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a b s t r a c t

In this work a general framework for damage and fracture assessment including the effect
of strain gradients is provided. Both mechanism-based and phenomenological strain
gradient plasticity (SGP) theories are implemented numerically using finite deformation
theory and crack tip fields are investigated. Differences and similarities between the two
approaches within continuum SGP modeling are highlighted and discussed. Local strain
hardening promoted by geometrically necessary dislocations (GNDs) in the vicinity of the
crack leads to much higher stresses, relative to classical plasticity predictions. These dif-
ferences increase significantly when large strains are taken into account, as a consequence
of the contribution of strain gradients to the work hardening of the material. The
magnitude of stress elevation at the crack tip and the distance ahead of the crack where
GNDs significantly alter the stress distributions are quantified. The SGP dominated zone
extends over meaningful physical lengths that could embrace the critical distance of
several damage mechanisms, being particularly relevant for hydrogen assisted cracking
models. A major role of a certain length parameter is observed in the multiple parameter
version of the phenomenological SGP theory. Since this also dominates the mechanics of
indentation testing, results suggest that length parameters characteristic of mode I fracture
should be inferred from nanoindentation.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Experiments and direct dislocation simulations have shown that metallic materials display strong size effects at the
micron and sub-micron scales. Attributed to geometrically necessary dislocations (GNDs) associated with non-uniform
plastic deformation, this size effect is especially significant in fracture problems as the plastic zone adjacent to the crack
tip may be physically small and contains large spatial gradients of deformation.

Much research has been devoted to modeling experimentally observed size effects (e.g., Fleck and Hutchinson, 1993;
Niordson and Hutchinson, 2003a; Bardella, 2010; Klusemann et al., 2013) and several continuum strain gradient plasticity
(SGP) theories have been proposed through the years in order to incorporate length scale parameters in the constitutive
equations. Of particular interest from the crack tip characterization perspective is the development of formulations within the
finite deformation framework (e.g., Gurtin and Anand, 2005; Gurtin, 2008; Polizzotto, 2009). In spite of the numerical
complexities associated, various studies of size effects under large strains have been conducted using both crystal (Kuroda and
Tvergaard, 2008; Bargmann et al., 2014) and isotropic (Niordson and Redanz, 2004; Legarth, 2007; McBride and Reddy, 2009;
ax: þ34 985 18 24 33.
artínez-Pa~neda).

mailto:martinezemilio@uniovi.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijplas.2015.09.009&domain=pdf
www.sciencedirect.com/science/journal/07496419
www.elsevier.com/locate/ijplas
http://dx.doi.org/10.1016/j.ijplas.2015.09.009
http://dx.doi.org/10.1016/j.ijplas.2015.09.009
http://dx.doi.org/10.1016/j.ijplas.2015.09.009


E. Martínez-Pa~neda, C.F. Niordson / International Journal of Plasticity 80 (2016) 154e167 155
Anand et al., 2012) gradient-enhanced plasticity theories. Isotropic SGP formulations can be classified according to different
criteria, one distinguishing between phenomenological theories (Fleck and Hutchinson, 1997, 2001) and microstructurally/
mechanism-based ones (Gao et al., 1999; Qiu et al., 2003).

The experimental observation of cleavage fracture in the presence of significant plastic flow (Elssner et al.,1994; Korn et al.,
2002) has encouraged significant interest in the role of the plastic strain gradient in fracture and damage assessment. Studies
conducted in the framework of phenomenological (Wei and Hutchinson, 1997; Komaragiri et al., 2008; Nielsen et al., 2012)
andmechanism-based theories (Wei and Xu, 2005; Siddiq et al., 2007) have shown that GNDs near the crack tip promote local
strain hardening and lead to a much higher stress level as compared with classical plasticity predictions. However, although
large deformations take place in the vicinity of the crack, the aforementioned studies were conductedwithin the infinitesimal
deformation theory and little work has been done to investigate crack tip fields modeled by SGP accounting for finite strains.
Hwang et al. (2003) developed a finite deformation framework for the mechanism-based strain gradient (MSG) plasticity
theory but were unable to reach strain levels higher than 10% near the crack tip due to convergence problems. Pan and Yuan
(2011) used the element-free Galerkin method to characterize crack tip fields through a lower order gradient plasticity (LGP)
model (Yuan and Chen, 2000). From a phenomenological perspective, Tvergaard and Niordson (2008) analyzed the influence
of the strain gradient at a crack tip interacting with a number of voids while Mikkelsen and Goutianos (2009) determined the
range of material length scales where a full strain gradient dependent plasticity simulation is necessary.

