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a b s t r a c t 

A novel general purpose Finite Element framework is presented to study small-scale metal plasticity. A 

distinct feature of the adopted distortion gradient plasticity formulation, with respect to strain gradient 

plasticity theories, is the constitutive inclusion of the plastic spin, as proposed by Gurtin (2004) through 

the prescription of a free energy dependent on Nye’s dislocation density tensor. The proposed numer- 

ical scheme is developed by following and extending the mathematical principles established by Fleck 

and Willis (2009). The modeling of thin metallic foils under bending reveals a significant influence of 

the plastic shear strain and spin due to a mechanism associated with the higher-order boundary condi- 

tions allowing dislocations to exit the body. This mechanism leads to an unexpected mechanical response 

in terms of bending moment versus curvature, dependent on the foil length, if either viscoplasticity or 

isotropic hardening are included in the model. In order to study the effect of dissipative higher-order 

stresses, the mechanical response under non-proportional loading is also investigated. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Experiments have shown that metallic materials display strong

size effects at both micron and sub-micron scales ( Fleck et al.,

1994; Nix and Gao, 1998; Stölken and Evans, 1998; Moreau et al.,

2005 ). Much research has been devoted to modeling the experi-

mentally observed change in the material response with dimin-

ishing size ( Fleck and Hutchinson, 1997; Qu et al., 2006; Kluse-

mann et al., 2013 ) in addition to studies of size effects in void

growth ( Liu et al., 20 05; Niordson, 20 07 ), fiber reinforced materi-

als ( Bittencourt et al., 2003; Niordson, 2003; Legarth and Niordson,

2010 ), and fracture problems ( Martínez-Pañeda and Betegón, 2015;

Martínez-Pañeda and Niordson, 2016 ). Most attempts to model size

effects in metals have been based on higher-order continuum mod-

eling, and different theories, both phenomenological ( Fleck and

Hutchinson, 2001; Gudmundson, 2004; Gurtin, 2004; Gurtin and

Anand, 2005 ) and mechanism-based ( Gao et al., 1999 ) have been

developed. All these theories aim at predicting size effects in poly-

crystalline metals in an average sense, without explicitly account-

ing for the crystal lattice, nor for the behavior of internal grain

boundaries. 
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While higher-order energetic and dissipative contributions are

 common feature among the majority of the most advanced phe-

omenological Strain Gradient Plasticity (SGP) theories (see, e.g.,

udmundson, 20 04; Gurtin and Anand, 20 05; 20 09; Fleck and

illis, 2009b ), the need to constitutively account for the plastic

pin, as proposed about ten years ago by Gurtin (2004) , to properly

escribe the plastic flow incompatibility and associated dislocation

ensities, has been mostly neglected in favor of simpler models.

owever, the use of phenomenological higher-order formulations

hat involve the whole plastic distortion (here referred to as Distor-

ion Gradient Plasticity , DGP) has attracted increasing attention in

ecent years due to its superior modeling capabilities. The studies

f Bardella and Giacomini (2008) and Bardella (2009 ; 2010 ) have

hown that, even for small strains, the contribution of the plas-

ic spin plays a fundamental role in order to provide a descrip-

ion closer to the mechanical response prediction of strain gradi-

nt crystal plasticity. This has been further assessed by Poh and

eerlings (2016) , who, by comparing to a reference crystal plastic-

ty solution obtained with the theory by Gurtin and Needleman

2005) , showed that the plastic rotation must be incorporated to

apture the essential features of crystal plasticity. Moreover, Poh

nd Peerlings (2016) numerically elucidated that the localization

henomenon taking place in the Bittencourt et al. (2003) com-

osite unit cell benchmark problem can only be reproduced by

GP. Gurtin (2004) theory has also been employed by Poh and
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o-workers ( Poh, 2013; Poh and Phan, 2016 ) through a novel ho-

ogenization formulation to describe the behavior of each grain

n a polycrystal where grain boundaries are modeled to describe

ffects of dislocation blockage or transmittal. 

However, despite the superior modeling capability of DGP with

espect to SGP, the literature is scarce on the development of a

eneral purpose Finite Element (FE) framework for DGP. Particu-

arly, the use of higher-order dissipative terms - associated with

trengthening mechanisms - is generally avoided due to the re-

ated computational complexities. This is the case of the very re-

ent FE implementation of Poh and Peerlings (2016) and the earlier

ork by Ostien and Garikipati (2008) , who implemented Gurtin

2004) theory within a Discontinuous Galerkin framework. Ener-

etic and dissipative contributions are both accounted for in the

ecent ad hoc FE formulation for the torsion problem by Bardella

nd Panteghini (2015) , also showing that, contrary to higher-

rder SGP theories, Gurtin (2004) DGP can predict some energetic

trengthening even with a quadratic defect energy. 

In this work, a general purpose FE framework for DGP is de-

eloped on the basis of an extension of the minimum principles

roposed by Fleck and Willis (2009b ). The numerical scheme in-

ludes both energetic and dissipative higher-order stresses and the

ffect of the latter under non-proportional loading is investigated.

he novel FE framework is particularized to the plane strain case

nd applied to the bending of thin foils, of particular interest to the

tudy of size effects in metals (see, e.g., Yefimov et al., 2004; Yefi-

ov and Giessen, 2005; Engelen et al., 2006; Evans and Hutchin-

on, 20 09; Idiart et al., 20 09; Polizzotto, 2011 ) since the experi-

ents of Stölken and Evans (1998) (see also Moreau et al., 2005 ).

omputations reveal a dependence of the results on the foil length

f either rate-dependent plasticity or isotropic hardening are in-

luded in the model. This is a consequence of the definition of

he energetic higher-order contribution as a function of Nye’s dis-

ocation density tensor ( Nye, 1953; Fleck and Hutchinson, 1997;

rsenlis and Parks, 1999 ), that is intrinsic to Gurtin (2004) the-

ry. This unexpected effect, absent in conventional theories and in

any GP theories, is accompanied with the development of plastic

hear and plastic spin, which turn out to influence the overall me-

hanical response in bending. Such a behavior is triggered by the

nteraction between the conventional and the higher-order bound-

ry conditions, the latter allowing dislocations to exit the foil at

he free boundaries. The foil length dependence of the mechani-

al response is emphasized by the presence of the plastic spin in

urtin (2004) DGP, but it also characterizes the Gurtin and Anand

2005) SGP theory, still involving Nye’s tensor restricted to the

ssumption of irrotational plastic flow (that is, vanishing plastic

pin). Hence, one of the results of the present investigation con-

erns with the usefulness of two-dimensional analyses with appro-

riate boundary conditions to model micro-bending phenomeno-

ogically. 

utline of the paper. The DGP theory of Gurtin (2004) is presented

n Section 2 , together with the novel minimum principles gov-

rning it. The FE formulation and its validation are described in

ection 3 . Results concerning bending of thin foils are presented

nd discussed in Section 4 . Some concluding remarks are offered

n Section 5 . 

