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A novel general purpose Finite Element framework is presented to study small-scale metal plasticity. A
distinct feature of the adopted distortion gradient plasticity formulation, with respect to strain gradient
plasticity theories, is the constitutive inclusion of the plastic spin, as proposed by Gurtin (2004) through
the prescription of a free energy dependent on Nye's dislocation density tensor. The proposed numer-
ical scheme is developed by following and extending the mathematical principles established by Fleck
and Willis (2009). The modeling of thin metallic foils under bending reveals a significant influence of
the plastic shear strain and spin due to a mechanism associated with the higher-order boundary condi-

Keywords:
Distortion gradient plasticity
Finite element method

Plastic spin tions allowing dislocations to exit the body. This mechanism leads to an unexpected mechanical response
Energetic and dissipative higher-order in terms of bending moment versus curvature, dependent on the foil length, if either viscoplasticity or
stresses

isotropic hardening are included in the model. In order to study the effect of dissipative higher-order

Micro-bending

stresses, the mechanical response under non-proportional loading is also investigated.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Experiments have shown that metallic materials display strong
size effects at both micron and sub-micron scales (Fleck et al.,
1994; Nix and Gao, 1998; Stolken and Evans, 1998; Moreau et al.,
2005). Much research has been devoted to modeling the experi-
mentally observed change in the material response with dimin-
ishing size (Fleck and Hutchinson, 1997; Qu et al., 2006; Kluse-
mann et al., 2013) in addition to studies of size effects in void
growth (Liu et al., 2005; Niordson, 2007), fiber reinforced materi-
als (Bittencourt et al., 2003; Niordson, 2003; Legarth and Niordson,
2010), and fracture problems (Martinez-Pafieda and Betegén, 2015;
Martinez-Pafieda and Niordson, 2016). Most attempts to model size
effects in metals have been based on higher-order continuum mod-
eling, and different theories, both phenomenological (Fleck and
Hutchinson, 2001; Gudmundson, 2004; Gurtin, 2004; Gurtin and
Anand, 2005) and mechanism-based (Gao et al., 1999) have been
developed. All these theories aim at predicting size effects in poly-
crystalline metals in an average sense, without explicitly account-
ing for the crystal lattice, nor for the behavior of internal grain
boundaries.
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While higher-order energetic and dissipative contributions are
a common feature among the majority of the most advanced phe-
nomenological Strain Gradient Plasticity (SGP) theories (see, e.g.,
Gudmundson, 2004; Gurtin and Anand, 2005; 2009; Fleck and
Willis, 2009b), the need to constitutively account for the plastic
spin, as proposed about ten years ago by Gurtin (2004), to properly
describe the plastic flow incompatibility and associated dislocation
densities, has been mostly neglected in favor of simpler models.
However, the use of phenomenological higher-order formulations
that involve the whole plastic distortion (here referred to as Distor-
tion Gradient Plasticity, DGP) has attracted increasing attention in
recent years due to its superior modeling capabilities. The studies
of Bardella and Giacomini (2008) and Bardella (2009; 2010) have
shown that, even for small strains, the contribution of the plas-
tic spin plays a fundamental role in order to provide a descrip-
tion closer to the mechanical response prediction of strain gradi-
ent crystal plasticity. This has been further assessed by Poh and
Peerlings (2016), who, by comparing to a reference crystal plastic-
ity solution obtained with the theory by Gurtin and Needleman
(2005), showed that the plastic rotation must be incorporated to
capture the essential features of crystal plasticity. Moreover, Poh
and Peerlings (2016) numerically elucidated that the localization
phenomenon taking place in the Bittencourt et al. (2003) com-
posite unit cell benchmark problem can only be reproduced by
DGP. Gurtin (2004) theory has also been employed by Poh and
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co-workers (Poh, 2013; Poh and Phan, 2016) through a novel ho-
mogenization formulation to describe the behavior of each grain
in a polycrystal where grain boundaries are modeled to describe
effects of dislocation blockage or transmittal.

However, despite the superior modeling capability of DGP with
respect to SGP, the literature is scarce on the development of a
general purpose Finite Element (FE) framework for DGP. Particu-
larly, the use of higher-order dissipative terms - associated with
strengthening mechanisms - is generally avoided due to the re-
lated computational complexities. This is the case of the very re-
cent FE implementation of Poh and Peerlings (2016) and the earlier
work by Ostien and Garikipati (2008), who implemented Gurtin
(2004) theory within a Discontinuous Galerkin framework. Ener-
getic and dissipative contributions are both accounted for in the
recent ad hoc FE formulation for the torsion problem by Bardella
and Panteghini (2015), also showing that, contrary to higher-
order SGP theories, Gurtin (2004) DGP can predict some energetic
strengthening even with a quadratic defect energy.

In this work, a general purpose FE framework for DGP is de-
veloped on the basis of an extension of the minimum principles
proposed by Fleck and Willis (2009b). The numerical scheme in-
cludes both energetic and dissipative higher-order stresses and the
effect of the latter under non-proportional loading is investigated.
The novel FE framework is particularized to the plane strain case
and applied to the bending of thin foils, of particular interest to the
study of size effects in metals (see, e.g., Yefimov et al., 2004; Yefi-
mov and Giessen, 2005; Engelen et al., 2006; Evans and Hutchin-
son, 2009; Idiart et al., 2009; Polizzotto, 2011) since the experi-
ments of Stélken and Evans (1998) (see also Moreau et al., 2005).
Computations reveal a dependence of the results on the foil length
if either rate-dependent plasticity or isotropic hardening are in-
cluded in the model. This is a consequence of the definition of
the energetic higher-order contribution as a function of Nye’s dis-
location density tensor (Nye, 1953; Fleck and Hutchinson, 1997;
Arsenlis and Parks, 1999), that is intrinsic to Gurtin (2004) the-
ory. This unexpected effect, absent in conventional theories and in
many GP theories, is accompanied with the development of plastic
shear and plastic spin, which turn out to influence the overall me-
chanical response in bending. Such a behavior is triggered by the
interaction between the conventional and the higher-order bound-
ary conditions, the latter allowing dislocations to exit the foil at
the free boundaries. The foil length dependence of the mechani-
cal response is emphasized by the presence of the plastic spin in
Gurtin (2004) DGP, but it also characterizes the Gurtin and Anand
(2005) SGP theory, still involving Nye's tensor restricted to the
assumption of irrotational plastic flow (that is, vanishing plastic
spin). Hence, one of the results of the present investigation con-
cerns with the usefulness of two-dimensional analyses with appro-
priate boundary conditions to model micro-bending phenomeno-
logically.

Outline of the paper. The DGP theory of Gurtin (2004) is presented
in Section 2, together with the novel minimum principles gov-
erning it. The FE formulation and its validation are described in
Section 3. Results concerning bending of thin foils are presented
and discussed in Section 4. Some concluding remarks are offered
in Section 5.