Very recently, Martínez-Pa~neda and Beteg�on (2015) identified and quantified the relation between material parameters
and the physical length over which gradient effects prominently enhance crack tip stresses from a mechanism-based
approach. The numerical results obtained in Martínez-Pa~neda and Beteg�on (2015) show a significant increase in the differ-
ences between the stress fields of MSG and conventional plasticity when finite strains are taken into account. This is due to
the strain gradient contribution to the work hardening of the material, which lowers crack tip blunting and thereby sup-
presses the local stress triaxiality reduction characteristic of conventional plasticity predictions (McMeeking, 1977). These
results revealed the important influence of strain gradients on a wide range of fracture problems, being particularly relevant
in hydrogen assisted cracking modeling due to the central role that the stress field close to the crack tip plays on both
hydrogen diffusion and interface decohesion. Moreover, Gangloff and his co-workers have shown that accurate correlations
with experimental measurements can be achieved by adopting high levels of hydrostatic stress from dislocation-based
micromechanical modeling of hydrogen embrittlement (Thomas et al., 2003; Lee and Gangloff, 2007; Gangloff et al., 2014).

In this paper crack tip fields are evaluated thoroughly with both phenomenological and mechanism-based strain gradient
plasticity theories with the aim of gaining insight into the role of the increased dislocation density associated with large
gradients in plastic strain near the crack. Differences between the two main classes of SGP theories are examined and their
physical implications discussed. In both approaches the numerical scheme is developed to allow for large strains and rota-
tions providing an appropriate framework for damage and fracture assessment within SGP theories.

2. Material models

The key elements of the two SGP theories considered in this work are summarized in this section, with particular emphasis
on the constitutive equations and other aspects of interest from the fracture mechanics perspective. Comprehensive details,
including the variational formulation and the corresponding differential equations, can be found in Fleck and Hutchinson
(2001), Niordson and Hutchinson (2003a), Gao et al. (1999), Qiu et al. (2003) for the phenomenological and mechanism-
based cases, respectively.

2.1. Fleck and Hutchinson's gradient theory

The strain gradient generalization of J2 flow theory proposed by Fleck and Hutchinson (2001) is considered to model size
effects inmetal plasticity from a phenomenological perspective. In this theory hardening effects due to plastic strain gradients

are included through the gradient of the plastic strain rate _εpij;k ¼ ðmij _ε
pÞ;k. Where _εp ¼
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is the increment in the con-

ventional measure of the effective plastic strain and mij ¼ 3/2sij/se is the direction of the plastic strain increment, with sij
denoting the stress deviator, and se the vonMises effective stress. The gradient enhanced effective plastic strain rate, _E

p
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_Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_εp

2 þ l21I1 þ l22I2 þ l23I3

q
(1)

where, l1, l2 and l3 are material length parameters. The effective plastic strain rate can be expressed explicitly in terms of _εp

and _εp
;i:
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where the coefficients Aij, Bi and C depend on the three material length parameters as well as on the spatial gradients of the
plastic strain increment direction (for details see Fleck and Hutchinson, 2001).
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By the alternative definitions Aij ¼ l�2 , Bi ¼ 0 and C ¼ 0 a single length scale parameter theory closely related to the strain
gradient theory of Aifantis (1984) can be formulated using a new length parameter l* with

_Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_εp

2 þ l�2 _εp
;i _ε

p
;i

q
(3)
For a body of volume V and surface S, with outward normal ni, the principle of virtual work in the current configuration is
given byZ

V

�
sijd _εij � ðQ � seÞd _εp þ zid _ε

p
;i

�
dV ¼

Z
S

ðTid _ui þ td _εpÞdS (4)
Here _ui is the displacement rate, _εij is the strain rate, sij denotes the Cauchy stress tensor, Q is a generalized effective stress
(work conjugate to the plastic strains) and zi is the higher order stress (work conjugate to the plastic strain gradients). The
surface integral contains traction contributions from the conventional surface traction Ti ¼ sijnj and the higher order traction
t ¼ zini.

2.2. Mechanism-based strain gradient (MSG) plasticity

The theory of mechanism-based strain gradient plasticity (Gao et al., 1999; Qiu et al., 2003) is based on the Taylor
dislocation model (Taylor, 1938) and therefore the shear flow stress t is formulated in terms of the dislocation density r as

t ¼ amb
ffiffiffi
r

p
(5)
Here, m is the shear modulus, b is the magnitude of the Burgers vector and a is an empirical coefficient which takes values
between 0.3 and 0.5. The dislocation density is composed of the sum of the density rS for statistically stored dislocations and
the density rG for geometrically necessary dislocations as

r ¼ rS þ rG (6)
The GND density rG is related to the effective plastic strain gradient hp by:

rG ¼ r
hp

b
(7)

where r is the Nye-factor which is assumed to be 1.90 for face-centered-cubic (fcc) polycrystals. Following Fleck and

Hutchinson (1997), Gao et al. (1999) used three quadratic invariants of the plastic strain gradient tensor to represent the
effective plastic strain gradient hp as

hp ¼
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The coefficients were determined to be equal to c1 ¼ 0, c2 ¼ 1/4 and c3 ¼ 0 from three dislocation models for bending,
torsion and void growth, leading to

hp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4
h
p
ijkh

p
ijk

r
(9)

where the components of the strain gradient tensor are obtained by h
p
ijk ¼ ε

p
ik;j þ ε

p
jk;i � ε

p
ij;k.