otation. We use lightface letters for scalars. Bold face is used

or first-, second-, and third-order tensors, in most cases respec-

ively represented by small Latin, small Greek, and capital Latin

etters. When we make use of indices they refer to a Cartesian

oordinate system. The symbol “ · ” represents the inner prod-

ct of vectors and tensors (e.g., a = b · u ≡ b i u i , b = σ · ε ≡ σi j ε i j ,

 = T · S ≡ T i jk S i jk ). For any tensor, say ρ, the inner product by it-

elf is | ρ| 2 ≡ ρ · ρ. The symbol “ × ” is adopted for the vec-
or product: t = m × n ≡ e i jk m j n k = t i , with e ijk denoting the alter-

ating symbol (one of the exceptions, as it is a third-order ten-

or represented by a small Latin letter), and, for ζ a second-order

ensor: ζ × n ≡ e jlk ζ il n k . For the products of tensors of different

rder the lower-order tensor is on the right and all its indices

re saturated, e.g.: for σ a second-order tensor and n a vector,

 = σn ≡ σi j n j = t i ; for T a third-order tensor and n a vector, Tn

T ijk n k ; for L a fourth-order tensor and ε a second-order tensor, 

= L ε ≡ L i jkl ε kl = σi j . Moreover, ( ∇u ) ij ≡ ∂ u i / ∂ x j ≡ u i, j , ( div σ) i ≡
i j, j , and ( curl γ ) i j ≡ e jkl γil,k designate, respectively, the gradient

f the vector field u , the divergence of the second-order tensor

, and the curl of the second-order tensor γ , whereas ( dev ς ) i j ≡
(ς i j − δi j ς kk / 3) (with δij the Kronecker symbol), ( sym ς ) i j ≡ (ς i j +
 ji ) / 2 , and ( skw ς ) i j ≡ (ς i j − ς ji ) / 2 denote, respectively, the devi-

toric, symmetric, and skew-symmetric parts of the second-order

ensor ς. 

. The flow theory of distortion gradient plasticity and the new

tationarity principles 

The theory presented in this section refers to the mechanical

esponse of a body occupying a space region 	, whose external

urface S , of outward normal n , consists of two couples of comple-

entary parts: the first couple consists of S t , where the conven-

ional tractions t 0 are known, and S u , where the displacement u 

0 

s known, whereas the second couple consists of S dis 
t , where dis-

ocations are free to exit the body , and S dis 
u , where dislocations are

locked and may pile-up : S = S t ∪ S u = S dis 
t ∪ S dis 

u . 

This section is devoted to the presentation of compatibility,

alance, and constitutive equations. For their derivation and for

ore insight on their mechanical meaning, the reader is referred to

urtin (2004) and Bardella (2010) . Furthermore, we will also pro-

ide two minimum principles extending those formulated by Fleck

nd Willis (2009b ) for a higher-order SGP, to Gurtin (2004) DGP.

n the basis of these minimum principles we will develop the new

E framework in Section 3 . 

.1. Kinematic and static field equations 

.1.1. Compatibility equations 

In the small strains and rotations regime, the plastic distortion

, that is the plastic part of the displacement gradient, is related

o the displacement u by 

u = (∇u ) el + γ in 	 (1)

n which ( ∇u ) el is the elastic part of the displacement gradient.

he displacement field u is assumed to be sufficiently smooth,

uch that curl ∇u = 0 in 	, and the plastic deformation is assumed

o be isochoric, so that tr γ = 0 . The total strain, Nye’s dislocation

ensity tensor ( Nye, 1953; Fleck and Hutchinson, 1997; Arsenlis

nd Parks, 1999 ), the plastic strain, and the plastic spin are, re-

pectively, defined as: 

 = sym ∇u , α = curl γ , ε 

p = sym γ , ϑ 

p = skw γ in 	

(2) 

.1.2. Balance equations 

For the whole body free from standard body forces, the conven-

ional balance equation reads 

iv σ = 0 in 	 (3) 

ith σ denoting the standard symmetric Cauchy stress. 
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The higher-order balance equation can be conveniently written

into its symmetric and skew-symmetric parts: 

ρ − dev σ − div T 

(ε) + sym [ dev ( curl ζ)] = 0 in 	 (4)

ω + skw ( curl ζ) = 0 in 	 (5)

in which ρ, ω , and T ( ε) are the dissipative stresses constitutively

conjugate to the plastic strain rate ˙ ε p , the plastic spin rate ˙ ϑ 

p 
, and

the gradient of the plastic strain rate ∇ ̇

 ε p , respectively, whereas ζ
is the energetic stress (called defect stress) constitutively conjugate

to Nye’s tensor α. 

Note that ρ and ω can be summed up to obtain a dissipative

stress, ς, conjugate to the plastic distortion rate ˙ γ: 

ς = ρ + ω such that ρ = sym ς , ω = skw ς , tr ς = 0 (6)

2.2. Boundary conditions 

2.2.1. Kinematic boundary conditions 

The conventional kinematic boundary conditions are: 

˙ u = 

˙ u 

0 on S u (7)

whereas we adopt homogeneous higher-order kinematic (essential)

boundary conditions, which are called microhard boundary condi-

tions as they describe dislocations piling up at the boundary. If the

complete DGP theory - including the third-order dissipative stress

T ( ε) - is considered, the microhard boundary conditions read: 

˙ ε 

p = 0 and 

˙ ϑ 

p × n = 0 on S dis 
u (8)

Otherwise, in the simpler DGP theory neglecting T ( ε) , the micro-

hard boundary conditions read: 

˙ γ × n = 0 on S dis 
u (9)

2.2.2. Static boundary conditions 

The conventional static boundary conditions are: 

σn = t 0 on S t (10)

whereas we adopt homogeneous higher-order static (natural)

boundary conditions, which are called microfree boundary condi-

tions as they describe dislocations free to exit the body: 

T 

(ε) n + sym [ dev ( ζ × n )] = 0 on S dis 
t (11)

skw ( ζ × n ) = 0 on S dis 
t (12)

2.3. Stationarity principles 

In the literature, one of the most common ways to obtain a

weak form of the balance equations, useful for the numerical im-

plementation, is based on the Principle of Virtual Work (PVW,

see, e.g., Fleck and Hutchinson, 20 01; Gudmundson, 20 04; Gurtin,

2004 ). Here, inspired by the work of Fleck and Willis (2009a ;

2009b ), we instead provide two stationarity principles, leading to

the foregoing balance equations, which result in minimum princi-

ples after appropriate constitutive choices are made. For a given

Cauchy stress, the higher-order balance Eqs. (4) and (5) and homo-

geneous boundary conditions are satisfied by any suitably smooth

field 

˙ γ such that the following functional attains stationarity 

H 1 ( ̇ γ ) = 

∫ 
	

[ 
ρ · ˙ ε 

p + ω · ˙ ϑ 

p + T 

(ε) · ∇ ̇

 ε 

p + ζ · ˙ α − σ · ˙ ε 

p 
] 

d V (13)

subject to the kinematic relations (2) . 

