses are more singular than
curvatures (strain gradients) and higher-order stresses, respec-
tively. The corresponding power p for displacements in this
stress-dominated crack tip field, where stresses are more singular
than higher-order stresses, is p = 1/(n + 1), which is the same as
for the HRR field in classical plasticity.

Shi et al. (2001) observed that the stress field in MSG plasticity
is more singular than both the HRR field and the classical elastic K
field (r�0.5), which is consistent with Jiang et al.’s (2001) finite ele-
ment analysis. They found that the Mode I stress singularity in
MSG plasticity, kI = 0.63837, is slightly smaller than that for Mode
III, kIII = 0.65717. Even though this was not observed in classical
elastic or elastic–plastic crack tip fields, similar observations have
been made in other strain gradient plasticity theories. For example,
Huang et al. (1995), Huang et al. (1997) and Xia and Hutchinson
(1996) showed that the stress traction ahead of a Mode I crack
tip predicted by Fleck and Hutchinson’s couple-stress theory of
strain gradient plasticity (Fleck and Hutchinson, 2001; Fleck
et al., 1994) has the same singularity as the HRR field. Shi et al.
(2001) pointed out that, unlike the HRR field in classical plasticity,
the power of stress singularity in MSG plasticity is independent of
the plastic work hardening exponent N. The authors argued that
this is because the strain gradient becomes more singular than
the strain near the crack tip and dominates the contribution to
the flow stress. This indicates that the density qG of GND around
a crack tip is significantly larger than the density qS of SSDs.

Unlike these separable asymptotic crack tip fields previously
established, Xia and Hutchinson (1996) used the dominantly sin-
gular crack tip strain and stress fields within the framework of cou-
pled stress theory, where the dimensionless angular functions
êij; v̂ij; r̂ij; ŝij; m̂ij depend on the polar angle h, strain hardening

exponent n and the normalized r
� ¼ r=l the intrinsic material length

parameter, i.e.,

rij; l
�1mij;sij

h i
¼r0 J= r0e0Inrð Þð Þn= nþ1ð Þ r̂ij h;

r
l
;n

� �
;m̂ij h;

r
l
;n

� �
; ŝij h;

r
l
;n

� �h i
ð26Þ

In the present study, following Xia and Hutchinson (1996) and
Shi et al. (2001), the asymptotic displacement and stress domi-
nated fields near a crack tip are written in the context of CMSG
plasticity as:

u
�
i r; hð Þ ¼ aK1=N

P r
� 2�2kð Þûi r; hð Þ; i ¼ 1;2 ð27Þ



Fig. 10. CMSG plasticity FEM-amplitude and stress intensity factors behavior in the SET specimen. Remote load r1=rY ¼ 0:155: Material properties: rY=E ¼ 0:1%; m ¼ 0:3
and l ¼ 5 lm.
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r
�
ab r; hð Þ ¼ KPr

��kr̂ab r; hð Þ ð28Þ
r
�
e r; hð Þ ¼ KPr

��kr̂e r; hð Þ ð29Þ

where r
� ¼ r=L, and L is a characteristic length (e.g., the strain gradi-

ent length scale). In Eqs. (24)–(26), KP denotes the plastic stress
intensity factor, N is the strain hardening exponent, and k > 0 is
the power of stress singularity.

We proceed then to define a suitable J-integral (Rice, 1968) for
CMSG plasticity. Suitable path-independent J-integrals for materi-
als with strain-gradient effects have been developed by Huang
et al. (1995), Huang et al. (1997), Xia and Hutchinson (1996),
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Chen et al. (1999), and Martínez-Pañeda and Fleck (2019). Most
general forms for the high-order theories can be written as

J ¼
Z
C

Wn1 � Tiui;1 � qixi;1
� �

dS ð30Þ

where W is the strain energy density, ui, xi, Ti, and qi are displace-
ments, rotations, tractions, and couple-stress tractions, respectively,
and n1 is the unit normal. As mentioned above, Xia and Hutchinson
(1996) employed two amplitude factors to formulate the problem
for the crack tip fields; one is the classical HRR solution plastic
stress intensity factor KP, and the second, A, is related to the dimen-
sionless h-variations for dominant stress components r̂ij; ŝij. Huang
et al. (1997) introduced several definitions for amplitude factors for