The tensile flow stress sflow is related to the shear flow stress t by:

sflow ¼ Mt (10)

where M is the Taylor factor taken to be 3.06 for fcc metals. Rearranging Eqs. (5)e(7) and (10) yields
sflow ¼ Mamb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rS þ r

hp

b

r
(11)
The SSD density rS can be determined from (11) knowing the relation in uniaxial tension between the flow stress and the
material stressestrain curve as follows
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rS ¼
h
sref f ðεpÞ=ðMambÞ

i2
(12)

p
Here sref is a reference stress and f is a non-dimensional function of the plastic strain ε determined from the uniaxial
stressestrain curve. Substituting back into (11), sflow yields:

sflow ¼ sref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðεpÞ þ lhp

q
(13)

where l is the intrinsic material length based on parameters from of elasticity (m), plasticity (sref) and atomic spacing (b):
l ¼ M2ra2
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m
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b (14)
3. Finite element implementation

3.1. Phenomenological approach

A finite strain version of the gradient theory by Fleck and Hutchinson (2001) is implemented following the work of
Niordson and Redanz (2004), where a thorough description can be found (see also Niordson and Tvergaard, 2005). An
updated Lagrangian configuration is adopted and by means of Kirchhoff stress measures the incremental principle of virtual
work, Eq. (4), can be expressed as:
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Here, 2 ij is the Jaumann rate of the Kirchhoff stress, q is the rate of the Kirchhoff variant of the effective stress, 9i is the

convected derivative of the higher order Kirchhoff stress and the velocity gradient is denoted by _eij. _T0i and _t0 are the nominal
traction and the nominal higher order traction, respectively, with the subscript 0 referring to the reference configuration. The
Kirchhoff quantities are related to their Cauchy counterparts in Eq. (4) by the determinant, J, of the deformation gradient:
2ij ¼ Jsij, 9i ¼ Jzi, q ¼ JQ and s2e ¼ Jse. The finite strain generalization, for a hardening modulus h[Ep], of the constitutive
equations for the stress measures corresponding to the total strain, the plastic strain, and the plastic strain gradient,
respectively, are given by:

2
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where the elastic stiffness tensor is given by

D ijkl ¼
E

1þ n

�
1
2

�
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�
þ n

1� 2n
dijdkl

�
(19)

and _uij ¼ 1
2 ð _eij � _ejiÞ is the anti-symmetric part of the velocity gradient. Here dij is the Kronecker delta while E and n denote

Young's modulus and the Poisson ratio, respectively.
A special kind of finite element (FE) method is usedwhere, in addition to the nodal displacement increments, _U

n
, the nodal

effective plastic strain increments, _εpn, appear directly as unknowns. The displacement increments, _ui, and the effective plastic
strain increments, _εp, are interpolated within each element by means of the shape functions:

_ui ¼
X2ku
n¼1

Nn
i
_U
n
; _εp ¼

Xkp
n¼1

Mn _εp
n

(20)

where ku and kp are the number of nodes used for the displacement and effective plastic strain interpolations, respectively.
n

The components Nn
i (i ¼ 1, 2; n ¼ 1, …, 2ku) form the shape function matrix which by multiplication with the array _U ðn ¼
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1;…;2kÞ gives the displacement field. Similarly, the equivalent plastic strain field is determined from the shape function
matrix Mn and the array of nodal effective plastic strain increments _εp

n
. By introducing the FE interpolation of the

displacement field and the effective plastic strain field (20), and their appropriate derivatives, in the principle of virtual work
(3.1), the following discretized system of equations is obtained:

	
Ke Kep

KT
ep Kp


	
_U
_εp



¼
	
_F1
_F2



(21)
Here, Ke is the elastic stiffness matrix, Kep is a coupling matrix of dimension force and Kp is the plastic resistance, a matrix
of dimension energy. The first part of the right-hand side of Eq. (21) is composed of the conventional external incremental
force vector _F1 and the incremental higher order force vector _F2. In the elastic regime the plastic strain contribution is
disabled by setting Kep ¼ 0 and the weight of Kp is minimized by multiplying it by a small factor (e.g. 10�8), preserving the
non-singular nature of the global system. The latter numerical feature eliminates any significant contribution to the solution
of the nodal plastic strain increments on the current elasticeplastic boundary. This lack of constraint of plastic flow at the
internal boundary can be physically interpreted as allowing dislocations to pass through it, as is the case in conventional
plasticity (for details see Niordson and Hutchinson, 2003a).

Based on a forward Euler scheme, when nodal displacement and effective plastic strain increments have been determined,
the updated strains, εij, stresses, sij, higher order stresses, zi, and Q are computed at each integration point. Initial plastic
yielding is initiated when se becomes larger than the initial yield stress sy. A time increment sensitivity analysis has been
conducted in all computations to ensure that the numerical solution does not drift away from the correct one.