For a given plastic strain rate, the conventional balance equa-

tion (3) and static boundary condition (10) are satisfied by any
inematically admissible field 

˙ u that minimizes the following func-

ional: 

 ( ̇ u ) = 

1 

2 

∫ 
	

L 

(
sym ∇ 

˙ u − ˙ ε 

p 
)

·
(
sym ∇ 

˙ u − ˙ ε 

p 
)
d V −

∫ 
S t 

˙ t 0 · ˙ u d A 

(14)

ere L is the elastic stiffness, relating the elastic strain to the

auchy stress, σ = L ( ε − ε p ) . 

.4. Constitutive laws for the energetic terms (recoverable stresses) 

In order to account for the influence of geometrically neces-

ary dislocations (GNDs, see, e.g., Ashby, 1970; Fleck et al., 1994;

leck and Hutchinson, 1997 ), the free energy is chosen by Gurtin

2004) to depend on both the elastic strain, ε − ε p , and Nye’s ten-

or α: 

= 

1 

2 

L ( ε − ε 

p ) · ( ε − ε 

p ) + D( α) (15)

n which D( α) is the so-called defect energy , accounting for the

lastic distortion incompatibility. The recoverable mechanisms as-

ociated with development of GNDs are incorporated in the cur-

ent higher-order theory by assuming the following quadratic de-

ect energy: 

( α) = 

1 

2 

μ� 2 α · α (16)

n which μ is the shear modulus and � is an energetic length scale.

ence, the defect stress reads: 

= 

∂D( α) 

∂ α
= μ� 2 α (17)

t has been recently shown by Bardella and Panteghini (2015) that

t may be convenient to express the defect energy in terms of

ore invariants of α, as originally envisaged by Gurtin (2004) . It

ay also be relevant to adopt less-than-quadratic forms of the de-

ect energy (e.g., Ohno and Okumura, 2007; Bardella, 2010; Garroni

t al., 2010; Forest and Guéninchault, 2013; Bardella and Pantegh-

ni, 2015 ), or even non-convex forms (e.g., Lancioni et al., 2015 and

eferences therein). However, the quadratic defect energy is per-

ectly suitable for the scope of the present investigation, that is

mplementing Gurtin (2004) DGP theory in a general purpose FE

ramework and bringing new features of its predictive capabilities

o attention by analyzing the bending of thin foils. We leave for

urther investigations the analysis of other forms of the defect en-

rgy. 

.5. Constitutive laws for the dissipative terms (unrecoverable 

tresses) 

The unrecoverable stresses are prescribed in the form: 

= 

2 

3 

�

˙ E p 
˙ ε 

p 
, ω = χ

�

˙ E p 
˙ ϑ 

p 
, T (ε) = 

2 

3 

L 2 
�

˙ E p 
∇ ̇

 ε 

p 
(18)

here the following phenomenological effective plastic flow rate 

˙ 
 

p = 

√ 

2 

3 

| ̇ ε 

p | 2 + χ | ̇ ϑ 

p | 2 + 

2 

3 

L 2 |∇ ̇

 ε 

p | 2 (19)

s work conjugate to the effective flow resistance: 

= 

√ 

3 

2 

| ρ| 2 + 

1 

χ
| ω | 2 + 

3 

2 L 2 
| T (ε) | 2 (20)

uch that the 2nd law of thermodynamics is satisfied: 

· ˙ ε 

p + ω · ˙ ϑ 

p + T 

ε · ∇ ̇

 ε 

p ≡ � ˙ E p > 0 ∀ 

˙ γ � = 0 (21)
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n the constitutive laws above L is a dissipative material length pa-

ameter and χ is the material parameter governing the dissipation

ue to the plastic spin 

1 . 

The form of the function �( ̇ E p , E p ) , whose dependence on E p 

ay describe higher-order isotropic hardening, has to be appropri-

tely chosen to complete the set of constitutive prescriptions for

he unrecoverable stresses. 

With these constitutive equations plastic dissipation may be de-

ived from the dissipation potential 

 ( ̇ E p , E p ) = 

∫ ˙ E p 

0 

�(e, E p ) d e (22)

hich is assumed to be convex in 

˙ E p . This is important for the de-

elopment of a numerical solution procedure, as it makes the sta-

ionarity principle based on functional (13) a minimum principle,

hose functional reads: 

( ̇ γ ) = 

∫ 
	

[
V ( ̇ E p , E p ) + ζ · ˙ α − σ · ˙ ε 

p 
]
d V (23) 

ote that in functional (23) ˙ E p is a function of ˙ γ through equation

19) and the kinematic relations (2) . 

Minimum principles (14) and (23) extend the analogous prin-

iples of Fleck and Willis (2009b ) to the DGP theory of Gurtin

2004) . 

In this work we choose the following viscoplastic potential 

 ( ̇ E p , E p ) = 

σY (E p ) ̇ ε 0 
m + 1 

(
˙ E p 

˙ ε 0 

)m +1 

(24)

o that 

( ̇ E p , E p ) = σY (E p ) 

(
˙ E p 

˙ ε 0 

)m 

(25)

ith m denoting the rate sensitivity exponent, σ Y ( E 
p ) the current

ow stress given by the hardening rule, and ˙ ε 0 the reference strain

ate. 

. Finite element formulation 

The present FE framework is based on the minimum principles

14) and (23) . General FE implementations of viscoplastic dissipa-

ive strain gradient plasticity based on the PVW (e.g., Fredriksson

nd Gudmundson, 2005; Borg et al., 2006; Niordson and Legarth,

010 ) solve for the time derivative of the plastic rate field. The

ain advantage of employing the minimum principles adopted in

he present paper is that the plastic distortion rate field is directly

btained from (23) in the context of dissipative gradient effects.

his makes the present numerical scheme more robust as it allows

or larger time increments and it enables convergence for lower

alues of the rate sensitivity exponent. Largely, time-independent

ehavior may be obtained for sufficiently small rate sensitivity ex-

onents, circumventing complications in the corresponding time-

ndependent model associated with identifying active plastic zones

by, for instance, using image analysis, as proposed by Nielsen and

iordson, 2014 ). Stationarity of (23) together with the constitutive
1 By analyzing the simple shear problem, Bardella (2009) has provided an ana- 

ytical expression suggesting that, in order to represent the mechanical response of 

 crystal subject to multislip, χ ∈ [0, 2/3]. However, values of χ larger than 2/3 

ight help in representing the response of crystals in which the plastic flow has 

referential orientations. 

t  

i  

i

t

s

quations (18) results in the following equation ∫ 
	

[
2 

3 

�

˙ E p 
˙ ε 

p · δ ˙ ε 

p + χ
�

˙ E p 
˙ ϑ 

p · δ ˙ ϑ 

p + 

2 

3 

L 2 
�

˙ E p 
∇ ̇

 ε 

p · δ∇ ̇

 ε 

p 

]
d V 

= 

∫ 
	

[
σ · δ ˙ ε 

p − ζ · δ ˙ α
]
d V (26) 

iven the recoverable stresses, fulfillment of the above weak form

26) of the higher-order equilibrium equations (4) and (5) directly

elivers the plastic distortion rate field, ˙ γ . Adopting Voigt notation,

he following FE interpolation is used: 

˙ 
 = 

N I ∑ 

n =1 

N 

(n ) ˙ a (n ) (27) 

˙ = 

N II ∑ 

n =1 

M 

(n ) ˙ γ (n ) (28) 

ere ˙ a (n ) = [ ̇ a (n ) 
1 

, ˙ a (n ) 
2 

] T and ˙ γ (n ) = [ ̇ γ (n ) 
11 

, ˙ γ (n ) 
22 

, ˙ γ (n ) 
12 

, ˙ γ (n ) 
21 

] T are

odal degrees of freedom and N I and N II are the number of nodes

mployed for the displacement and the plastic distortion interpola-

ions, respectively. Quadratic shape functions are used for the dis-

lacement field ( N I = 8 ) while linear shape functions are employed

or the plastic distortion field ( N II = 4 ). 