Fig. 11. CMSG plasticity FEM-amplitude and stress intensity factors behavior in the BLP specimen. Remote load r1=rY ¼ 0:155. Material properties: rY=E ¼ 0:1%; m ¼ 0:3
and l ¼ 5 lm.
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the asymptotic crack tip fields. Namely, in an elastic material with
strain-gradient effects, the dominant stress and couple-stress fields

in Mode I are governed by two independent parameters, B 0ð Þ
I for

stresses (similar to K1 in classical elastic fracture mechanics) and

A 0ð Þ
I for couple stresses. In the cases of an elastic–plastic strain-

gradient material with the separated or integrated law of harden-

ing, the authors used B 0ð Þ
I and A 0ð Þ

I amplitude factors to conjugate
with additional nondimensional functions I1(n) and I2(n) of the
hardening power n.
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In the case of CMSG plasticity, because it does not involve
higher-order stresses, one can use as a starting point the J-
integral definition provided by Rice (1968),

J
�
¼
Z
C

W
�
dy� r

�
ijnju

�
i;xd s

�� �
ð31Þ

while noting that stresses, strains and displacements are given by
the constitutive behavior of CMSG plasticity.

For convenience, we introduce the following non-dimensional
quantities:
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J
�
¼ JE
r2

y
; W

�
¼ WE

r2
y
; r

�
ij ¼ rij

ry
; u

�
i ¼ uiE

ry
ð32Þ

where ry is the yield stress.
The strain energy density in Eq. (31) is defined as the sum of

elastic and plastic components:

W
�

¼ W
�

E þW
�

P ¼ 1þ m
3

r
�2

e þ
1� 2m

6
r
�2

kk

� �
þ a

N þ 1
r
�Nþ1

N

e

� �
ð33Þ

The value of J-integral for elastic Mode I far from crack tip stress
fields is defined as

JC ¼ K2
1

E
; J

�
C ¼ JCE

r2
yL

¼ 1
L

K1

ry

	 
2

ð34Þ

Conveniently, the asymptotic crack tip field can be used to eval-
uate the J-integral. Substituting Eqs. (27)–(29) and Eq. (33) into Eq.
(31) we obtain the following line J-integral

J
�
¼ Rþp

�p W
�
rcoshdh� r

�
ijnju

�
i;xrdh

� �
¼

¼ r K1
ry
ffiffi
r

p
� �2 Rþp

�p
1þm
3 r

�el

e

	 
2

þ 1�2m
6 r

�el

kk

	 
2
" #(

�coshdhþ aK
1þN
N

P
Nþ1

Rþp
�p r

��kr̂e

� �Nþ1
N
coshdh

)
�

�aK
1þN
N

P

Z þp

�p

r
� 2�3kð Þ r̂rrûh þ r̂hr ûrð Þcosh� r

� 1�3kð Þ r̂rr
@ûr
@h þ r̂hr

@ûh
@h

� �
sinh

h i
þ

2� 2kð Þr� 1�3kð Þ r̂rr ûr þ r̂rhûhð Þcosh

8<
:

9=
;rdh ð35Þ
The path-independence of the J-integral allows the equality
between Eqs. (34) and (35) to be written as

J
�
C ¼ J

�
ð36Þ

Equation (36) can be rewritten in the following form by consid-
ering Eqs. (34) and (35)

K
�
1

ry

 !2
a
r

� �
1� Iel

2p

� �

¼a KPð Þ1þN
N

1
Nþ1

r
��k 1þNð Þ

N In;1� r
� 2�3kð ÞIn;2þ r

� 1�3kð ÞIn;3� 2�2kð Þr� 1�3kð ÞIn;4

� �
ð37Þ

where

K
�
1 ¼ K1=

ffiffiffi
a

p� � ð38Þ

Iel ¼
Z þp

�p
f r

�el

ij

	 

dh ð39Þ

In;1 ¼
Z þp

�p
r̂

Nþ1
N

e coshdh ð40Þ

In;2 ¼
Z þp

�p
r̂rrûh þ r̂rhûrð Þcoshdh ð41Þ

In;3 ¼
Z þp

�p
r
�
rr
@ûr

@h
þ r

�
rh
@ûh

@h

	 

sinhdh ð42Þ

In;4 ¼
Z þp

�p
r̂rrûr þ r̂rhûhð Þcoshdh ð43Þ
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The path-independent integral (35) is related to plastic stress
intensity factor KP and four numerical integrals In,i (i = 1,4) repre-
sented by Eqs. (40)–(43). This provides a bridge between this
new plastic SIF KP and the classical elastic SIF. The J-integral can
be evaluated by Eq. (35) for an elastic–plastic material with strain
gradient effects subjected to remotely imposed classical K-fields.
Details of the derivation of the equation for the elastic part of the
strain energy density WE and the integral Iel associated with it
are given in Appendix 1. Rearranging Eq. (37) leads to the expres-
sion for a new plastic stress intensity factor accounting for both the
elastic and plastic parts of strain energy density:

Kp ¼
K
�
1

ry

� �2
a
r

� �
1� Iel

2p

h i
a 1

Nþ1r
��k 1þNð Þ

N In;1� r� 2�3kð ÞIn;2þ r� 1�3kð ÞIn;3� 2�2kð Þr� 1�3kð ÞIn;4
h i

8><
>:

9>=
>;

N
Nþ1

ð44Þ
where r ¼ r=l.