Notation. We use lightface letters for scalars. Bold face is used
for first-, second-, and third-order tensors, in most cases respec-
tively represented by small Latin, small Greek, and capital Latin
letters. When we make use of indices they refer to a Cartesian
coordinate system. The symbol “ - ” represents the inner prod-
uct of vectors and tensors (e.g., a=b-u=bju;, b=o0-¢&=o0jjj.
¢=T-S=TS;j) For any tensor, say p, the inner product by it-
self is |p|> = p - p. The symbol “ x " is adopted for the vec-

tor product: t = m x n = e;;m;n, = t;, with e;; denoting the alter-
nating symbol (one of the exceptions, as it is a third-order ten-
sor represented by a small Latin letter), and, for ¢ a second-order
tensor: § x n = ey ;ny. For the products of tensors of different
order the lower-order tensor is on the right and all its indices
are saturated, e.g.: for o0 a second-order tensor and n a vector,
t=on=ojnj=t; for T a third-order tensor and n a vector, Tn
= Tjxny; for L a fourth-order tensor and & a second-order tensor,
0 = Lé = Ljj ey = 0yj. Moreover, (Vu); = 0u;/0x; = u; j, (dive); =
0ij,j» and (curlp);; = ej ¥y designate, respectively, the gradient
of the vector field u, the divergence of the second-order tensor
g, and the curl of the second-order tensor y, whereas (dev g);; =
(Gij — 8ijSkk/3) (with &; the Kronecker symbol), (sym 6);; = (gjj +
Gji)/2, and (skw ¢);; = (g;; — ¢ji)/2 denote, respectively, the devi-
atoric, symmetric, and skew-symmetric parts of the second-order
tensor g.

2. The flow theory of distortion gradient plasticity and the new
stationarity principles

The theory presented in this section refers to the mechanical
response of a body occupying a space region €2, whose external
surface S, of outward normal n, consists of two couples of comple-
mentary parts: the first couple consists of S;, where the conven-
tional tractions t° are known, and S,, where the displacement u®
is known, whereas the second couple consists of S‘tﬁs, where dis-
locations are free to exit the body, and S4S, where dislocations are
blocked and may pile-up: S = S; US, = Sdis U sdis,

This section is devoted to the presentation of compatibility,
balance, and constitutive equations. For their derivation and for
more insight on their mechanical meaning, the reader is referred to
Gurtin (2004) and Bardella (2010). Furthermore, we will also pro-
vide two minimum principles extending those formulated by Fleck
and Willis (2009b) for a higher-order SGP, to Gurtin (2004) DGP.
On the basis of these minimum principles we will develop the new
FE framework in Section 3.

2.1. Kinematic and static field equations

2.1.1. Compatibility equations

In the small strains and rotations regime, the plastic distortion
y, that is the plastic part of the displacement gradient, is related
to the displacement u by

Vu= (Vu)g+y in Q (1)
in which (Vu), is the elastic part of the displacement gradient.
The displacement field u is assumed to be sufficiently smooth,
such that curlVu = 0 in 2, and the plastic deformation is assumed
to be isochoric, so that try = 0. The total strain, Nye’s dislocation
density tensor (Nye, 1953; Fleck and Hutchinson, 1997; Arsenlis
and Parks, 1999), the plastic strain, and the plastic spin are, re-
spectively, defined as:

? =skwy in Q
(2)

e =symVu, a=curly, &P =symy,

2.1.2. Balance equations

For the whole body free from standard body forces, the conven-
tional balance equation reads
dive =0 in 3)

with o denoting the standard symmetric Cauchy stress.
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The higher-order balance equation can be conveniently written
into its symmetric and skew-symmetric parts:

p —deve — divT® + sym[dev(curl¢)] =0 in (4)

® + skw(curl) =0 in Q (5)

in which p, @, and T() are the dissipative stresses constitutively
conjugate to the plastic strain rate &, the plastic spin rate i?p, and
the gradient of the plastic strain rate V&P, respectively, whereas ¢
is the energetic stress (called defect stress) constitutively conjugate
to Nye’s tensor o.

Note that p and @ can be summed up to obtain a dissipative
stress, g, conjugate to the plastic distortion rate y:

G=p+w suchthat p=symg, w=skwg, tr¢=0 (6)

2.2. Boundary conditions

2.2.1. Kinematic boundary conditions
The conventional kinematic boundary conditions are:

u=u’ onS, (7)

whereas we adopt homogeneous higher-order kinematic (essential)
boundary conditions, which are called microhard boundary condi-
tions as they describe dislocations piling up at the boundary. If the
complete DGP theory - including the third-order dissipative stress
T() - is considered, the microhard boundary conditions read:

éP=0 and ¥’ xn=0 on Sds (8)

Otherwise, in the simpler DGP theory neglecting T(¢), the micro-
hard boundary conditions read:

yxn=0 on SJs (9)

2.2.2. Static boundary conditions
The conventional static boundary conditions are:

on=t° on S (10)

whereas we adopt homogeneous higher-order static (natural)
boundary conditions, which are called microfree boundary condi-
tions as they describe dislocations free to exit the body:

T®n + sym[dev(¢ xn)]=0 on S% (1)

skw(¢ xn)=0 on S (12)

2.3. Stationarity principles

In the literature, one of the most common ways to obtain a
weak form of the balance equations, useful for the numerical im-
plementation, is based on the Principle of Virtual Work (PVW,
see, e.g., Fleck and Hutchinson, 2001; Gudmundson, 2004; Gurtin,
2004). Here, inspired by the work of Fleck and Willis (2009a;
2009b), we instead provide two stationarity principles, leading to
the foregoing balance equations, which result in minimum princi-
ples after appropriate constitutive choices are made. For a given
Cauchy stress, the higher-order balance Eqgs. (4) and (5) and homo-
geneous boundary conditions are satisfied by any suitably smooth
field p such that the following functional attains stationarity

Hi(Y) =/ [p-é”+w~i7p+T(€>-Vép+§.a—a.ép]dv (13)
Q
subject to the kinematic relations (2).

For a given plastic strain rate, the conventional balance equa-
tion (3) and static boundary condition (10) are satisfied by any

kinematically admissible field u that minimizes the following func-
tional:

T (i) = %/Q]L(symVil —&P) . (symVit— éP)dv —/5 .41 dA
(14)

Here L is the elastic stiffness, relating the elastic strain to the
Cauchy stress, o = L(e — €P).

2.4. Constitutive laws for the energetic terms (recoverable stresses)

In order to account for the influence of geometrically neces-
sary dislocations (GNDs, see, e.g., Ashby, 1970; Fleck et al., 1994;
Fleck and Hutchinson, 1997), the free energy is chosen by Gurtin
(2004) to depend on both the elastic strain, € — &P, and Nye’s ten-
sor o:

V= %L(e—e")-(e—e")—k@(a) (15)

in which 2(«) is the so-called defect energy, accounting for the
plastic distortion incompatibility. The recoverable mechanisms as-
sociated with development of GNDs are incorporated in the cur-
rent higher-order theory by assuming the following quadratic de-
fect energy:

2(a0) = %ukza-a (16)

in which u is the shear modulus and ¢ is an energetic length scale.
Hence, the defect stress reads:

_072(a)
&= oo
It has been recently shown by Bardella and Panteghini (2015) that
it may be convenient to express the defect energy in terms of
more invariants of &, as originally envisaged by Gurtin (2004). It
may also be relevant to adopt less-than-quadratic forms of the de-
fect energy (e.g., Ohno and Okumura, 2007; Bardella, 2010; Garroni
et al., 2010; Forest and Guéninchault, 2013; Bardella and Pantegh-
ini, 2015), or even non-convex forms (e.g., Lancioni et al., 2015 and
references therein). However, the quadratic defect energy is per-
fectly suitable for the scope of the present investigation, that is
implementing Gurtin (2004) DGP theory in a general purpose FE
framework and bringing new features of its predictive capabilities
to attention by analyzing the bending of thin foils. We leave for
further investigations the analysis of other forms of the defect en-
ergy.

weta (17)

2.5. Constitutive laws for the dissipative terms (unrecoverable
stresses)

The unrecoverable stresses are prescribed in the form:

2X ., X 6 _ 2,28 g.p

where the following phenomenological effective plastic flow rate

E”:\/§|ép|2+x|i?p|2+§L2|Vép|2 (19)

is work conjugate to the effective flow resistance:

3 1 3
— 121012 4 w2 L = |T®))2
2_\/2|p| +X|w| +2L2|T | (20)
such that the 2nd law of thermodynamics is satisfied:

p-&" 1w ¥ +T.VEP=SEP =0 V y+£0 (21)
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In the constitutive laws above L is a dissipative material length pa-
rameter and x is the material parameter governing the dissipation
due to the plastic spin'.