Let us note that the continuity requirements for the shape func-

ions related to the unconventional FE degrees of freedom are dic-

ated by the structure of the kinematic higher-order boundary con-

itions, specified in Section 2.2.1 . Hence, it is important to point

ut that we always consider a non-zero dissipative length scale L ,

hereas we set it to a very small positive number when we want

o suppress the effect of the higher-order dissipation. Therefore, we

efer to the higher-order boundary conditions (8) , which imply that

ach plastic strain component must be continuous in the whole

omain. This would not be necessarily the case in the theory not

ccounting for dissipative higher-order stresses ( L = 0 in definition

19) ), in which the shape functions for the unconventional FE de-

rees of freedom should be established on the basis of the struc-

ure of the boundary conditions (9) . For what concerns the plastic

pin, in the plane strain framework considered in this work there

s one single component, so that conditions (8) still imply that this

omponent must be continuous in the whole domain. Overall, the

oregoing discussion implies that the four plastic distortion com-

onents, adopted as unconventional nodal degrees of freedom as

pecified in Eq. (28) , should be approximated by continuous shape

unctions. 

For general three-dimensional boundary value problems, a to-

ally similar FE framework, in which the eight plastic distortion

omponents are employed as unconventional nodal degrees of

reedom and are interpolated by continuous shape functions, can

e used by slightly modifying the DGP theory. One should extend

he effective plastic flow rate definition (19) by including the gra-

ient of the plastic spin rate, weighed by a new dissipative length

cale, say L ϑ. Of course, with such an extension the DGP theory

ould be enriched by a further dissipative third-order stress, hav-

ng nine components, whose divergence would enter the higher-

rder balance equation (5) . In this case, the microhard boundary

onditions would read 

˙ γ = 0 on S dis 
u . It is uncertain whether the

redictive capability of the DGP modelling would largely benefit

rom such an extension (as inferred by the preliminary analysis in

he appendix of Bardella, 2010 ), but it would be worth investigat-

ng, as it leads to a convenient FE implementation as that studied

n the present paper. 2 
2 On the contrary, the Gurtin (2004) DGP theory involving, as higher-order con- 

ribution, exclusively the defect energy written in terms of Nye’s dislocation den- 

ity tensor (i.e., L ≡ 0 in the theory presented in Section 2 ) may be more suitably 
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Fig. 1. Simple shear of a constrained strip. Comparison of the numerical results of 

the present model (lines) with the predictions of Bardella (2010) (symbols) for dif- 

ferent values of H / � , H / L , and χ . The case L = 0 is numerically approximated by set- 

ting L/H = 0 . 01 . Other material parameters are σ0 = 200 MPa, ε 0 = 0 . 02 , N = 0 . 2 , 

μ = 26 . 3 GPa, and ˙ ε 0 = 0.02 s −1 . 
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Let us finally recall that the static higher-order boundary con-

ditions, specified by Eqs. (11) and (12) , are microfree, so that there

is no higher-order tractions vector to impose on the boundary S dis 
t ,

where leaving unconstrained an unconventional (plastic) degree of

freedom is related to the freedom left to dislocations to exit the

body. Dually, setting to zero a plastic degree of freedom on the

boundary S dis 
u may trigger plastic distortion gradients, contribut-

ing to the size effect through the stiffening of a boundary layer

region. 

Upon finite element discretization, the weak form (26) of the

equilibrium equations (4) and (5) results in a system which is of

homogeneous degree zero in terms of the unknown plastic distor-

tion rate field. Imposing the variational form (26) to hold for any

kinematically admissible variation of ˙ γ leads to the following sys-

tem of equations, here written in the iterative form (with l denot-

ing the iteration number) actually implemented: ∫ 
	

(
�

( ̇ E p ) (l−1) 

[ 
2 

3 

(
sym M 

(n ) 
)
·
(
sym M 

(m ) 
)
+ χ

(
skw M 

(n ) 
)
·
(
skw M 

(m ) 
)

+ 

2 

3 

L 2 
(
sym ∇ M 

(n ) 
)

·
(
sym ∇ M 

(m ) 
)] )

d V · ( ˙ γ (m ) ) (l) 

= 

∫ 
	

(
σ ·

(
sym M 

(n ) 
)

− ζ ·
(
curl M 

(n ) 
))

d V (29)

Here the operators sym M 

(n ) , skw M 

(n ) , sym ∇ M 

(n ) , and curl M 

(n ) 

contain the shape functions which deliver the discretizations of ˙ ε p ,
˙ ϑ 

p 
, ∇ ̇

 ε p , and 

˙ α, respectively, from the nodal values of the plastic

distortion ˙ γ (n ) (see Appendix A ). Following Niordson and Hutchin-

son (2011) , the system of equations (29) is solved iteratively for

˙ γ (m ) on the basis of the known energetic stresses ( σ, ζ) for the

current state, written in terms of the total displacement u and

plastic distortion γ fields at the beginning of the time increment.

At a general time increment, the plastic distortion rate field from

the previous increment is used as a starting guess. Convergence of

the iteration is defined when the relative norm of the change in

the plastic distortion rate field is below an appropriate threshold

value. Finally, the plastic distortion rate ˙ γ is determined from the

discretization (28) . 

Subsequently, for a known plastic distortion rate field, the in-

cremental solution for the displacement is determined by finding

the minimum of functional (14) . The stationarity ensuing from this

second minimum principle corresponds to the conventional virtual

work statement and, therefore, its implementation into a FE code

is standard. Thus, for the sake of brevity, further details are here

omitted. In the present incremental procedure we use a Forward

Euler time integration scheme, whereas the above described itera-

tive algorithm is implemented so as to ensure convergence in the

computation of the plastic distortion rate field. A time increment

sensitivity analysis has been conducted in all computations to en-

sure that the numerical solution does not drift away from the equi-

librium configuration. 