3.2. Mechanism-based approach

Huang et al. (2004) used a viscoplastic formulation to construct the conventional theory of mechanism-based strain
gradient (CMSG) plasticity from the Taylor (1938) dislocation model (see details in Huang et al., 2004). In CMSG plasticity the
plastic strain gradient comes into play through the incremental plastic modulus and therefore it does not involve higher order
terms. The CMSG theory is chosen as it does not suffer convergence problems in large strains crack tip analysis, unlike its
higher order counterpart: The finite deformation theory of MSG plasticity (see Hwang et al., 2003; Martínez-Pa~neda and
Beteg�on, 2015). The viscoplastic-limit approach developed by Kok et al. (2002) is employed to suppress strain rate and
time dependence by replacing the reference strain rate _ε0 with the effective strain rate _ε in the viscoplastic-like power law
adopted:

_εp ¼ _ε

"
se

sref

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2ðεpÞ þ lhp

p
#m

(22)
The exponent is taken to fairly large values (m � 20) which in Kok et al. (2002) scheme is sufficient to reproduce the rate-
independent behavior given by the viscoplastic limit in a conventional power law (see Huang et al., 2004). Taking into account
that the volumetric and deviatoric strain rates are related to the stress rate in the same way as in classical plasticity, the
constitutive equation yields:

_sij ¼ K _εkkdij þ 2m

(
_ε
0
ij �

3 _ε
2se

"
se

sflow

#m
_sij

)
(23)
Here K being the bulk modulus. As it is based on the Taylor dislocation model, which represents an average of dislocation
activities, the CMSG theory is only applicable at a scale much larger than the average dislocation spacing. For common values
of dislocation density in metals, the lower limit of physical validity of MSG plasticity is around 100 nm. Although higher order
terms are required to model effects of dislocation blockage at impermeable boundaries (see Niordson and Hutchinson,
2003b), one should note that higher order boundary conditions have essentially no effect on the stress distribution at a
distance of more than 10 nm away from the crack tip in MSG plasticity (Shi et al., 2001; Qu et al., 2004), well below its lower
limit of physical validity.

Since higher order terms are not involved, the governing equations of CMSG plasticity are essentially the same as those in
conventional plasticity and the FE implementation is quite straightforward. The plastic strain gradient is obtained by nu-
merical differentiation within the element: the plastic strain increment is interpolated through its values at the Gauss points
in the isoparametric space and afterward the increment in the plastic strain gradient is calculated by differentiation of the
shape functions. Rigid body rotations for the strains and stresses are carried out by means of the Hughes and Winget (1980)
algorithm and the strain gradient is obtained from the deformed configuration since the infinitesimal displacement
assumption is no longer valid (see Martínez-Pa~neda and Beteg�on, 2015).
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4. Numerical results

4.1. Infinitesimal deformation theory

Results obtained for small strains will allow us to introduce the comparative study between theories and to validate the
present numerical implementationwith results obtained from the literature. Two dimensional plane strain crack tip fields are
evaluated by means of a boundary layer formulation, where the crack region is contained by a circular zone and the Mode I
load is applied at the remote circular boundary through a prescribed displacement:

uðr; qÞ ¼ KI
1þ n

E

ffiffiffiffiffiffi
r
2p

r
cos
�
q

2

�
ð3� 4n� cosqÞ (24)

1þ n
ffiffiffiffiffiffi
r

r �
q
�

vðr; qÞ ¼ KI E 2p
sin

2
ð3� 4n� cosqÞ (25)
Here, u and v are the horizontal and vertical components of the displacement boundary condition, r and q the radial and
angular coordinates in a polar coordinate system centered at the crack tip, E is Young's modulus and n is the Poisson ratio of
thematerial and KI is the applied stress intensity factor, which quantifies the remote load. Plane strain conditions are assumed
and only the upper half of the circular domain is modeled due to symmetry. An outer radius of R ¼ 42 mm is defined and the
entire specimen is discretized by means of eight-noded quadrilateral elements with reduced integration. Different mesh
densities were used to study convergence behavior, and it was found that 1600 elements were sufficient to achieve mesh-
independent results. With the aim of accurately characterizing the influence of the strain gradient a very refined mesh is
used near the crack tip, where the size of the elements is on the order of nanometers (see Fig. 1a). Unless otherwise stated, the
following set of non-dimensional material parameters is considered in the present work

N ¼ 0:2;
sY

E
¼ 0:2%; n ¼ 0:3 (26)

where sY is the initial yield stress and N is the strain hardening exponent. An isotropic power law material is adopted ac-

cording to

s ¼ sY

�
1þ Eεp

sY

�N

(27)

p p
In the phenomenological approach, the hardening curve is evaluated at E instead of ε as discussed in Fleck and
Hutchinson (2001). The reference stress of (12) will correspond to sref ¼ sY

�
E
sY

�N

and f ðεpÞ ¼
�
ε
p þ sY

E

�N
. Fig. 1b shows, in

a double logarithm diagram, the normalized effective stress se/sY versus the normalized distance r/l ahead of the crack tip
(q ¼ 1.014�) for an external applied load of KI ¼ 20sY

ffiffi
l

p
. As it can be seen in the figure, a very good agreement is obtained

between the stress distributions obtained by means of the CMSG theory and MSG plasticity (taken from Jiang et al., 2001),
showing that higher order boundary conditions do not influence crack tip fields within its physical domain of validity.
Consequently, all the results obtained from the CMSG theory are henceforth labeled as MSG plasticity. Results prove the
Fig. 1. (a) Finite element mesh for the boundary layer formulation; (b) Comparison between MSG and CMSG predictions.
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suitability of CMSG plasticity in the present study, allowing to develop a robust implicit numerical scheme (see Martínez-
Pa~neda and Beteg�on, 2015).