A comparison of the terms in Eq. (44) related to numerical inte-

grals In,i(i = 1, 4) at the crack tip distances ranging of (0.001–1.0)r
�

for all values of the work hardening N shows that the first term In,1
dominates by an order of magnitude or more with respect to all the
backward terms In,i(i = 2,3,4), i.e., the contribution of these terms is
negligible. Therefore, without losing generality, we may impose
the following simplified expression for the plastic stress intensity
factor in the asymptotic crack tip problem
Kp ¼ r
�k K

�
1

ry

 !2
a
r

� �
1� Iel

2p

	 

=

aIn;1
N þ 1

	 
8<
:

9=
;

N
Nþ1

ð45Þ

and the corresponding expression for the amplitude factor has the
form

Aasm
P r; hð Þ ¼ KP r

�� ��k
¼ K

�
1

ry

 !2
a
r

� �
1� Iel

2p

	 

=

aIn;1
N þ 1

	 
8<
:

9=
;

N
Nþ1

ð46Þ

Fig. 12 shows the distributions of plastic stress intensity factors
KP according to Eq. (45) for the asymptotic CMSG plasticity prob-
lem as a function of the normalized distance in the SET specimen
and BL plate. The behavior of the plastic SIFs KP has approximately
the same range of variation as the numerical SIFs KFEM

P (Figs. 10b,
11b), but it exhibits sensitivity to the crack tip distance.

Following Xia and Hutchinson (1996) and Huang et al. (1997),

the general amplitude factor AG
P r; hð Þ is introduced, which combines

the asymptotic solution Aasm
P r; hð Þ and the second term AS

P r; hð Þ from
the condition for matching the numerical solution. In essence, this
approach corresponds to the classical fracture mechanics, when
the elastic SIF is the product of the dimensional part r

ffiffiffiffiffiffi
pa

p
and

the geometry-dependent factor Y a=wð Þ, i.e., K1 ¼ r
ffiffiffiffiffiffi
pa

p � Y a=wð Þ.
Thus, the following structure for amplitude factors is introduced
to scale with strain gradients from the dimensional consideration:

AG
P r; h ¼ 0ð Þ ¼ Aasm

P r; h ¼ 0ð Þ � AS
P r; h ¼ 0ð Þ ð47Þ

Dimension matching requires the following structure for the
new amplitude coefficient

AG
P r; h ¼ 0ð Þ ¼ KG

P r
�d ð48Þ



Fig. 12. CMSGP asymptotic stress intensity factors behavior in (a) SET specimen and (b) BL plate.
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AS
P r; h ¼ 0ð Þ ¼ KS

Pr
�b ð49Þ

where KG
P and KS

P are general and second plastic stress intensity fac-
tors, respectively, and d and b are the corresponding crack tip dis-
tance exponents. Fig. 13 shows the behavior of KS

P and b, which
are found from the condition for matching the numerical solution.

By fitting the distributions shown in Fig. 13, the approximation
equations that describe the behavior of the second plastic SIF KS

P

and b power were determined as a function of plastic work harden-
ing exponent N for the considered cracked bodies

for SET: KP
S = 5.1014 N2 � 5.8779 N + 2.0093 ð50Þ
Fig. 13. Second SIF KS
P and b power behavior as a function of plastic work hardening

exponent N.
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b = �2.1071 N2 + 1.8893 N � 0.6586 ð51Þ

for BLP: KP
S = �21.90000 N3 + 24.50143 N2 � 9.71586 N + 2.32132

ð52Þ

b = �1.75000 N3 + 1.63929 N2 + 0.13143 N � 0.42560

ð53Þ
Substituting Eqs. (48), (49) into Eq. (47) yield

KG
P r
�d ¼ KS
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�b K

�
1

ry

 !2
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r

� �
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=
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N þ 1

	 
8<
:

9=
;

N
Nþ1

ð54Þ

and the expression for the general plastic SIF, which will satisfy the
condition

KG
P ¼ r

�� � b�dð Þ
KS

P
K
�
1

ry

 !2
a
r

� �
1� Iel

2p

	 

=

aIn;1
N þ 1

	 
8<
:

9=
;

N
Nþ1

ð55Þ

The numerical and analytical formulations for the plastic stress
intensity factors KFEM

P and KG
P in the form of Eqs. (22) and (55),

respectively, are parameters of fracture resistance, and they are
applicable in a domain of determinacy or domain of validity of
CMSG plasticity. The proposed plastic stress intensity factor can
be considered a reference or generalized parameter (GP) to deter-
mine the joint probability of failure assuming a three-parameter
Weibull distribution. Such methodology allows the normalized
equivalent parameter (GPeq) to be proposed for probabilistic/statis-
tical assessment of cleavage fracture in the presence of plastic
deformation with a suitable failure variable irrespective of the con-
straint conditions.
6. Discussion

Shi et al. (2001) found that, unlike the HRR field in classical
plasticity, the power of stress singularity in the higher order MSG
plasticity theory is independent of the plastic work hardening
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exponent N. However, our results show that for CMSG plasticity,
the stress singularity is sensitive to the plastic properties of the
material. As shown in Fig. 4, the crack tip stress distribution reveals
a similar trend to that observed in the finite element analysis of
crack tip fields in MSG plasticity by Jiang et al. (2001); gradient
effects elevate the stresses and lead to an asymptotic behavior that
appears to be more singular than the linear elastic solution. Also,
for both MSG and CMSG plasticity models, the normalized effective
stress within the gradient plasticity dominance region increases
with increasing plastic work hardening exponent N. However, the
slope of the stress distribution close to the crack tip appears to
be sensitive to changes in N, as quantified by Eqs. (23) and (24).
As in conventional plasticity, we have shown that a plastic stress
Fig. 14. Crack tip stress singularities behavior for HRR, CMSG, and MSG plastic
theories. Results obtained with the SET specimen for an external applied load
K1=ry

ffiffi
l

p
= 30.58 (l = 5 lm).

Fig. 15. Radial CSMG KFEM
P plastic SIFs distributions for different values of t
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intensity factor Kp can be defined, which exhibits a constant value
within the region of gradient dominance for a fixed value of N – see
Figs. 10b and 11b.

Three annular regions are observed close to the crack tip. An
outer elastic region, governed by the remote K field, an elastic–
plastic region following the HRR solution and an inner CMSG plas-
ticity region where the stress singularity is equal or higher than the
elastic one but dependent on the plastic properties of the material.
Shi et al. (2001) investigated the asymptotic crack tip field in the
region adjacent to the crack tip and established that the stress
dominated asymptotic crack tip field in MSG plasticity has a sepa-
rable field. The resulting stress singularity is almost constant,
around 0.65 for Mode I and Mode III fractures. However, our results
(see Fig. 9) show that the crack tip fields of a solid characterized by
CMSG plasticity appear to be of non-separable form.

Fig. 14 summarizes our findings in the context of the literature,
representing a comparison for the crack tip singularity behavior as
a function of the plastic work hardening exponent N. In this figure,
the elastic singularity is given by a straight line 1 with y-axis equal
to �0.5. Line 2 with the crack tip singularity �N= N þ 1ð Þ corre-
sponds to the HRR field in classical plasticity. Line 3 at the bottom
shows the behavior of the crack tip singularity with the constant
value –0.65 obtained by Shi et al. (2001) as the asymptotic MSG
plasticity separable solution. Further, line 4 with the variable crack
tip singularity is the numerical result of the present study accord-
ing the CMSG plasticity. This CMSG prediction lies between the
HRR and MSG plasticity lines and exceeds the elastic �1/2 singu-
larity. The behavior of the degrees of singularity for the classical
HRR plasticity and the CMSG theory as a function of the work hard-
ening N have opposite trends. This circumstance explains the
inverse nature of the arrangement of the curves for plastic stress
intensity factors KFEM

P and KP and their dependence on N. It is
unclear why the stress singularity of MSG is not sensitive to the
strain hardening exponent, unlike its lower-order counterpart.
The source of differences could be related to the role that the
higher order equilibrium equation plays in suppressing plastic
deformation in the vicinity of the crack tip, as observed in other
higher order strain gradient plasticity theories (Martínez-Pañeda
et al., 2019a, 2019b).