3.1. Validation of the FE implementation 

In order to validate the present numerical model, the simple

shear of a constrained strip is analyzed so as to compare the re-

sults with those obtained by Bardella (2010) from the minimiza-

tion of the Total Complementary Energy functional in the defor-

mation theory context. As in Bardella (2010) , we consider a long

strip of height H free from body forces, with isotropic behavior

and sheared between two bodies in which dislocations cannot pen-

etrate. Hence, the displacement is fully constrained in the lower

strip surface, u 1 (x 2 = 0) = u 2 (x 2 = 0) = 0 , while the upper strip
implemented by the so-called curl-conforming Nédélec finite elements ( Wieners 

and Wohlmuth, 2011 ). 

f

a

urface is subjected to uniform horizontal displacement u 1 (x 2 =
) = �H with u 2 (x 2 = H) = 0 . Here, � is referred to as the applied

train, whose rate, in the following, is assumed to be equal to the

dopted reference strain rate ( ̇ � = ˙ ε 0 ). Since dislocations pile-up

hen they reach the strip lower and upper surfaces, the plastic

istortion must be zero at x 2 = 0 and x 2 = H. The problem is es-

entially one-dimensional, so that the strip, unbounded along both

he shearing direction x 1 and the x 3 direction, is modeled using a

ingle column of 80 plane strain quadrilateral elements along the

trip height ( H ) with appropriate boundary conditions at the sides

f the column ( u 2 = γ11 = γ22 = 0 ∀ x 2 ). 

In order to compare our results with those of Bardella (2010) ,

he following hardening law is used: 

Y (E p ) = σ0 

(
E p 

ε 0 

)N 

(30)

e consider the following material properties: μ = 26 . 3 GPa, ε 0 =
 . 02 , σ0 = 200 MPa, and N = 0 . 2 . 

Within the rate-dependent framework adopted, a reference

train rate of ˙ ε 0 = 0 . 02 s −1 is assumed and the effect of the

iscoplastic exponent m is studied in order to approach rate-

ndependent behavior (see Eq. (25) ). Fig. 1 shows the numeri-

al results obtained for different combinations of the material pa-

ameter governing the dissipation due to the plastic spin, χ , and

he energetic and dissipative length scales, in terms of the ratios

 / � and H / L , respectively. Discrete symbols represent the results

btained by Bardella (2010) while solid lines ( m = 0 . 05 ), dashed

ines ( m = 0 . 1 ), and dotted lines ( m = 0 . 2 ) show the results of the

resent FE implementation. 

As it can be seen in Fig. 1 , the FE framework reproduces the

esults of Bardella (2010) with a very good qualitative and quanti-

ative agreement 3 . 

. Modeling the bending of thin foils 

A foil of thickness H and length W subjected to bending is ana-

yzed. As depicted in Fig. 2 , illustrating the conventional boundary

onditions, we impose the longitudinal displacement component at
3 Note that the results of Bardella (2010) are not exact as they were obtained nu- 

merically by applying the Rayleigh-Ritz method to the Total Complementary Energy 

unctional. Hence, the present analysis also validates the Rayleigh-Ritz discretization 

dopted by Bardella (2010) . 
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Fig. 2. Bending of thin foil: boundary conditions on the undeformed configuration. 
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he foil ends: 

 1 = x 2 x 1 κ at x 1 ± W/ 2 (31)

hereas the complementary boundary part is traction-free. In Eq.

31) , κ is the curvature that the foil would attain if modeled by

 conventional theory, henceforth referred to as the applied cur-

ature . The higher-order boundary conditions are microfree on the

ntire boundary. These boundary conditions are adopted for all the

onotonic loading analyses. Note that solving the micro-bending

roblem as a two-dimensional boundary value problem is quite

ifferent from what has been done so far in the phenomenolog-

cal GP literature, in which, usually (see, e.g., Engelen et al., 2006;

vans and Hutchinson, 2009; Idiart et al., 2009; Polizzotto, 2011 ),

he total deformation field is assumed pointwise on the basis of the

onventional bending theory, thus solving for a plastic strain field

ndependent of x 1 . Instead, Yefimov et al. (2004) and Yefimov and

iessen (2005) used a two-dimensional plane strain model to ana-

yze the micro-bending of single crystals by comparing the results

f discrete dislocation dynamics with those of a backstress-based

train gradient crystal plasticity theory. In both cases, Yefimov et al.

mploy the conventional boundary conditions (31) and allow dislo-

ations to exit the foil when they reach its free boundaries, which

orresponds to the microfree boundary condition assumed in this

ork. 

As detailed in Section 4.1 , the structure of the microfree bound-

ry conditions is the responsible for the need to solve a two-

imensional boundary value problem in order to obtain the so-

ution of the micro-bending problem described by the here con-

erned Nye’s tensor-based phenomenological GP. In particular, we

ill show that the boundary conditions here adopted lead to a pe-

uliar mechanical response whose validation would require spe-

ific experiments. Moreover, our results imply that modeling ac-

ual bending experiments available in literature ( Stölken and Evans,

998; Moreau et al., 2005 ) may require two-dimensional analysis

nd particular attention to the boundary conditions to be imposed,

he latter being not necessarily those used in this study. 

By exploiting symmetry and skew-symmetry conditions of the

ending problem, we may impose that: 

11 = γ22 = 0 at x 2 = 0 and γ12 = γ21 = 0 at x 1 = 0 (32)

n such a way as to model only one fourth of the foil, as de-

icted in Fig. 2 . The vertical displacement of the center node is

onstrained in order to suppress rigid body motion. 

.1. Micro-bending within Nye’s tensor-based phenomenological 

radient plasticity 

In plane strain problems the sole non-vanishing Nye’s tensor

omponents are 

13 = γ12 , 1 − ε p 
11 , 2 

, α23 = ε p 
22 , 1 

− γ21 , 2 , α31 = ε p 
33 , 2 

, α32 = −ε p 
33 , 1 

(33) 
t the foil ends the homogeneous microfree boundary conditions

11) and (12) provide 

2 

3 

L 2 
�

˙ E p 
˙ ε p 
11 , 1 

+ 

μ� 2 

3 

(ε p 
11 , 1 

+ γ21 , 2 ) = 0 at x 1 = ±W/ 2 (34)

2 

3 

L 2 
�

˙ E p 
˙ ε p 
12 , 1 

+ 

μ� 2 

2 

(γ12 , 1 − ε p 
11 , 2 

) = 0 at x 1 = ±W/ 2 (35)

2 

3 

L 2 
�

˙ E p 
˙ ε p 
22 , 1 

+ 

μ� 2 

3 

(ε p 
11 , 1 

+ 3 ε p 
22 , 1 

− 2 γ21 , 2 ) = 0 at x 1 = ±W/ 2 

(36) 

12 , 1 − ε p 
11 , 2 

= 0 at x 1 = ±W/ 2 (37)

ombination of (35) and (37) leads to 

˙  p 
12 , 1 

= 0 at x 1 = ±W/ 2 (38)

At the foil top and bottom surfaces the microfree boundary con-

itions (11) and (12) provide similar relations, among which the

ost relevant reads: 

2 

3 

L 2 
�

˙ E p 
˙ ε p 
11 , 2 

− μ� 2 

3 

(2 γ12 , 1 − 3 ε p 
11 , 2 

− ε p 
22 , 2 

) = 0 at x 2 = ±H/ 2 

(39) 

nspection of the foregoing equations, with particular reference to

37) , allows us to deduct that, in the plastic regime, at the foil

nd regions a non-vanishing γ 12 must develop. Furthermore, when

 

p 
11 , 2 

becomes sufficiently large, an increase of γ 12,1 is expected in

rder to minimize the defect energy in the end regions (see Nye’s

ensor component α13 in Eq. (33) ). This implies that, for a given H,

he DGP theory here concerned may predict a mechanical response

ependent on the foil length W. Let us notice that the contributions

f ϑ 

p 
12 

and ε p 
12 

to γ 12 depend on the chosen material parameters.

n particular, χ = 0 makes it energetically convenient to develop

lastic spin to minimize the defect energy, while χ → ∞ leads to

he irrotational plastic flow condition of Gurtin and Anand (2005) ,

llowing for the development of ε p 
12 

only. 