Fig. 2 shows the opening stress distributions sqq ahead of the crack tip (q ¼ 0�) obtained from classical plasticity,
phenomenological SGP (both single length and multiple length parameter theories) and MSG plasticity. The stress values are
normalized by the material yield stress while the horizontal axis is left unchanged, due to the central role that the magnitude
of the domain ahead of the crack tip influenced by strain gradients plays on damagemodeling. In the present study, a material
length scale of l ¼ 5 mm has been considered. This would be a typical estimate for nickel (St€olken and Evans, 1998) and
corresponds to an intermediate value within the range of experimentally observed material length scales reported in the
literature (1e10 mm).

Results show that SGP stress predictions agree with classical plasticity away from the crack tip but become much larger
within tens of microns from it. Fig. 2 reveals significant quantitative differences among theories for the same reference value
of thematerial length scale.Within the phenomenological approach, the single length scale theory predictsmuch smaller size
effects than the multiple parameter theory when all individual length scales li are set equal to l*, as previously reported by
Komaragiri et al. (2008). Furthermore, it is seen that the stress level attained near the crack tip from the phenomenological
approach is much higher than MSG plasticity predictions, especially in the case of the multiple length scale theory. However,
the distance ahead of the crack tip where the stress distribution deviates from classical plasticity predictions is quite similar
for the cases of MSG plasticity and the single parameter phenomenological theory, while a significantly larger size of the
domain influenced by strain gradients is observed when the multiple length parameter theory is adopted.

4.2. Finite deformation theory

Since large strains take place in the vicinity of the crack, crack tip fields should be evaluated within the framework of the
finite deformation theory in order to assess the influence of strain gradients in damage and fracture modeling. Moreover, the
results of Martínez-Pa~neda and Beteg�on (2015) reveal a meaningful increase in the domain influenced by the size effect when
large strains are taken into account, as a consequence of the influence of strain gradients on the work hardening of the
material. The initial configuration and the background mesh of the boundary layer formulation are shown in Fig. 3. Following
McMeeking (1977), a ratio between the radii of the outer boundary and the crack tip of R/r ¼ 105 is considered and, as in the
small strain case, different mesh densities were evaluated in order to compute accurate results. Around 6200 eight-noded
quadrilateral elements with reduced integration were generally used to achieve convergence.

Fig. 4 plots the normalized opening stress distribution under the same conditions as Fig. 2 where, as in the small strains
case, the distance to the crack tip r is shown in logarithmic scale. Results obtained with classical plasticity reproduce the well
known behavior revealed by McMeeking (1977), namely that large strains at the crack tip cause the crack to blunt, reducing
the stress triaxiality locally. However, when size effects are included in the modelization, strain gradients increase the
resistance to plastic deformation, lowering crack tip blunting and consequently, suppressing the local stress reduction. As it
can be seen in the figure, a monotonic stress increase is still observed in SGP predictions and therefore the distance ahead of
the crack tip where the strain gradients severely influence the stress distributions increases significantly when compared to
the small strain results.

As in the small strain case, results shown in Fig. 4 also reveal significant quantitative differences among SGP theories for
the same referencematerial length scale. As in Fig. 2, the single length parameter phenomenological theory predicts a smaller
influence of GNDs when compared to the multiple parameter version, although the magnitude of stress elevation computed
close to the crack tip from both theories is much closer when finite strains are taken into account. Both single and multiple
length scale phenomenological theories predict much higher stress levels at the crack tip than MSG plasticity. However, the
Fig. 2. Small strain predictions of sqq ahead of the crack tip for classical plasticity and both mechanism-based and phenomenological SGP approaches. The figure
shows results along the extended crack plane with the distance to the crack tip r in log scale for KI ¼ 25sY

ffiffi
l

p
, sY ¼ 0.2%E, n ¼ 0.3, N ¼ 0.2 and material length

scales of l* ¼ l1 ¼ l2 ¼ l3 ¼ lMSG ¼ 5 mm



Fig. 3. Finite element mesh for the boundary layer formulation under large deformations: (a) complete model and (b) vicinity of the crack.
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domain ahead of the crack tip where size effects alter the stress distribution in MSG plasticity is significantly greater in finite
strains, close to the predictions obtained from the Fleck-Hutchinson multiple length parameter theory for the load level
considered.