The form of the function X (EP, EP), whose dependence on EP
may describe higher-order isotropic hardening, has to be appropri-
ately chosen to complete the set of constitutive prescriptions for
the unrecoverable stresses.

With these constitutive equations plastic dissipation may be de-
rived from the dissipation potential

EP
v (EP,EP) = S (e, EP)de (22)

which is assumed to be convex in EP. This is important for the de-
velopment of a numerical solution procedure, as it makes the sta-
tionarity principle based on functional (13) a minimum principle,
whose functional reads:

H(}")=/Q[“//(E”,E")+Z;~d—a~é”]dv (23)

Note that in functional (23) EP is a function of p through equation
(19) and the kinematic relations (2).

Minimum principles (14) and (23) extend the analogous prin-
ciples of Fleck and Willis (2009b) to the DGP theory of Gurtin
(2004).

In this work we choose the following viscoplastic potential

. . m+1
¥ (EP,EP) = ‘W(i;) (24)
so that
S (EP,EP) = Gy(E”)(Ep> (25)
0

with m denoting the rate sensitivity exponent, oy(EP) the current
flow stress given by the hardening rule, and £, the reference strain
rate.

3. Finite element formulation

The present FE framework is based on the minimum principles
(14) and (23). General FE implementations of viscoplastic dissipa-
tive strain gradient plasticity based on the PVW (e.g., Fredriksson
and Gudmundson, 2005; Borg et al., 2006; Niordson and Legarth,
2010) solve for the time derivative of the plastic rate field. The
main advantage of employing the minimum principles adopted in
the present paper is that the plastic distortion rate field is directly
obtained from (23) in the context of dissipative gradient effects.
This makes the present numerical scheme more robust as it allows
for larger time increments and it enables convergence for lower
values of the rate sensitivity exponent. Largely, time-independent
behavior may be obtained for sufficiently small rate sensitivity ex-
ponents, circumventing complications in the corresponding time-
independent model associated with identifying active plastic zones
(by, for instance, using image analysis, as proposed by Nielsen and
Niordson, 2014). Stationarity of (23) together with the constitutive

1 By analyzing the simple shear problem, Bardella (2009) has provided an ana-
lytical expression suggesting that, in order to represent the mechanical response of
a crystal subject to multislip, x € [0, 2/3]. However, values of yx larger than 2/3
might help in representing the response of crystals in which the plastic flow has
preferential orientations.

equations (18) results in the following equation
2%, . PIRE . 2,2 . .
/ 260 seP 4y 297 59"+ S22 VP §VEP |dv
ol 3Er Ep 3" Epr
= / [0-86P — ¢ Sa]dv (26)
Q
Given the recoverable stresses, fulfillment of the above weak form
(26) of the higher-order equilibrium equations (4) and (5) directly

delivers the plastic distortion rate field, y. Adopting Voigt notation,
the following FE interpolation is used:

N

=3y Nam (27)
n=1
Ny

y=> M"y® (28)
n=1

Here a™ =[a{,a{"]" and 7™ = [y, p 5@ pWT are
nodal degrees of freedom and N; and Ny are the number of nodes
employed for the displacement and the plastic distortion interpola-
tions, respectively. Quadratic shape functions are used for the dis-
placement field (N; = 8) while linear shape functions are employed
for the plastic distortion field (N = 4).

Let us note that the continuity requirements for the shape func-
tions related to the unconventional FE degrees of freedom are dic-
tated by the structure of the kinematic higher-order boundary con-
ditions, specified in Section 2.2.1. Hence, it is important to point
out that we always consider a non-zero dissipative length scale L,
whereas we set it to a very small positive number when we want
to suppress the effect of the higher-order dissipation. Therefore, we
refer to the higher-order boundary conditions (8), which imply that
each plastic strain component must be continuous in the whole
domain. This would not be necessarily the case in the theory not
accounting for dissipative higher-order stresses (L = 0 in definition
(19)), in which the shape functions for the unconventional FE de-
grees of freedom should be established on the basis of the struc-
ture of the boundary conditions (9). For what concerns the plastic
spin, in the plane strain framework considered in this work there
is one single component, so that conditions (8) still imply that this
component must be continuous in the whole domain. Overall, the
foregoing discussion implies that the four plastic distortion com-
ponents, adopted as unconventional nodal degrees of freedom as
specified in Eq. (28), should be approximated by continuous shape
functions.

For general three-dimensional boundary value problems, a to-
tally similar FE framework, in which the eight plastic distortion
components are employed as unconventional nodal degrees of
freedom and are interpolated by continuous shape functions, can
be used by slightly modifying the DGP theory. One should extend
the effective plastic flow rate definition (19) by including the gra-
dient of the plastic spin rate, weighed by a new dissipative length
scale, say Lg. Of course, with such an extension the DGP theory
would be enriched by a further dissipative third-order stress, hav-
ing nine components, whose divergence would enter the higher-
order balance equation (5). In this case, the microhard boundary
conditions would read ¥ =0 on S35, It is uncertain whether the
predictive capability of the DGP modelling would largely benefit
from such an extension (as inferred by the preliminary analysis in
the appendix of Bardella, 2010), but it would be worth investigat-
ing, as it leads to a convenient FE implementation as that studied
in the present paper.?

2 On the contrary, the Gurtin (2004) DGP theory involving, as higher-order con-
tribution, exclusively the defect energy written in terms of Nye’s dislocation den-
sity tensor (i.e.,, L = 0 in the theory presented in Section 2) may be more suitably
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Let us finally recall that the static higher-order boundary con-
ditions, specified by Eqgs. (11) and (12), are microfree, so that there
is no higher-order tractions vector to impose on the boundary S?is,
where leaving unconstrained an unconventional (plastic) degree of
freedom is related to the freedom left to dislocations to exit the
body. Dually, setting to zero a plastic degree of freedom on the
boundary S4' may trigger plastic distortion gradients, contribut-
ing to the size effect through the stiffening of a boundary layer
region.

Upon finite element discretization, the weak form (26) of the
equilibrium equations (4) and (5) results in a system which is of
homogeneous degree zero in terms of the unknown plastic distor-
tion rate field. Imposing the variational form (26) to hold for any
kinematically admissible variation of y leads to the following sys-
tem of equations, here written in the iterative form (with [ denot-
ing the iteration number) actually implemented:

X 2 my. (m) Y. (m)
A((Ep)(l_])[B(symM )- (symM ™)+  (skwM ™). (skwM™)

+ %Lz(sym vM®™) . (sym VM(m))])dV (¥ ™))

= /Q <a~ (symM™) —¢. (curlM“”))dV (29)

Here the operators symM™, skwM™ sym VM®™ and curlM™
contain the shape functions which deliver the discretizations of &”,
1'71), V&P, and @, respectively, from the nodal values of the plastic
distortion 7™ (see Appendix A). Following Niordson and Hutchin-
son (2011), the system of equations (29) is solved iteratively for
y(M on the basis of the known energetic stresses (o, ¢) for the
current state, written in terms of the total displacement u and
plastic distortion p fields at the beginning of the time increment.
At a general time increment, the plastic distortion rate field from
the previous increment is used as a starting guess. Convergence of
the iteration is defined when the relative norm of the change in
the plastic distortion rate field is below an appropriate threshold
value. Finally, the plastic distortion rate y is determined from the
discretization (28).