With the aim of gaining insight into the role of both ε p 
12 

and

 

p 
12 

in the bending problem, we have carried out several analyses

ith the present FE framework. Unless otherwise specified, the ra-

io W/H = 30 is adopted. 

For each case presented different mesh densities were used to

nsure achieved convergence. Typically, 20 quadrilateral elements

ere employed along the thickness and uniform meshes were

sed, with element aspect ratio equal to 1. Both full- and reduced-

ntegration plane strain elements (having, respectively, nine and

our Gauss integration points) were tested and no shear locking

ffects were observed. For the sake of clarity we will focus our at-

ention to perfectly plastic behavior, that is N = 0 in Eq. (30) . 

Henceforth, we adopt the following material properties: μ =
6 . 3 GPa, Poisson’s ratio ν = 0 . 3 , initial yield stress σ0 = 200 MPa,

nd reference strain rate ˙ ε 0 = 0 . 02 s −1 . Other material parameters

ill be specified case by case. Unless otherwise stated, the dissipa-

ive and energetic length scales are such that 

/L = 2 . 5 and H/� = 5 

he specimen is loaded at a rate of curvature ˙ κ = 

√ 

3 ̇ ε 0 /H, such

hat, in conventional bending, the most stretched material points

ould be loaded at a conventional effective plastic strain rate equal

o ˙ ε 0 when elastic strain increments vanish. 

Fig. 3 represents the contours obtained for γ 12 , ε 
p 
12 

, and ϑ 

p 
12 

at

he applied normalized curvature Hκ/ 
√ 

3 = 0 . 05 . The influence of

ifferent values of χ is examined by adopting χ = 0 . 1 , χ = 2 / 3 ,
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Fig. 3. Contours of γ 12 (a), ε p 
12 

(b), and ϑ p 
12 

(c) at Hκ/ 
√ 

3 = 0 . 05 for χ = 0 . 1 (1), 2/3 (2), 1 (3), and χ → ∞ (4). The rate sensitivity exponent is m = 0 . 05 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Variation of γ 12 , ε 
p 
12 

, and ϑ p 
12 

along x 1 ( x 2 = 0 ) at Hκ/ 
√ 

3 = 0 . 05 for χ = 0 . 1 , 

2/3, 1, and χ → ∞ . The rate sensitivity exponent is m = 0 . 05 . 

 

p  

c  
χ = 1 , and χ → ∞ . χ = 2 / 3 is an upper limit estimate to repre-

sent crystal multislip ( Bardella, 2009 ) and makes the effective plas-

tic flow rate (19) equal to the norm of the plastic distortion in the

absence of dissipative higher-order terms. χ → ∞ reproduces the

conditions of Gurtin and Anand (2005) SGP theory. 

The results reveal a strong influence of γ 12 ( Fig. 3 (a.1)–(a.4)),

which increases towards the foil end. Unexpected within a clas-

sical framework, both ε p 
12 

( Fig. 3 (b.1)–(b.3)) and ϑ 

p 
12 

( Fig. 3 (c.1)–

(c.3)) assume relevant values in a significant foil region. Their role

is weighed by the value of χ , with ε p 
12 

increasing notably as χ
decreases. The variations of γ 12 , ε 

p 
12 

, and ϑ 

p 
12 

can be better appre-

ciated in Fig. 4 , where they are plotted as functions of the foil axis

x 1 . 

As it can be seen in Fig. 4 , in all cases γ 12 , ε p 
12 

, and ϑ 

p 
12

are monotonic functions of x 1 , reaching the maximum at the foil

end. Again, we observe that the contribution of ϑ 

p 
12 

to γ 12 be-

comes dominant as χ decreases towards zero. Regarding ε p 
12 

(x 1 )

one must note that there is a notable decrease in its slope for

x 1 → W /2. This is a consequence of the homogeneous microfree

boundary conditions, requiring ε 12 , 1 = 0 at x 1 = W/ 2 (see Eq. (38) ).

The peculiar development of γ 12 at the foil end is due to the need

of accommodating ε p 
11 , 2 

, as expressed by Eq. (37) . In this region,

when κ is large enough ε p 
11 

strongly varies with x 1 , as shown in

Fig. 5 . Here, contrary to conventional plasticity, | ε p 
11 , 2 

| increases

with | x |. 
1 
t  
The behavior so far described leads to a bending response de-

endent on the foil length W , for a given H . This can be seen

learly in Fig. 6 , where the bending moment M is plotted versus

he applied curvature for W/H = 30 , W/H = 60 , and W/H = 120 .
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Fig. 5. Variation of ε p 
11 

along x 2 in different foil cross-sections at different applied 

curvature values. The following material properties are adopted: χ = 2 / 3 and m = 

0 . 05 . 

Fig. 6. Normalized moment versus curvature for different foil lengths with χ = 2 / 3 . 

W  

u  

n  

i

 

i  

i

2  

e  

a  

a  

t  

e  

κ
 

e  

(

 

w  

t  

Fig. 7. Variation of α13 along x 1 (at x 2 = H/ 4 ) for W/H = 30 at different applied 

curvature values. The following material properties are adopted: χ = 2 / 3 and m = 

0 . 05 . 

Fig. 8. Variation of ε p 
11 

along x 1 (at x 2 = H/ 4 ) for W/H = 30 at different applied 

curvature values. The following material properties are adopted: χ = 2 / 3 and m = 

0 . 05 . 
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e consider two values of m to investigate the response by grad-

ally approaching rate-independence. Here and henceforth, M is

ormalized by M 0 = σ0 H 

2 / (6 
√ 

1 − ν + ν2 ) , defining initial yielding

n conventional rate-independent, von Mises plasticity. 

The response is more compliant as W diminishes, this behav-

or becoming irrelevant when the rate effects are small. After the

nitial elastic regime, delayed plasticity initiates at about M / M 0 ≈
.8 as a consequence of the dissipative gradient effects. A hard-

ning regime follows due to the build-up of free energy associ-

ted with Nye’s tensor until the response eventually saturates. The

symptotic values of M are given by the minimizing field of func-

ional (23) under the constraint ˙ α = 0 . As shown in Fig. 7 , for large

nough κ Nye’s tensor becomes insensitive to further increase of

. 