Unlike classical plasticity, for all SGP stress distributions the maximum level of stress is achieved at the crack tip as a
consequence of local hardening promoted by GNDs. Fig. 5 shows the degree of crack tip blunting under the same conditions as
Fig. 4 where it can be seen that blunting of the initial crack tip radius decreases significantly when size effects are included in
the modelization. As the influence of strain gradients on crack tip fields persists all the way to the crack tip, essential dif-
ferences arise when comparing with classical plasticity predictions in the blunting dominated zone. Hence, the magnitude of
macroscopic stress elevation is much higher than that reported by previous studies, conducted within infinitesimal defor-
mation theory.

Figs. 6 and 7 quantify the differences from classical plasticity predictions as a function of (a) the external load and (b) the
material length scale. Both themagnitude of stress elevation close to the crack tip and the physical length over which gradient
effects significantly enhance crack tip stresses are evaluated. The Figs. 6 and 7 show, respectively, the variation of the ratio of
stress elevation sSGP/sClassical at r ¼ 0.1 mm and rSGP, the size of the domain ahead of the crack tip where the stress distribution
significantly deviates from classical plasticity predictions (sSGP > 2sClassical). In Fig. 6 stresses are sampled at r ¼ 0.1 mm as it is
considered the lower limit of physical validity of continuum SGP theories, while being sufficiently close to the crack tip to
provide representative results of interest for the modelization of several damage mechanisms.

In both phenomenological and mechanism-based approaches the magnitude of stress elevation and the domain of in-
fluence of strain gradients monotonically increase with the external load and the value of the reference length scale
parameter. For the higher load level considered the opening stress value at the crack tip is 15e25 times the estimation of
classical plasticity, depending on the SGP theory considered, while the distance ahead of the crack where strain gradients
significantly alter stress distributions spans several micrometers. One should note that a wide range of load levels of interest
for damage modeling has been considered, with the largest load level roughly KI z 100 MPa

ffiffiffiffiffi
m

p
for a typical steel of

sY ¼ 400 MPa and E ¼ 200000 MPa. Both the domain influenced by strain gradients and the ratio of stress elevation at the
crack tip show sensitivity to the length scale parameter, especially for lower values of l. In fact, for high values of l both MSG
plasticity and the phenomenological multiple length parameter theory predict an SGP influenced region bigger than the
Fig. 4. Finite deformation results for sqq ahead of the crack tip for classical plasticity and both mechanism-based and phenomenological SGP approaches. The
figure shows results along the extended crack plane with the distance to the crack tip r in log scale for KI ¼ 25sY
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, sY ¼ 0.2%E, n ¼ 0.3, N ¼ 0.2 and material

length scales of l* ¼ l1 ¼ l2 ¼ l3 ¼ lMSG ¼ 5 mm.



Fig. 5. Initial and final crack tip blunting predicted by classical plasticity and both mechanism-based and phenomenological SGP approaches for KI ¼ 25sY
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,

sY ¼ 0.2%E, n ¼ 0.3, N ¼ 0.2 and material length scales of l* ¼ l1 ¼ l2 ¼ l3 ¼ lMSG ¼ 5 mm.
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blunting dominated zone. Thus, for some particular combinations of l, applied load and material properties, the physical
length over which strain gradients meaningfully enhance crack tip stresses spans several tens of micrometers. This may have
important implications on fracture and damage modeling of metals since the critical distance of many damage mechanisms
fall within this range.Moreover, damagemodelization at the continuum level has been generally based on a distinct feature of
classical plasticity: the peak stress ahead of the crack tip changes its positionwith the load but does not change its value. This
is not the case when accounting for strain gradient effects in the constitutive modeling, as shown in Fig. 8, where the
normalized opening stress distribution sqq/sY ahead of the crack tip is shown in a double logarithmic plot for different values
of the crack tip load.

The distance to the crack tip has been normalized by the external load rsY/J, with J denoting the J-integral, that is related to
the applied load by J ¼ ð1� n2ÞK2

I =E. The figure reveals that the influence of GNDs persists all theway to the crack tip, even for
very large amounts of crack tip blunting. Unlike classical plasticity (represented by the black curves), crack tip fields obtained
from SGP theories cannot be scaled by the load and the maximum stress level increases with the external load.

The present results highlight the need to account for the influence of strain gradients in the modelization of several
damage mechanisms. The extent ahead of the crack tip where strain gradients play an important role suggests that gradient
enhanced simulations may be relevant for continuum modeling of cleavage fracture (Qian et al., 2011), ductile-to-brittle
assessment (Betegon et al., 2008), fatigue crack closure (Fleck, 1986) and ductile damage (Gurson, 1975; Chu and
Needleman, 1980; Liu et al., 2005). Furthermore, accounting for the influence of GNDs in the vicinity of the crack may be
particularly relevant in themodelization of hydrogen assisted cracking, due to the essential role that the hydrostatic stress has
on both interface decohesion and hydrogen diffusion in relation to the fracture process zone (see Gangloff, 2003).
Fig. 6. Ratio of stress elevation promoted by strain gradients at r ¼ 0.1 mm ahead of the crack tip (q ¼ 0�) as a function of (a) applied load KI and (b) material length
scale l, for sY ¼ 0.2%E, n ¼ 0.3 and N ¼ 0.2. The length parameters in (a) are l* ¼ l1 ¼ l2 ¼ l3 ¼ lMSG ¼ 5 mmwhile the reference applied load in (b) is KI ¼ 25sY
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(with lref ¼ 5 mm).