The constitutive laws for the CMSG model are one of the sim-
plest generalizations of the J2 deformation theory of plasticity to
he material length parameter l and the strain hardening exponents N.
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include strain gradient effects. For an elastic–plastic material, our
calculations show that stresses have variable singularity near the
crack tip and are governed by the plastic stress intensity factor
KFEM

P according to Eqs. (19)–(21). Fig. 15 shows the radial distribu-

tions for plastic SIF KFEM
P for different values of the intrinsic mate-

rial length l as a function of plastic work hardening exponent N.
Plastic SIFs are almost independent of the normalized crack tip dis-
tance r/l and augment with increasing the material length param-
eter from 5 to 10 lm. An important conclusion regarding these
numerical results is the sensitivity of the proposed parameter of
fracture resistance KFEM

P in the assessment of the coupled effects
of the parameters l and N, and in the behavior of strain gradient
plasticity solids. This property differs from the known elastic and
plastic stress intensity factors and is attractive from the point of
view of practical applications. The introduced numerical and
asymptotical SIFs for gradient plasticity continue a series of new
nonlinear stress intensity factors proposed by Shlyannikov et al.
(2014), Shlyannikov et al. (2015), Shlyannikov and Tumanov
(2018) for the conditions of plasticity, creep, and the creep and fati-
gue interaction based on the approaches of continuum damage
mechanics.

Experiments such as nano-indentation demonstrate the influ-
ence of strain gradients in governing material response. Large dis-
location densities and local hardening is observed when
macroscopic strains vary over microns. A similar effect is expected
in a cracked solid as the conditions ahead of a flaw resemble those
at the tip of an indenter, leading to significantly higher crack tip
stresses relative to conventional plasticity predictions. However,
validating experimentally quantitative features specific to the var-
ious gradient plasticity models proposed is a challenging task. A
direct comparison is possible in terms of crack tip opening dis-
placements – less crack tip blunting is predicted using gradient-
enriched constitutive models, and this seems to show a better
agreement with experiments (Martínez-Pañeda et al., 2016b). In
addition, the plastic stress intensity factors presented open the
door for establishing indirect correlations with fracture toughness
measurements.

7. Conclusions

We use CMSG plasticity, a first-order strain gradient plasticity
formulation based on the Taylor dislocation model, to gain insight
into plastic strain gradient effects on crack tip mechanics. The main
conclusions of our combined analytical and numerical study are
the following:

1. Plastic strain gradients elevate crack tip stresses relative to con-
ventional plasticity solutions. A parametric study is conducted
to map the regions of gradient plasticity significance.

2. The angular distribution of hoop and effective stresses in CMSG
plasticity shows sensitivity to the distance ahead of the crack,
implying that crack tip fields in CMSG plasticity do not have a
separable form of solution.

3. The numerical analysis shows that, unlike the higher-order
MSG plasticity model, the power of stress singularity in the
lower-order CMSG plasticity theory is a function of the plastic
work hardening exponent N.

4. Analytical and numerical approaches are employed to formu-
late novel amplitude and plastic stress intensity factors for
strain gradient plasticity. A generalized J-integral for strain gra-
dient plasticity is derived and used to characterize the nonlin-
ear factors.

5. The newly derived plastic stress intensity factor is uniform
within the range r=l ¼ 0:001 to 0.1 and, as in conventional plas-
ticity, exhibits a sensitivity to the strain hardening exponent N:
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However, the opposite trend is observed relative to the classic
HRR solution as in the power of the stress singularity. Also,
the sensitivity of the proposed fracture resistance parameter
Kp to the coupled effects of material length scale l and plastic
work hardening N is established.

Potential avenues for future work include the coupling with
damage mechanics-like models, to enable gradient-enriched dam-
age assessment, and the use of the newly developed plastic stress
intensity factors in conjunction with probabilistic Weibull-type
schemes to determine the probability of failure of structural mate-
rials susceptible to cleavage fracture.
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Appendix 1. Derivation of the strain energy density

The elastic strain energy density in the expression (33) is
described by the following equation:

dW
dV

� �
E ¼ 1

2rijeij ¼ 1
2 rxxexxþryyeyyþrzzezzþrxycxyþryzcyzþrzxczx
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A series expansion may be performed to express the stresses
and displacements in terms of the local polar coordinates (r,h).
Consider the first two terms proportional to r�1/2, and use the fol-
lowing stress and displacement expansion in the form of equations
(Williams, 1957)
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To apply Eq. (12) for the strain energy density parameter calcu-
lation it is necessary to obtain both the strain and displacement
components. The relations between the components of the dis-
placements in different coordinate systems are given by
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while the relations between the strain and displacement compo-
nents are described with the well-known formulae by Cauchy

exx ¼ @u
@x

; eyy ¼ @v
@y

; cxy ¼
@u
@y

þ @v
@x

ðA5Þ

Applying Eqs. (13) and (14) to (12) and (15) to (16) and per-
forming the necessary algebra, the expansion of the strain energy
density field results in the dimensionless form
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