Subsequently, for a known plastic distortion rate field, the in-
cremental solution for the displacement is determined by finding
the minimum of functional (14). The stationarity ensuing from this
second minimum principle corresponds to the conventional virtual
work statement and, therefore, its implementation into a FE code
is standard. Thus, for the sake of brevity, further details are here
omitted. In the present incremental procedure we use a Forward
Euler time integration scheme, whereas the above described itera-
tive algorithm is implemented so as to ensure convergence in the
computation of the plastic distortion rate field. A time increment
sensitivity analysis has been conducted in all computations to en-
sure that the numerical solution does not drift away from the equi-
librium configuration.

3.1. Validation of the FE implementation

In order to validate the present numerical model, the simple
shear of a constrained strip is analyzed so as to compare the re-
sults with those obtained by Bardella (2010) from the minimiza-
tion of the Total Complementary Energy functional in the defor-
mation theory context. As in Bardella (2010), we consider a long
strip of height H free from body forces, with isotropic behavior
and sheared between two bodies in which dislocations cannot pen-
etrate. Hence, the displacement is fully constrained in the lower
strip surface, uq(x; =0) = uy(x; =0) =0, while the upper strip

implemented by the so-called curl-conforming Nédélec finite elements (Wieners
and Wohlmuth, 2011).
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Fig. 1. Simple shear of a constrained strip. Comparison of the numerical results of
the present model (lines) with the predictions of Bardella (2010) (symbols) for dif-
ferent values of H/¢, HJL, and y. The case L = 0 is numerically approximated by set-
ting L/H = 0.01. Other material parameters are oy =200 MPa, &y = 0.02, N=0.2,
i =26.3 GPa, and §y= 0.02 s '.

surface is subjected to uniform horizontal displacement uq(x; =
H) = I'H with u;(x, = H) = 0. Here, I" is referred to as the applied
strain, whose rate, in the following, is assumed to be equal to the
adopted reference strain rate (I" = &y). Since dislocations pile-up
when they reach the strip lower and upper surfaces, the plastic
distortion must be zero at x, =0 and x, = H. The problem is es-
sentially one-dimensional, so that the strip, unbounded along both
the shearing direction x; and the x3 direction, is modeled using a
single column of 80 plane strain quadrilateral elements along the
strip height (H) with appropriate boundary conditions at the sides
of the column (uy = Y11 = y22 = 0 Vxy).

In order to compare our results with those of Bardella (2010),
the following hardening law is used:

Er\"
oy (EP) =<70<80> (30)

We consider the following material properties: @t = 26.3 GPa, g9 =
0.02, 0g =200 MPa, and N =0.2.

Within the rate-dependent framework adopted, a reference
strain rate of &, =0.02 s~! is assumed and the effect of the
viscoplastic exponent m is studied in order to approach rate-
independent behavior (see Eq. (25)). Fig. 1 shows the numeri-
cal results obtained for different combinations of the material pa-
rameter governing the dissipation due to the plastic spin, x, and
the energetic and dissipative length scales, in terms of the ratios
H/¢ and H/L, respectively. Discrete symbols represent the results
obtained by Bardella (2010) while solid lines (m = 0.05), dashed
lines (m = 0.1), and dotted lines (m = 0.2) show the results of the
present FE implementation.

As it can be seen in Fig. 1, the FE framework reproduces the
results of Bardella (2010) with a very good qualitative and quanti-
tative agreement>.

4. Modeling the bending of thin foils

A foil of thickness H and length W subjected to bending is ana-
lyzed. As depicted in Fig. 2, illustrating the conventional boundary
conditions, we impose the longitudinal displacement component at

3 Note that the results of Bardella (2010) are not exact as they were obtained nu-
merically by applying the Rayleigh-Ritz method to the Total Complementary Energy
functional. Hence, the present analysis also validates the Rayleigh-Ritz discretization
adopted by Bardella (2010).
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U, =K X, W/2

Fig. 2. Bending of thin foil: boundary conditions on the undeformed configuration.

the foil ends:

Uy =XX1k  at  xqg = W/2 (31)

whereas the complementary boundary part is traction-free. In Eq.
(31), « is the curvature that the foil would attain if modeled by
a conventional theory, henceforth referred to as the applied cur-
vature. The higher-order boundary conditions are microfree on the
entire boundary. These boundary conditions are adopted for all the
monotonic loading analyses. Note that solving the micro-bending
problem as a two-dimensional boundary value problem is quite
different from what has been done so far in the phenomenolog-
ical GP literature, in which, usually (see, e.g., Engelen et al., 2006;
Evans and Hutchinson, 2009; Idiart et al., 2009; Polizzotto, 2011),
the total deformation field is assumed pointwise on the basis of the
conventional bending theory, thus solving for a plastic strain field
independent of x;. Instead, Yefimov et al. (2004) and Yefimov and
Giessen (2005) used a two-dimensional plane strain model to ana-
lyze the micro-bending of single crystals by comparing the results
of discrete dislocation dynamics with those of a backstress-based
strain gradient crystal plasticity theory. In both cases, Yefimov et al.
employ the conventional boundary conditions (31) and allow dislo-
cations to exit the foil when they reach its free boundaries, which
corresponds to the microfree boundary condition assumed in this
work.

As detailed in Section 4.1, the structure of the microfree bound-
ary conditions is the responsible for the need to solve a two-
dimensional boundary value problem in order to obtain the so-
lution of the micro-bending problem described by the here con-
cerned Nye’s tensor-based phenomenological GP. In particular, we
will show that the boundary conditions here adopted lead to a pe-
culiar mechanical response whose validation would require spe-
cific experiments. Moreover, our results imply that modeling ac-
tual bending experiments available in literature (Stolken and Evans,
1998; Moreau et al., 2005) may require two-dimensional analysis
and particular attention to the boundary conditions to be imposed,
the latter being not necessarily those used in this study.

By exploiting symmetry and skew-symmetry conditions of the
bending problem, we may impose that:

)/1] = )/22 =0 at Xy = 0 and )/]2 = )/2] =0 at X1 = 0 (32)

in such a way as to model only one fourth of the foil, as de-
picted in Fig. 2. The vertical displacement of the center node is
constrained in order to suppress rigid body motion.

4.1. Micro-bending within Nye’s tensor-based phenomenological
gradient plasticity

In plane strain problems the sole non-vanishing Nye’s tensor
components are

d13=Y12,1 *8%’2, 0523=8§2,1 — V21,2, Ol31=€§3,2, 0532=*8§3.1
(33)

At the foil ends the homogeneous microfree boundary conditions
(11) and (12) provide

2Zer M 0 w2

3 5811_1 + T(gll‘1 + )/21,2) = at X =W/ (34)

2,% . 2

S eh, + Eni-eh=0 at xm=2wz  (33)

2,3, ¢

§L2§8§211 + MT(E{J]J + 3852.1 — 2)/21_2) =0 at x;=+W/2
(36)

Y121 — 8{’1{2 =0 at X1 = :tW/Z (37)

Combination of (35) and (37) leads to

& =0 at x; =+W/2 (38)

At the foil top and bottom surfaces the microfree boundary con-
ditions (11) and (12) provide similar relations, among which the
most relevant reads:

2
§L2§éfl,2 - %(2%2,1 —360,—80,) =0 at x, = +H2
(39)
Inspection of the foregoing equations, with particular reference to
(37), allows us to deduct that, in the plastic regime, at the foil
end regions a non-vanishing y 1, must develop. Furthermore, when
8{’12 becomes sufficiently large, an increase of y1,; is expected in
order to minimize the defect energy in the end regions (see Nye’s
tensor component o3 in Eq. (33)). This implies that, for a given H,
the DGP theory here concerned may predict a mechanical response
dependent on the foil length W. Let us notice that the contributions
of ¥, and &7, to y1, depend on the chosen material parameters.
In particular, x = 0 makes it energetically convenient to develop
plastic spin to minimize the defect energy, while x — oo leads to
the irrotational plastic flow condition of Gurtin and Anand (2005),
allowing for the development of sfz only.