More insight can be gained by inspection of the first scalar

quation included in the tensorial higher-order balance equation

4) , whose leading terms are: 

�

˙ E p 
˙ ε p 
11 

− σ11 + 

1 

2 

σ33 + μ� 2 ( γ12 , 1 − ε p 
11 , 2 ︸ ︷︷ ︸ 

α13 

) , 2 ≈ 0 (40)

here σ 33 basically depends on σ 11 through the hindered con-

raction along the x direction, and we have neglected the terms
3 
(ε p 
22 , 1 

− γ21 , 2 ) , 1 , ε 
p 
33 , 22 

, and ε p 
33 , 11 

. As already demonstrated, a quite

arge γ 12 must develop at the foil end to satisfy condition α13 = 0 .

t a certain level of κ , it may become energetically convenient

or the model to accommodate further increments ˙ u 1 by develop-

ng almost only ε p 
11 

in the foil end region, where γ 12 is already

onspicuous and may further develop in such a way as to make

˙ 13 ≈ 0 pointwise in that domain. Thus, continued plastic defor-

ation while preserving a constant Nye’s tensor field leads to con-

nement of deformation close to the foil edge. In fact, examination

f Eqs. (33) –(39) reveals that a constant Nye’s tensor field hinders

 one-dimensional structure of the solution. Let us emphasize that,

nder the boundary conditions here concerned, this behavior is not

bserved in GP theories whose primal higher-order kinematic vari-

bles just consist of the plain gradient of γ (or ε p ) and its rate. In

act, in such GP theories the bending solution is in terms of the

irect plastic strain components only, which turn out to be inde-

endent of x 1 . 

Fig. 8 displays ε p 
11 

(x 1 , x 2 = H/ 4) for various κ . It is observed that

fter a certain value of κ is reached, further increasing it leads to

oncentration of ε p 
11 

in the foil end region. 
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Fig. 9. Normalized moment versus curvature for different values of χ with m = 

0 . 05 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Normalized moment versus curvature for different values of L and � . Other 

material parameters are: χ = 2 / 3 and m = 0 . 05 . 
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This behavior is particularly favorable in the rate-independent

case without isotropic hardening ( N = 0 ) and implies no further

appreciable increase of longitudinal elastic strain, in turn leading

to vanishing increments of M . Under these circumstances, since the

foil end regions where γ 12 significantly develops is proportional to

the foil height H, not to the foil length W , longer foils are subject to

larger plastic flow at the foil end, for a given applied curvature κ .

In fact, as evident from Eq. (31) , for a given κ the applied displace-

ment u 1 is proportional to W , whereas, in the picture above, u 1 is

then distributed in the field ε p 
11 

solely over the foil end region. 

Instead, if either rate-dependence or isotropic hardening are ac-

counted for, � in the first term of relation (40) increases with

plasticity, so that, if the behavior above described is still energeti-

cally convenient, such that the fourth term of (40) remains small,

there is the need of an increase of the Cauchy stress to satisfy the

higher-order balance equation. This makes M larger and leads to

the observed behavior that shorter foils have softer mechanical re-

sponse in the viscoplastic (or isotropic hardening) case. In fact, be-

cause of the above described way to develop plasticity, shorter the

foil, at a given κ , lower ˙ E p due to a further increase in κ . Hence,

for a shorter foil there is less hardening in the M vs κ response.

Consequently, γ 12 in the foil end region increases with W for a

given κ and the plastic spin may play a major role in slender foils

(e.g., W/H = 120 as in the experimental work of Stölken and Evans,

1998 ). Let us finally remark that this behavior is the result of the

unique solution of the analyzed micro-bending problem, so that it

is unrelated to any localization phenomenon. Also, we remain ag-

nostic on whether this behavior describes what really occurs at

microfree boundaries subject to a direct plastic strain component,

normal to the boundary, having a non-vanishing gradient along a

tangential direction. Hopefully, in the future, new experiments will

shed light on this. 4 

4.2. Influence of the unconventional material parameters on the 

micro-bending response 

The influence of χ in the mechanical response is examined for

the reference ratio W/H = 30 and results are reported in Fig. 9 . 
4 Unfortunately, further insight may not be gained by comparing our predictions 

with the crystal plasticity predictions of Yefimov et al. (2004) and Yefimov and 

Giessen (2005) , as in these works the foil edge regions are constrained to remain 

linear elastic at any curvature level. 

a  

2  

G  

b  

i  

c  
It is observed that increasing χ promotes hardening in later de-

ormation stages. More specifically, inspection of the higher-order

alance equations (4) and (5) shows that augmenting χ , while

enalizing the plastic spin, leads to a larger defect stress, which

lays the role of a backstress in Eqs. (4) and (5) interpreted as a

ow rule ( Gurtin, 2004 ). Hence, the increase in hardening with χ
hown in Fig. 9 actually consists of an increase in the kinematic

ardening related to GNDs. 

The role of the dissipative and energetic length scales in the

 vs κ response has also been studied, as shown in Fig. 10 . As

xpected, the dissipative length scale L governs the strengthening

ize effect: increasing L leads to a clear rise in what is recognized

s the “initial yield moment”. It can also be appreciated that the

nergetic length scale � governs the increase in the (kinematic)

train hardening with diminishing size. Therefore, the foregoing

esults show that, by accounting for both energetic and dissipa-

ive higher-order contributions in Gurtin (2004) DGP theory, the

resent FE implementation can qualitatively reproduce the size ef-

ects observed in the experiments. 

.3. Mechanical response under non-proportional loading 

Non-incremental dissipative higher-order terms (as referred to

ith the terminology used by Fleck et al., 2014 ) were introduced

y Gurtin (2004) (see also Gudmundson, 2004; Gurtin and Anand,

005 ) in such a way as to ensure that stresses associated with un-

ecoverable plastic flow always result in positive plastic work, as

tated by Eq. (21) in the DGP here concerned. However, it has been

ery recently noticed ( Fleck et al., 2014; 2015 ) that this may lead

o a delay in plastic flow under certain non-proportional loading

onditions, such a delay being referenced to as elastic gap by Fleck

t al. (2014) . 

The boundary value problem under study is characterized by

mposing microhard boundary conditions at the foil top and bot-

om surfaces after a significant amount of plasticity has developed

n bending under microfree boundary conditions. Such a switch of

igher-order boundary conditions models the formation of passiva-

ion layers. A perfectly plastic foil of ratio W/H = 30 is examined

nd the following material properties are adopted: H/� = 5 , χ =
 / 3 , σ0 = 200 MPa, ˙ ε 0 = 0 . 02 s −1 , m = 0 . 05 , ν = 0 . 3 , and μ = 26 . 3

Pa. In general, dislocations are forced to pile-up at the boundary

y imposing the microhard boundary conditions (8) or (9) , depend-

ng on whether L > 0 or L = 0 , respectively. Here, we impose mi-

rohard conditions (8) because the case without dissipative higher-
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Fig. 11. Effect of the application of a passivation layer: (a) Normalized moment versus curvature for different values of L and (b) normalized plastic distortion increments 

along the thickness of the foil immediately after passivation. Other material parameters are χ = 2 / 3 and m = 0 . 05 . 
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rder effect, H / L → ∞ , is numerically treated by choosing an ap-

ropriately small positive value for L . Finally, the microhard condi-

ions (8) , in the plane strain case here of interest, turn out to imply

˙ = 0 at x 2 = ±H/ 2 (41)

Results obtained after switching the higher-order boundary

onditions at Hκ/ 
√ 

3 ≈ 0 . 05 are displayed in Fig. 11 , which clearly

hows an abrupt stiffening at the formation of the passivation lay-

rs. 