Fig. 7. Distance ahead of the crack tip where the strain gradients significantly influence the stress distribution rSGP as a function of (a) applied load KI and (b)
material length scale l, for sY ¼ 0.2%E, n ¼ 0.3 and N ¼ 0.2. The length parameters in (a) are l* ¼ l1 ¼ l2 ¼ l3 ¼ lMSG ¼ 5 mmwhile the reference applied load in (b) is
KI ¼ 25sY
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Fig. 9 shows the hydrostatic stress distribution ahead of the crack tip under the same conditions as Fig. 4. Results reveal
that sH shows broadly identical trends as the opening stress. The conventional plasticity solution agrees with SGP predictions
far from the crack tip but significant differences arise within several micrometers of the crack tip as the stress level decreases
in the blunting dominated zone for conventional plasticity. The high level of crack tip surface hydrogen measured in high-
strength steels suggests that damage takes place within 1 mm of the crack surface (see Cooper et al., 2000; Gangloff,
2003). The stress level attained at r ¼ 1 mm from MSG plasticity and single and multiple length parameter phenomenolog-
ical theories is, respectively, z3.5, 2 and 5 times the prediction of classical plasticity. Since results have been obtained for a
load level (z20 MPa

ffiffiffiffiffi
m

p
for a typical steel) that could be considered a lower bound for damage modeling (see e.g. Gangloff

et al., 2014), accounting for the influence of GNDs close to the crack tip appears to be imperative in hydrogen embrittlement
models.

However, the quantitative differences observed among SGP theories hinder gradient enhanced modeling. Both opening
(Figs. 4, 5 and 8) and hydrostatic stress distributions (Fig. 9) reveal substantial dissimilarities under the same reference length
parameter. A qualitative agreement is found when examining the influence of the external load and the material length scale
parameter for both phenomenological and mechanism-based SGP theories (Figs. 6 and 7), although relevant quantitative
differences are appreciated. A much higher value of l is needed in MSG plasticity to reach the crack tip stress predicted by
means of both versions of Fleck-Hutchinson theory (Fig. 6b) while the opposite is true when examining the distance ahead of
Fig. 8. Double logarithm plot of the normalized opening stress distribution sqq/sY ahead of the crack tip for classical plasticity and both mechanism-based and
phenomenological SGP approaches, being the distance to the crack tip normalized by the external load rsY/J for sY ¼ 0.2%E, n ¼ 0.3, N ¼ 0.2 and material length
scales of l* ¼ l1 ¼ l2 ¼ l3 ¼ lMSG ¼ 5 mm. Finite deformation theory.



Fig. 9. Finite deformation theory results for sH ahead of the crack tip for classical plasticity and both mechanism-based and phenomenological SGP approaches.
The distance to the crack tip is denoted r and the parameters of the problem are KI ¼ 25sY
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the crack tip where the stress distribution deviates from classical plasticity predictions (Fig. 7b). Under the same conditions as
Fig. 5 a close degree of crack tip blunting is obtained by means of the following relation:

l1 ¼ l2 ¼ l3z
1
5
lMSGz

1
2:5

l� (28)
Using a cohesive zone model, Wei and Qiu (2004) established that the relation between the steady-state fracture
toughness and the separation strength obtained from MSG plasticity and from an earlier version of the Fleck-Hutchinson
theory (Fleck and Hutchinson, 1997; Wei and Hutchinson, 1997) agrees if one considers the following approximate rela-
tion for the length scale parameter:

lMSGzð4� 5ÞlSG (29)
Here, lMSG and lSG are thematerial length scales of theMSG theory and the Fleck and Hutchinson (1997) phenomenological
theory, respectively. This correlation is similar to the one elucidated by means of crack tip blunting in the present work.
However, since the material length scale has to be determined from micro-tests, it is still uncertain if the experimentally
obtained value of l for MSG plasticity will be 4e5 times its counterpart in Fleck-Hutchinson theory. In fact, similar values of l
have been obtained for polycrystalline copper from both approaches (Fleck et al., 1994; Nix and Gao, 1998) and therefore
further research is needed to provide an accurate quantitative assessment of the influence of GNDs at the crack tip.