With the aim of gaining insight into the role of both 5{’2 and
191”2 in the bending problem, we have carried out several analyses
with the present FE framework. Unless otherwise specified, the ra-
tio W/H = 30 is adopted.

For each case presented different mesh densities were used to
ensure achieved convergence. Typically, 20 quadrilateral elements
were employed along the thickness and uniform meshes were
used, with element aspect ratio equal to 1. Both full- and reduced-
integration plane strain elements (having, respectively, nine and
four Gauss integration points) were tested and no shear locking
effects were observed. For the sake of clarity we will focus our at-
tention to perfectly plastic behavior, that is N = 0 in Eq. (30).

Henceforth, we adopt the following material properties: © =
26.3 GPa, Poisson’s ratio v = 0.3, initial yield stress oy = 200 MPa,
and reference strain rate &y = 0.02 s~!. Other material parameters
will be specified case by case. Unless otherwise stated, the dissipa-
tive and energetic length scales are such that

H/L=25 and H/t=5

The specimen is loaded at a rate of curvature k¥ = +/3§g/H, such
that, in conventional bending, the most stretched material points
would be loaded at a conventional effective plastic strain rate equal
to €9 when elastic strain increments vanish.

Fig. 3 represents the contours obtained for y 13, sfz, and 191"2 at
the applied normalized curvature Hx /+/3 = 0.05. The influence of
different values of x is examined by adopting y = 0.1, x =2/3,
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Fig. 3. Contours of y1, (a), €}, (b), and ¥, (c) at Hi/+/3 =0.05 for x =0.1 (1), 2/3 (2), 1 (3), and x — oc (4). The rate sensitivity exponent is m = 0.05.

x =1, and x — oco. x =2/3 is an upper limit estimate to repre-
sent crystal multislip (Bardella, 2009) and makes the effective plas-
tic flow rate (19) equal to the norm of the plastic distortion in the
absence of dissipative higher-order terms. x — oo reproduces the
conditions of Gurtin and Anand (2005) SGP theory.

The results reveal a strong influence of y 1, (Fig. 3(a.1)-(a.4)),
which increases towards the foil end. Unexpected within a clas-
sical framework, both &?, (Fig. 3(b.1)-(b.3)) and #F, (Fig. 3(c.1)-
(c.3)) assume relevant values in a significant foil region. Their role
is weighed by the value of y, with s{’z increasing notably as yx
decreases. The variations of y 15, 8{’2, and 191”2 can be better appre-
ciated in Fig. 4, where they are plotted as functions of the foil axis
X1.

As it can be seen in Fig. 4, in all cases yqp, €f,, and ¥},
are monotonic functions of x;, reaching the maximum at the foil
end. Again, we observe that the contribution of 191"2 to Y12 be-
comes dominant as x decreases towards zero. Regarding afz (x1)
one must note that there is a notable decrease in its slope for
X1 — W/2. This is a consequence of the homogeneous microfree
boundary conditions, requiring €1 1 = 0 at x; = W/2 (see Eq. (38)).
The peculiar development of y 1, at the foil end is due to the need
of accommodating 8%,2, as expressed by Eq. (37). In this region,
when k is large enough £f1 strongly varies with x;, as shown in
Fig. 5. Here, contrary to conventional plasticity, |8f112| increases
with |xq].

(c.3) (c.4)

0.3

0.05¢"

.95 0.96 0.97 0.98 0.99

z1/(W/2)

Fig. 4. Variation of y 1, €f,, and 9F, along x; (x, = 0) at Hk/+/3 = 0.05 for x = 0.1,
2/3, 1, and x — oo. The rate sensitivity exponent is m = 0.05.

The behavior so far described leads to a bending response de-
pendent on the foil length W, for a given H. This can be seen
clearly in Fig. 6, where the bending moment M is plotted versus
the applied curvature for W/H = 30, W/H = 60, and W/H = 120.



E. Martinez-Paiieda et al./International Journal of Solids and Structures 96 (2016) 288-299 295

0181 [—a—a /(W/2) = 1
016 | | —A—a1/(W/2) = 0.95
' —o—ux,/(W/2) =09
0.14 Hk/v/3 =0.06 1
ok - - - Hr/V3=0.05 |
B () [PV H,{/\/g —=0.04
o= 01
W
0.08
0.06
0.04
0.02 g B T T S
0 0.2 04 0.6 0.8 1
22/ (H/2)

Fig. 5. Variation of ¢f, along x, in different foil cross-sections at different applied
curvature values. The following material properties are adopted: y =2/3 and m =
0.05.
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Fig. 6. Normalized moment versus curvature for different foil lengths with x =2/3.

We consider two values of m to investigate the response by grad-
ually approaching rate-independence. Here and henceforth, M is
normalized by My = ogH?/(64/1 — v + v2), defining initial yielding
in conventional rate-independent, von Mises plasticity.

The response is more compliant as W diminishes, this behav-
ior becoming irrelevant when the rate effects are small. After the
initial elastic regime, delayed plasticity initiates at about M/My ~
2.8 as a consequence of the dissipative gradient effects. A hard-
ening regime follows due to the build-up of free energy associ-
ated with Nye’s tensor until the response eventually saturates. The
asymptotic values of M are given by the minimizing field of func-
tional (23) under the constraint & = 0. As shown in Fig. 7, for large
enough k Nye's tensor becomes insensitive to further increase of
K.

More insight can be gained by inspection of the first scalar
equation included in the tensorial higher-order balance equation
(4), whose leading terms are:

Es’" -0 10 0% ( —el ),~0 (40)
[Tl n+ 5033 + (V12,1 — €415) 2 &

13
where o33 basically depends on o4; through the hindered con-
traction along the x3 direction, and we have neglected the terms
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Fig. 7. Variation of 43 along x; (at x, = H/4) for W/H =30 at different applied
curvature values. The following material properties are adopted: x =2/3 and m =
0.05.
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Fig. 8. Variation of s{’l along x; (at x, = H/4) for W/H =30 at different applied
curvature values. The following material properties are adopted: x =2/3 and m =
0.05.

(852,1 —¥212).1, €55 55, and X, 1. As already demonstrated, a quite
large y 1, must develop at the foil end to satisfy condition a13 = 0.
At a certain level of «, it may become energetically convenient
for the model to accommodate further increments t; by develop-
ing almost only 8fl in the foil end region, where y, is already
conspicuous and may further develop in such a way as to make
a&13 ~ 0 pointwise in that domain. Thus, continued plastic defor-
mation while preserving a constant Nye’s tensor field leads to con-
finement of deformation close to the foil edge. In fact, examination
of Egs. (33)-(39) reveals that a constant Nye’s tensor field hinders
a one-dimensional structure of the solution. Let us emphasize that,
under the boundary conditions here concerned, this behavior is not
observed in GP theories whose primal higher-order kinematic vari-
ables just consist of the plain gradient of y (or &P) and its rate. In
fact, in such GP theories the bending solution is in terms of the
direct plastic strain components only, which turn out to be inde-
pendent of x;.

Fig. 8 displays 8{’1 (x1,Xy = H/4) for various «. It is observed that
after a certain value of « is reached, further increasing it leads to
concentration of sfl in the foil end region.
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Fig. 9. Normalized moment versus curvature for different values of x with m =
0.05.