Qualitatively, the two options examined ( L → 0 or L > 0) seem

o lead to totally similar M vs κ responses. However, the two me-

hanical behaviors are very different, as observable in Fig. 11 b,

howing the incremental plastic distortion along the thickness of

he mid-section ( x 1 = 0 ) immediately after passivation. Here, the

ncremental plastic distortion is represented in terms of its modu-

us �γ = �t| ̇ γ| , with �t the time increment, and it is normalized

y �κ = �t ˙ κ . 

Results reveal that setting L > 0 leads to a purely elastic incre-

ental response after formation of the passivation layer. This elas-

ic gap after switching higher-order boundary conditions has been

lso numerically observed by Bardella and Panteghini (2015) in the

orsion problem governed by DGP. As shown in Fig. 11 b, the elas-

ic gap may be avoided by suppressing the unrecoverable higher-

rder term (i.e., by setting L → 0). Our results provide further nu-

erical evidence of the analytical findings of Fleck et al. (2014) .

his may favor the “incremental” modeling approach suggested by

utchinson (2012) , where incremental relations between all the

tress and strain variables are employed. Nevertheless, one should

ote that for L → 0 the present formulation still has finite unre-

overable stresses constitutively conjugate to the plastic distortion

ate, but not its gradient, which is the key issue pointed out by

leck et al. (2014 ; 2015) . 

. Concluding remarks 

In small-scale plasticity, the superior modeling capabilities as-

ociated with the constitutive inclusion of the plastic spin has re-

ently encouraged significant interest in Distortion Gradient Plastic-

ty (DGP). In this work, we present a novel general purpose Fi-

ite Element (FE) framework for gradient theories involving the

lastic spin, that is the skew-symmetric part of the plastic dis-

ortion. The proposed FE framework rests on two extremum prin-

iples and allows for an accurate modeling of both viscoplastic

nd rate-independent material responses. Such extremum princi-

les extend to DGP those established by Fleck and Willis (2009b )

or Strain Gradient Plasticity (SGP). 
More specifically, we have focused on Gurtin (2004) DGP, which

s characterized by the choice of Nye’s dislocation density tensor as

rimal higher-order kinematic variable, leading to a higher-order

nergetic stress, called defect stress, increasing with the plastic

istortion incompatibility and governed by an energetic material

ength scale. 

We have employed the novel FE framework for Gurtin

2004) DGP to implement general purpose plane strain elements.

he new numerical algorithm has been first validated against lit-

rature results on the simple shear of a strip constrained between

odies impenetrable to dislocations. 

Second, some specific features of Gurtin (2004) DGP theory

ave been analyzed by studying the bending of thin metal foils.

esults show a strong influence of one shear component of the

lastic distortion under microfree and conventional pure bending

oundary conditions: we have illustrated in detail the development

f relevant plastic shear strain and spin required to compensate

or the variation along the foil thickness of the longitudinal plastic

train. This peculiarity is due to the form assumed by the microfree

oundary conditions in higher-order gradient plasticity based on

ye’s tensor. 

For a given foil thickness, this feature turns out in a mechani-

al response exhibiting dependence on the foil length, with shorter

oils being softer, if either rate-dependence or isotropic hardening

re included in the modeling. This behavior is also due to the im-

osed foil ends rotations, that are governed by the application of

n average foil curvature. 

The peculiar mechanism observed not only reveals a major role

f the plastic spin but also indicates that analogous issues may be

nherent to strain gradient crystal plasticity theories involving Nye’s

islocation density tensor as primal higher-order kinematic vari-

ble. In this context, counterintuitive coupling effects among slip

ystems have already been observed by Bardella et al. (2013) . 

The micro-bending benchmark has also been employed to in-

estigate the existence of “elastic gaps” under non-proportional

oading, as recently defined by Fleck et al. (2014) . The proposed

E framework can predict that, in the present “non-incremental”

GP theory, a purely elastic incremental response follows passiva-

ion in the plastic regime. Critical experiments are needed to gain

nsight into the existence, or lack thereof, of the interruptions in

lastic flow due to specific non-proportional loading conditions.

evertheless, our FE analysis confirms that by assuming a vanish-

ng value for the dissipative length scale governing the dissipative

igher-order stress, the present DGP formulation is free from such

elastic gaps”. 
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Appendix A. Matrix operators for the discretization of the 

plastic variables 

The following matrices are defined in such a way as when they

are multiplied by the column vector containing the four plastic dis-

tortion components of a node, say [ γ (i ) 
11 

, γ (i ) 
22 

, γ (i ) 
12 

, γ (i ) 
21 

] T , they

deliver its contribution to the vector fields containing the relevant

components of the plastic strain [ ε p(i ) 
11 

, ε p(i ) 
22 

, ε p(i ) 
12 

, ε p(i ) 
21 

, ε p(i ) 
33 

] 
T 
,

the plastic spin [ ϑ 

p(i ) 
12 

, ϑ 

p(i ) 
21 

] T , the gradient of the plastic strain 

[ ε p(i ) 
11 , 1 

, ε p(i ) 
11 , 2 

, ε p(i ) 
22 , 1 

, ε p(i ) 
22 , 2 

, ε p(i ) 
12 , 1 

, ε p(i ) 
12 , 2 

ε p(i ) 
21 , 1 

, ε p(i ) 
21 , 2 

, ε p(i ) 
33 , 1 

, ε p(i ) 
33 , 2 

] 
T 
, 

and Nye’s tensor [ α(i ) 
13 

, α(i ) 
23 

, α(i ) 
31 

, α(i ) 
32 

] T , respectively: 

sym M 

(i ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

N i 0 0 0 

0 N i 0 0 

0 0 

1 
2 

N i 
1 
2 

N i 

0 0 

1 
2 

N i 
1 
2 

N i 

−N i −N i 0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(A.1)

skw M 

(i ) = 

[
0 0 

1 
2 

N i − 1 
2 

N i 

0 0 − 1 
2 

N i 
1 
2 

N i 

]
(A.2)

sym ∇ M 

(i ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂N i 
∂x 

0 0 0 

∂N i 
∂y 

0 0 0 

0 

∂N i 
∂x 

0 0 

0 

∂N i 
∂y 

0 0 

0 0 

1 
2 

∂N i 
∂x 

1 
2 

∂N i 
∂x 

0 0 

1 
2 

∂N i 
∂y 

1 
2 

∂N i 
∂y 

0 0 

1 
2 

∂N i 
∂x 

1 
2 

∂N i 
∂x 

0 0 

1 
2 

∂N i 
∂y 

1 
2 

∂N i 
∂y 

− ∂N i 
∂x 

− ∂N i 
∂x 

0 0 

− ∂N i 
∂y 

− ∂N i 
∂y 

0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(A.3)

curl M 

(i ) = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

− ∂N i 
∂y 

0 

∂N i 
∂x 

0 

0 

∂N i 
∂x 

0 − ∂N i 
∂y 

− ∂N i 
∂y 

− ∂N i 
∂y 

0 0 

∂N i 
∂x 

− ∂N i 
∂x 

0 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(A.4)
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