With the aim of gaining insight into the role of individual length scales in the phenomenological three parameter theory,
crack tip stress distributions are obtained for various combinations of the length scale parameters. In Fig. 10 the influence of
each of the parameters is examined by varying its value and keeping fixed the remaining two length scales.
Fig. 10. Opening stress distributions from the phenomenological multiple parameter theory for (a) fixed l2 and l3 (l2 ¼ l3) and varying l1, (b) fixed l1 and l3 (l1 ¼ l3)
and varying l2 and (c) fixed l1 and l2 (l1 ¼ l2) and varying l3. For sY ¼ 0.2%E, n ¼ 0.3, N ¼ 0.2 and KI ¼ 25sY
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Fig. 11. Opening stress distributions from the phenomenological multiple parameter theory for (a) fixed l1 and varying l2 and l3 (l2 ¼ l3), (b) fixed l2 and varying l1
and l3 (l1 ¼ l3), and (c) fixed l3 and varying l1 and l2 (l1 ¼ l2). For sY ¼ 0.2%E, n ¼ 0.3, N ¼ 0.2 and KI ¼ 25sY
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From the spread of the curves it is seen that the degree of stress elevation is more sensitive to the first parameter l1
(Fig. 10a), while l2 (Fig. 10b) and l3 (Fig. 10c) play a less relevant role (with sww=sY ranging from 46 to 58.5 at, e.g., r/l ¼ 0.03
versus 49 to 56 and 49.5 to 58, respectively). This behavior may be better appreciated in Fig. 11, where one parameter is fixed
and other two parameters are equally varied. Thus, Fig. 11a shows the stress distributions obtained when l1 is kept constant.
The comparisonwith Fig. 11b (constant l2) and 11c (constant l3) immediately reveals smaller changes in the results when l1 is
fixed. Varying l2 or l3 has a similar influence on the results.

The major role of l1, the predominant material length in the presence of stretch gradients, supports previous findings by
Komaragiri et al. (2008) within the sharp crack problem. This further implies that the combination of length scales that
characterizes the influence of strain gradients ahead of the crack must be obtained from indentation testing, where the
dominating effect of l1 is also seen (see Begley and Hutchinson, 1998).

Finally, it is necessary to remark that phenomenological higher order modeling of size effects in metal plasticity is under
continuous development. While crack tip fields are generally investigated under monotonic and highly proportional loading
conditions, one must note that the Fleck and Hutchinson (2001) theory was found, under some non-proportional straining
histories, to violate the thermodynamic requirement that plastic dissipation must always be non-negative. Positive plastic
workwas ensured by employing dissipative higher order stresses constitutively related to increments of strain (Gudmundson,
2004; Gurtin, 2004). However, it has been very recently noticed that this non-incremental formulation may lead to a delay in
plastic flow under certain non-proportional loading conditions (Fleck et al., 2014; Bardella and Panteghini, 2015). As the field
evolves the role of novel SGP formulations on crack tip mechanics must be assessed. Moreover, the use of single crystal
theories (e.g., Bardella, 2006; Gurtin and Reddy, 2014; Wulfinghoff and B€ohlke, 2015) will certainly provide important insight
into the influence of geometrically necessary dislocations in the fracture process zone.
5. Conclusions

Large gradients of plastic strain close to the crack tip must undoubtedly lead to additional hardening and very high crack
tip stresses that classical plasticity is unable to predict. The experimental observation of cleavage fracture in the presence of
significant plastic flowand the experimentally assessed domainwhere hydrogen cracking nucleates support the concept of an
increased dislocation density due to GNDs in the vicinity of the crack.

In this work a general framework for damage and fracture assessment including the effect of strain gradients is provided.
The numerical scheme of the twomain approaches within continuum strain gradient plasticitymodeling is developed so as to
account for large strains and rotations and differences among theories are revealed and discussed. The following aspects must
be highlighted:

- Due to the contribution of strain gradients to the work hardening of the material, crack tip blunting is largely reduced and
the stress reduction intrinsic to conventional plasticity avoided. This significantly increases the differences with classical
plasticity solutions reported in the literature within the infinitesimal deformation framework.

- The physical length ahead of the crack where SGP predictions deviate from the estimations of classical plasticity can span
several tens of mm, embracing the critical distance of many damage mechanisms. The magnitude of stress elevation close
to the crack tip suggests that accounting for the effect of GNDs in themodelization can be particularly relevant in hydrogen
assisted cracking, where damage takes place within 1 mm to the crack tip.

- Results reveal significant quantitative differences among SGP theories for the same material length scale
(l1 ¼ l2 ¼ l3 ¼ lMSG ¼ l*). Within the phenomenological approach, the single length parameter versionpredictsmuch smaller
size effects than its multiple length parameter counterpart. Estimations fromMSG plasticity lead to lower crack tip stresses
but a larger gradient dominated zone, relative to thephenomenological predictions. Further researchandexperimental data
are needed to gain insight into the existing correlation between the length scales inferred from each theory.
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- A dominant effect of the first invariant of the strain gradient tensor is observed in themultiple length parameter version of
the phenomenological SGP theory. Since l1 also plays an important role in indentation testing, results indicate that the
constitutive length parameters that govern the influence of strain gradients inmode I fracture problems should be inferred
from nanoindentation.
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