This behavior is particularly favorable in the rate-independent
case without isotropic hardening (N = 0) and implies no further
appreciable increase of longitudinal elastic strain, in turn leading
to vanishing increments of M. Under these circumstances, since the
foil end regions where y 1, significantly develops is proportional to
the foil height H, not to the foil length W, longer foils are subject to
larger plastic flow at the foil end, for a given applied curvature k.
In fact, as evident from Eq. (31), for a given « the applied displace-
ment uy is proportional to W, whereas, in the picture above, uy is
then distributed in the field sfl solely over the foil end region.

Instead, if either rate-dependence or isotropic hardening are ac-
counted for, ¥ in the first term of relation (40) increases with
plasticity, so that, if the behavior above described is still energeti-
cally convenient, such that the fourth term of (40) remains small,
there is the need of an increase of the Cauchy stress to satisfy the
higher-order balance equation. This makes M larger and leads to
the observed behavior that shorter foils have softer mechanical re-
sponse in the viscoplastic (or isotropic hardening) case. In fact, be-
cause of the above described way to develop plasticity, shorter the
foil, at a given «, lower EP due to a further increase in «. Hence,
for a shorter foil there is less hardening in the M vs k response.
Consequently, y 1, in the foil end region increases with W for a
given « and the plastic spin may play a major role in slender foils
(e.g., W/H = 120 as in the experimental work of Stélken and Evans,
1998). Let us finally remark that this behavior is the result of the
unique solution of the analyzed micro-bending problem, so that it
is unrelated to any localization phenomenon. Also, we remain ag-
nostic on whether this behavior describes what really occurs at
microfree boundaries subject to a direct plastic strain component,
normal to the boundary, having a non-vanishing gradient along a
tangential direction. Hopefully, in the future, new experiments will
shed light on this.*

4.2. Influence of the unconventional material parameters on the
micro-bending response

The influence of x in the mechanical response is examined for
the reference ratio W/H = 30 and results are reported in Fig. 9.

4 Unfortunately, further insight may not be gained by comparing our predictions
with the crystal plasticity predictions of Yefimov et al. (2004) and Yefimov and
Giessen (2005), as in these works the foil edge regions are constrained to remain
linear elastic at any curvature level.
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Fig. 10. Normalized moment versus curvature for different values of L and ¢. Other
material parameters are: x =2/3 and m = 0.05.

It is observed that increasing y promotes hardening in later de-
formation stages. More specifically, inspection of the higher-order
balance equations (4) and (5) shows that augmenting y, while
penalizing the plastic spin, leads to a larger defect stress, which
plays the role of a backstress in Eqs. (4) and (5) interpreted as a
flow rule (Gurtin, 2004). Hence, the increase in hardening with x
shown in Fig. 9 actually consists of an increase in the kinematic
hardening related to GNDs.

The role of the dissipative and energetic length scales in the
M vs k response has also been studied, as shown in Fig. 10. As
expected, the dissipative length scale L governs the strengthening
size effect: increasing L leads to a clear rise in what is recognized
as the “initial yield moment”. It can also be appreciated that the
energetic length scale ¢ governs the increase in the (kinematic)
strain hardening with diminishing size. Therefore, the foregoing
results show that, by accounting for both energetic and dissipa-
tive higher-order contributions in Gurtin (2004) DGP theory, the
present FE implementation can qualitatively reproduce the size ef-
fects observed in the experiments.

4.3. Mechanical response under non-proportional loading

Non-incremental dissipative higher-order terms (as referred to
with the terminology used by Fleck et al., 2014) were introduced
by Gurtin (2004) (see also Gudmundson, 2004; Gurtin and Anand,
2005) in such a way as to ensure that stresses associated with un-
recoverable plastic flow always result in positive plastic work, as
stated by Eq. (21) in the DGP here concerned. However, it has been
very recently noticed (Fleck et al., 2014; 2015) that this may lead
to a delay in plastic flow under certain non-proportional loading
conditions, such a delay being referenced to as elastic gap by Fleck
et al. (2014).

The boundary value problem under study is characterized by
imposing microhard boundary conditions at the foil top and bot-
tom surfaces after a significant amount of plasticity has developed
in bending under microfree boundary conditions. Such a switch of
higher-order boundary conditions models the formation of passiva-
tion layers. A perfectly plastic foil of ratio W/H = 30 is examined
and the following material properties are adopted: H/¢ =5, x =
2/3, 09 =200 MPa, 3 =0.02 s!, m=0.05, v =0.3, and p = 26.3
GPa. In general, dislocations are forced to pile-up at the boundary
by imposing the microhard boundary conditions (8) or (9), depend-
ing on whether L > 0 or L = 0, respectively. Here, we impose mi-
crohard conditions (8) because the case without dissipative higher-
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Fig. 11. Effect of the application of a passivation layer: (a) Normalized moment versus curvature for different values of L and (b) normalized plastic distortion increments
along the thickness of the foil immediately after passivation. Other material parameters are x =2/3 and m = 0.05.

order effect, HIL — oo, is numerically treated by choosing an ap-
propriately small positive value for L. Finally, the microhard condi-
tions (8), in the plane strain case here of interest, turn out to imply

y=0 at x,=+H/2 (41)

Results obtained after switching the higher-order boundary
conditions at Hk /+/3 ~ 0.05 are displayed in Fig. 11, which clearly
shows an abrupt stiffening at the formation of the passivation lay-
ers.

Qualitatively, the two options examined (L — 0 or L > 0) seem
to lead to totally similar M vs x responses. However, the two me-
chanical behaviors are very different, as observable in Fig. 11b,
showing the incremental plastic distortion along the thickness of
the mid-section (x; = 0) immediately after passivation. Here, the
incremental plastic distortion is represented in terms of its modu-
lus Ay = At|p|, with At the time increment, and it is normalized
by Ak = At k.

Results reveal that setting L > 0 leads to a purely elastic incre-
mental response after formation of the passivation layer. This elas-
tic gap after switching higher-order boundary conditions has been
also numerically observed by Bardella and Panteghini (2015) in the
torsion problem governed by DGP. As shown in Fig. 11b, the elas-
tic gap may be avoided by suppressing the unrecoverable higher-
order term (i.e., by setting L — 0). Our results provide further nu-
merical evidence of the analytical findings of Fleck et al. (2014).
This may favor the “incremental” modeling approach suggested by
Hutchinson (2012), where incremental relations between all the
stress and strain variables are employed. Nevertheless, one should
note that for L — 0 the present formulation still has finite unre-
coverable stresses constitutively conjugate to the plastic distortion
rate, but not its gradient, which is the key issue pointed out by
Fleck et al. (2014; 2015).

5. Concluding remarks

In small-scale plasticity, the superior modeling capabilities as-
sociated with the constitutive inclusion of the plastic spin has re-
cently encouraged significant interest in Distortion Gradient Plastic-
ity (DGP). In this work, we present a novel general purpose Fi-
nite Element (FE) framework for gradient theories involving the
plastic spin, that is the skew-symmetric part of the plastic dis-
tortion. The proposed FE framework rests on two extremum prin-
ciples and allows for an accurate modeling of both viscoplastic
and rate-independent material responses. Such extremum princi-
ples extend to DGP those established by Fleck and Willis (2009b)
for Strain Gradient Plasticity (SGP).

More specifically, we have focused on Gurtin (2004) DGP, which
is characterized by the choice of Nye’s dislocation density tensor as
primal higher-order kinematic variable, leading to a higher-order
energetic stress, called defect stress, increasing with the plastic
distortion incompatibility and governed by an energetic material
length scale.

We have employed the novel FE framework for Gurtin
(2004) DGP to implement general purpose plane strain elements.
The new numerical algorithm has been first validated against lit-
erature results on the simple shear of a strip constrained between
bodies impenetrable to dislocations.

Second, some specific features of Gurtin (2004) DGP theory
have been analyzed by studying the bending of thin metal foils.
Results show a strong influence of one shear component of the
plastic distortion under microfree and conventional pure bending
boundary conditions: we have illustrated in detail the development
of relevant plastic shear strain and spin required to compensate
for the variation along the foil thickness of the longitudinal plastic
strain. This peculiarity is due to the form assumed by the microfree
boundary conditions in higher-order gradient plasticity based on
Nye’s tensor.

For a given foil thickness, this feature turns out in a mechani-
cal response exhibiting dependence on the foil length, with shorter
foils being softer, if either rate-dependence or isotropic hardening
are included in the modeling. This behavior is also due to the im-
posed foil ends rotations, that are governed by the application of
an average foil curvature.

The peculiar mechanism observed not only reveals a major role
of the plastic spin but also indicates that analogous issues may be
inherent to strain gradient crystal plasticity theories involving Nye’s
dislocation density tensor as primal higher-order kinematic vari-
able. In this context, counterintuitive coupling effects among slip
systems have already been observed by Bardella et al. (2013).

The micro-bending benchmark has also been employed to in-
vestigate the existence of “elastic gaps” under non-proportional
loading, as recently defined by Fleck et al. (2014). The proposed
FE framework can predict that, in the present “non-incremental”
DGP theory, a purely elastic incremental response follows passiva-
tion in the plastic regime. Critical experiments are needed to gain
insight into the existence, or lack thereof, of the interruptions in
plastic flow due to specific non-proportional loading conditions.
Nevertheless, our FE analysis confirms that by assuming a vanish-
ing value for the dissipative length scale governing the dissipative
higher-order stress, the present DGP formulation is free from such
“elastic gaps”.
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Appendix A. Matrix operators for the discretization of the
plastic variables

The following matrices are defined in such a way as when they
are multiplied by the column vector containing the four plastic dis-
tortion components of a node, say [y1(1‘), Vz(é)’ yl(z‘), yz({)]T, they
deliver its contribution to the vector fields containing the relevant

. . . . AT
components of the plastic strain [efl(‘), s%‘), efz('), sé’{'), 8§’3(')] ,
the plastic spin [z?ll’z(i), z?fl(i)]T, the gradient of the plastic strain
pl) op@) p() p@)  p@)  p@) pG) () opG)  opG)
(611 €120 €210 €222 €210 E22811 2120 3310 €332
and Nye’s tensor [o) aé’;, ag’f, aélz)]T, respectively:

13°
N 0O 0 o0
0o N 0 0
symM®P =] 0 0o IN IN (A1)
0 0 N IN;
—-N;  —N; 0 0
. 0 0 IN _1N
skwM® = S 2 (A2)
0 0 -IN N
- N, -
w9 0 0
N,
¥ 0 0 0
N,
o W 9 0
N,
0 ¥ 0 0
' 0 0 10N 19N
sym VM® = 20 20X (A3)
0 0 10N, 10N
2 dy 2 dy
an, AN,
0 0 3% 1%
an, AN,
0 0 3 W
N, aN;
-5 Tk 0 0
aN; N,
L~y Ty 0 0
AN N,
— 0 T 0
. 0 L - L
curl MY = . B;N_ 4 (A4)
5 w00
an, N,
w% a0 0
References

Arsenlis, A., Parks, D.M., 1999. Crystallographic aspects of geometrically-necessary
and statistically-stored dislocation density. Acta Mater. 47, 1597-1611.

Ashby, M.F,, 1970. The deformation of plastically non-homogeneous materials. Phi-
los. Mag. 21, 399-424.

Bardella, L., 2009. A comparison between crystal and isotropic strain gradient plas-
ticity theories with accent on the role of the plastic spin. Eur. J. Mech. A. Solids
28, 638-646.

Bardella, L., 2010. Size effects in phenomenological strain gradient plasticity consti-
tutively involving the plastic spin. Int. J. Eng. Sci. 48, 550-568.

Bardella, L., Giacomini, A., 2008. Influence of material parameters and crystallog-
raphy on the size effects describable by means of strain gradient plasticity. ]J.
Mech. Phys. Solids 56, 2906-2934.

Bardella, L., Panteghini, A., 2015. Modelling the torsion of thin metal wires by dis-
tortion gradient plasticity. J. Mech. Phys. Solids 78, 467-492.

Bardella, L., Segurado, J., Panteghini, A., Llorca, ., 2013. Latent hardening size effect
in small-scale plasticity. Modell. Simul. Mater. Sci. Eng. 21, 055009.

Bittencourt, E., Needleman, A., Gurtin, M.E., Van der Giessen, E., 2003. A comparison
of nonlocal continuum and discrete dislocation plasticity predictions. J. Mech.
Phys. Solids 51, 281-310.

Borg, U., Niordson, C.F, Fleck, N.A., Tvergaard, V., 2006. A viscoplastic strain gra-
dient analysis of materials with voids or inclusions. Int. J. Solids Struct. 43,
4906-4916.

Engelen, RA.B., Fleck, N.A., Peerlings, R.HJ., Geers, M.G.D., 2006. An evaluation of
higher-order plasticity theories for predicting size effects and localisation. Int. J.
Solids Struct. 43, 1857-1877.

Evans, A.G., Hutchinson, J.W., 2009. A critical assessment of theories of strain gradi-
ent plasticity. Acta Mater. 57, 1675-1688.

Fleck, N.A., Hutchinson, J.W., 1997. Strain gradient plasticity. Adv. Appl. Mech. 33,
295-361.

Fleck, N.A., Hutchinson, J.W., 2001. A reformulation of strain gradient plasticity. J.
Mech. Phys. Solids 41, 1825-1857.

Fleck, N.A., Hutchinson, J.W., Willis, J.R,, 2014. Strain gradient plasticity under
non-proportional loading. Proc. R. Soc. London, Ser. A 470, 20140267.

Fleck, N.A., Hutchinson, J.W., Willis, J.R., 2015. Guidelines for Constructing Strain
Gradient Plasticity Theories. ]J. Appl. Mech. 82 (071002), 1-10.

Fleck, N.A., Muller, G.M., Ashby, M.E,, Hutchinson, J.W., 1994. Strain gradient plastic-
ity: theory and experiment. Acta Metall. Mater. 42, 475-487.

Fleck, N.A., Willis, J.R., 2009a. A mathematical basis for strain-gradient plasticity
theory - part i: Scalar plastic multiplier. J. Mech. Phys. Solids 57, 161-177.

Fleck, N.A., Willis, J.R., 2009b. A mathematical basis for strain-gradient plasticity
theory - part II: tensorial plastic multiplier. . Mech. Phys. Solids 57, 1045-1057.

Forest, S., Guéninchault, N., 2013. Inspection of free energy functions in gradient
crystal plasticity. Acta Mech. Sin. 29, 763-772.

Fredriksson, P, Gudmundson, P., 2005. Size-dependent yield strength of thin films.
Int. J. Plast. 21, 1834-1854.

Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W., 1999. Mechanism-based strain gra-
dient plasticity i. theory. J. Mech. Phys. Solids 47, 1239-1263.

Garroni, A., Leoni, G., Ponsiglione, M., 2010. Gradient theory for plasticity via ho-
mogenization of discrete dislocations. J. Eur. Math. Soc. 12, 1231-1266.

Gudmundson, P., 2004. A unified treatment of strain gradient plasticity. J. Mech.
Phys. Solids 52, 1379-1406.

Gurtin, M.E., 2004. A gradient theory of small-deformation isotropic plasticity that
accounts for the burgers vector and for dissipation due to plastic spin. J. Mech.
Phys. Solids 52, 2545-2568.

Gurtin, M.E., Anand, L., 2005. A theory of strain-gradient plasticity for isotropic,
plastically irrotational materials. part i: small deformations. J. Mech. Phys. Solids
53, 1624-1649.

Gurtin, M.E., Anand, L., 2009. Thermodynamics applied to gradient theories involv-
ing the accumulated plastic strain: The theories of aifantis and fleck & hutchin-
son and their generalization. . Mech. Phys. Solids 57, 405-421.

Gurtin, M.E., Needleman, A., 2005. Boundary conditions in small-deformation, sin-
gle-crystal plasticity that account for the burgers vector. J. Mech. Phys. Solids
53, 1-31.

Hutchinson, J.W., 2012. Generalizing J, flow theory: fundamental issues in strain
gradient plasticity. Acta Mech. Sin. 28, 1078-1086.

Idiart, M.L,, Deshpande, V.S., Fleck, N.A., Willis, J.R., 2009. Size effects in the bending
of thin films. Int. J. Eng. Sci. 47, 1251-1264.

Klusemann, B., Svendsen, B., Vehoff, H., 2013. Modeling and simulation of deforma-
tion behavior, orientation gradient development and heterogeneous hardening
in thin sheets with coarse texture. Int. J. Plast. 50, 109-126.

Lancioni, G., Yalginkaya, T., Cocks, A., 2015. Energy-based non-local plasticity models
for deformation patterning, localization and fracture. Proc. R. Soc. London, Ser.
A 471, 20150275.

Legarth, B.N., Niordson, C.F,, 2010. Debonding failure and size effects in micro rein-
forced composites. Int. ]. Plast. 26, 149-165.

Liu, B., Huang, Y., Li, M., Hwang, K.C,, Liu, C,, 2005. A study of the void size effect
based on the taylor dislocation model. Int. J. Plast. 21, 2107-2122.

Martinez-Paiieda, E., Betegén, C., 2015. Modeling damage and fracture within strain
gradient plasticity. Int. J. Solids Struct. 59, 208-215.

Martinez-Paiieda, E., Niordson, C.F, 2016. On fracture in finite strain gradient plas-
ticity. Int. J. Plast. 80, 154-167.

Moreau, P, Raulic, M., P'ng, M.Y., Gannaway, G., Anderson, P, Gillin, W.P,
Bushby, AJ., Dunstan, D.J., 2005. Measurement of the size effect in the yield
strength of nickel foils. Philos. Mag. Lett. 85, 339-343.

Nielsen, K.L., Niordson, C.F, 2014. A numerical basis for strain-gradient plastic-
ity theory: Rate-independent and rate-dependent formulations. . Mech. Phys.
Solids 63, 113-127.

Niordson, C.F,, 2003. Strain gradient plasticity effects in whisker-reinforced metals.
J. Mech. Phys. Solids 51, 1863-1883.


http://dx.doi.org/10.13039/501100004837
http://dx.doi.org/10.13039/501100006382
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0001
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0002
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0003
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0004
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0005
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0006
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0007
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0008
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0009
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0010
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0011
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0012
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0013
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0014
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0015
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0016
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0017
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0018
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0019
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0020
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0021
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0022
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0023
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0024
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0025
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0026
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0027
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0028
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0029
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0030
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0031
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0032
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0033
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0034
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0035
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0036
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0037
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0038
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0038

E. Martinez-Pafieda et al./International Journal of Solids and Structures 96 (2016) 288-299 299

Niordson, C.E, 2007. Size-effects in porous metals. Modell. Simul. Mater. Sci. Eng.
15, 51-60.

Niordson, C.F, Hutchinson, J.W., 2011. Basic strain gradient plasticity theories with
application to constrained film deformation. J. Mech. Mater. Struct. 6, 395-416.

Niordson, C.E, Legarth, B.N., 2010. Strain gradient effects on cyclic plasticity. ]. Mech.
Phys. Solids 58, 542-557.

Nix, W.D., Gao, H., 1998. Indentation size effects in crystalline materials: a law for
strain gradient plasticity. J. Mech. Phys. Solids 46, 411-425.

Nye, J.E, 1953. Some geometrical relations in dislocated crystals. Acta Metall. 1,
153-162.

Ohno, N., Okumura, D., 2007. Higher-order stress and grain size effects due to
self-energy of geometrically necessary dislocations. J. Mech. Phys. Solids 55,
1879-1898.

Ostien, J., Garikipati, K., 2008. Galerkin method for an incompatibility-based strain
gradient plasticity theory. In: [UTAM Symposium on Theoretical, Computational
and Modelling Aspects of Inelastic Media. Springer, Netherlands, pp. 217-226.

Poh, L.H., 2013. Scale transition of a higher order plasticity model - a consistent ho-
mogenization theory from meso to macro. J. Mech. Phys. Solids 61, 2692-2710.

Poh, LH., Peerlings, R.HJ., 2016. The plastic rotation effect in an isotropic gradient
plasticity model for applications at the meso scale. Int. J. Solids Struct. 78-79,
57-69.

Poh, LH., Phan, V.T,, 2016. Numerical implementation and validation of a consis-
tently homogenized higher order plasticity model. Int. J. Numer. Methods Eng.
106, 454-483.

Polizzotto, C., 2011. Size effects on the plastic collapse limit load of thin foils in
bending and thin wires in torsion. Eur. J. Mech. A. Solids 30, 854-864.

Qu, S., Huang, Y., Pharr, G.M., Hwang, K.C., 2006. The indentation size effect in the
spherical indentation of iridium: a study via the conventional theory of mecha-
nism-based strain gradient plasticity. Int. J. Plast. 22, 1265-1286.

Stolken, J.S., Evans, A.G., 1998. A microbend test method for measuring the plasticity
length scale. Acta Mater. 46, 5109-5115.

Wieners, C., Wohlmuth, B., 2011. A primal-dual finite element approximation for a
nonlocal model in plasticity. SIAM J. Numer. Anal. 49, 692-710.

Yefimov, S., Van der Giessen, E., 2005. Multiple slip in a strain-gradient plasticity
model motivated by a statistical-mechanics description of dislocations. Int. ].
Solids Struct. 42, 3375-3394.

Yefimov, S., Van der Giessen, E., Groma, L., 2004. Bending of a single crystal: discrete
dislocation and nonlocal crystal plasticity simulations. Modelling Simul. Mater.
Sci. Eng. 12, 1069-1086.


http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0039
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0039
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0040
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0041
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0042
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0043
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0044
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0045
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0046
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0047
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0048
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0048
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0048
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0049
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0049
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0050
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0051
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0052
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0053
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0054
http://refhub.elsevier.com/S0020-7683(16)30108-1/sbref0054

	A finite element framework for distortion gradient plasticity with applications to bending of thin foils
	1 Introduction
	2 The flow theory of distortion gradient plasticity and the new stationarity principles
	2.1 Kinematic and static field equations
	2.1.1 Compatibility equations
	2.1.2 Balance equations

	2.2 Boundary conditions
	2.2.1 Kinematic boundary conditions
	2.2.2 Static boundary conditions

	2.3 Stationarity principles
	2.4 Constitutive laws for the energetic terms (recoverable stresses)
	2.5 Constitutive laws for the dissipative terms (unrecoverable stresses)

	3 Finite element formulation
	3.1 Validation of the FE implementation

	4 Modeling the bending of thin foils
	4.1 Micro-bending within Nye’s tensor-based phenomenological gradient plasticity
	4.2 Influence of the unconventional material parameters on the micro-bending response
	4.3 Mechanical response under non-proportional loading

	5 Concluding remarks
	 Acknowledgments
	Appendix A Matrix operators for the discretization of the plastic variables
	 References


