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Abstract This work investigates the existing capa-

bilities and limitations in numerical modeling of

fracture problems in functionally graded materials

(FGMs) by means of the well-known finite element

code ABAQUS. Quasi-static crack initiation and

growth in planar FGMs is evaluated. Computational

results of fracture parameters are compared to exper-

imental results and good agreement is obtained. The

importance of the numerical fit of the elastic properties

in the FE model is analyzed in depth by means of a

sensitivity study and a novel method is presented.

Several key computational issues derived from the

continuous change of the material properties are also

addressed and the source code of a user subroutine

USDFLD is provided in the Appendix for an effective

implementation of the property variation. The crack

propagation path is calculated through the extended

finite element method and subsequently compared to

available experimental data. Suitability of local frac-

ture criteria to simulate crack trajectories in FGMs is

discussed and a new crack propagation criterion is

suggested.

Keywords Functionally graded material (FGM) �
Finite element method (FEM) � Fracture mechanics �
Crack propagation � Extended finite element method

(X-FEM)

1 Introduction

Functionally Graded Materials (FGMs) are those

whose composition and hence their properties vary

gradually as a function of the position. Since their

introduction by Kawasaki and Watanabe (1987) in

high temperature metal/ceramic aerospace compo-

nents, FGMs have found a wide range of commercial

applications including cutting tools, biomedical

devices, optical fibers and wear resistant coatings

(Uemura 2003). In many of these applications, FGMs

provide an attractive way for the designer to tailor the

microstructure to specific operating conditions, while

minimizing the difficulties associated with discrete

material interfaces. Very often, however, fracture

resistance constitutes the primary design criterion, and

this fact has led to the development of a special branch

of fracture mechanics devoted to the failure of this

class of materials.

Until now, the fracture of an FGM under quasi-

static loading, which is one of the predominant modes

of material failure, has been investigated extensively

(Eischen 1987; Jin and Noda 1994; Erdogan 1995).

The primary conclusion of these investigations is that
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Department of Construction and Manufacturing

Engineering, University of Oviedo, 33203 Gijón, Spain

e-mail: martinezemilio@uniovi.es

R. Gallego

Department of Structural Mechanics, School of Civil

Engineering, University of Granada, 18071 Granada,

Spain

123

Int J Mech Mater Des (2015) 11:405–424

DOI 10.1007/s10999-014-9265-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s10999-014-9265-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10999-014-9265-y&amp;domain=pdf


the classical inverse square root singular nature of the

stress field is preserved in FGMs, but the stress

intensity factor (SIF) is influenced by the non-homo-

geneity of the material. Therefore, in a linear-elastic

cracked FGM, SIFs play a significant role since they

characterize the crack-tip stress and strain fields. The

non-singular T-stress, which represents the stress

parallel to crack faces, is another factor affecting the

crack growth behavior (Becker Jr et al. 2001).

The finite element method (FEM) has been widely

used for fracture analyses of FGMs. Eischen (1987)

has evaluated mixed-mode SIFs by means of the path-

independent J�k integral. Bao and Wang (1995) have

investigated periodic cracking in graded ceramic/

metal coatings. Gu et al. (1997) have evaluated SIFs

using the standard J-integral. Bao and Cai (1997) have

studied delamination cracking in graded ceramic/

metal substrate under mechanical and thermal loads.

Anlas et al. (2000) have calculated SIFs by means of

the path-independent J�1 integral. Marur and Tippur

(2000) have investigated a crack normal to the

material gradient by means of both the FEM and

experiments. Dolbow and Gosz (2002) have calcu-

lated the SIFs through the extended finite element

method (X-FEM). Kim and Paulino (2002a) have

evaluated mixed-mode SIFs by means of the path-

independent J�k integral, the modified crack closure

and the displacement correlation technique. The T-

stress has also been computed by means of the FEM.

Becker Jr et al. (2001) studied T-stress and finite crack

kinking in FGMs. Kim and Paulino (2003) used a

unified approach of the interaction integral method for

evaluating SIFs and T-stress in FGMs. Chapa-Cabrera

and Reimanis (2002a, b) have also used the FEM to

investigate crack kinking in graded composites.

On the experimental side, the difficulty and cost of

manufacturing large-size fracture specimens amena-

ble to testing has led most investigators to develop

model FGMs. Of particular interest in this research is a

model FGM based on polyethylene 1 % carbon

monoxide co-polymer (ECO), manufactured by selec-

tive exposure to ultraviolet (UV) irradiation (Lambros

et al. 1999). These specimens have material charac-

teristics mimicking ceramic-metal FGMs, i.e., stiffer

and more brittle at one end, becoming gradually less

stiff and more ductile at the other. Cracks in these

FGM ECO specimens have been analyzed by Abanto-

Bueno and Lambros (2006) in the experimental work

that has been chosen to validate the present numerical

analysis. The difficulty in performing this type of

experiments has led many analysts to adopt numerical

schemes and solve FGM-related fracture problems.

Although boundary integral formulations have been

used in some cases (Zhang et al. 2003; Riveiro and

Gallego 2013), the FEM is by far the approach most

commonly adopted.

This work evaluates the performance of numerical

tools in the computational assessment of cracks in

FGMs by means of the well-known ABAQUS finite

element (FE) code. Computational results of fracture

parameters (SIFs and T-stress) are compared with

available experimental results and good agreement is

obtained. The importance of the numerical fit of the

elastic properties in the finite element model is

analyzed by means of a sensitivity study and a new

method is presented and evaluated. FEM capabilities

in various key issues from the numerical point of view,

such as the implementation of the property variation at

the element level or the effect of the material gradation

in the computation of fracture parameters, are exam-

ined in depth and, in order to overcome the existing

limitations in commercial FE packages, the source

code of a user subroutine USDFLD is provided and

several improvements are suggested.

The crack propagation path is simulated through the

X-FEM and a good agreement with the experimental

results of Abanto-Bueno and Lambros (2006) is

obtained. This is of particular interest since work

previously reported in the literature on this subject is

limited. Suitability of local crack propagation criteria

to simulate crack trajectory in FGMs is discussed and a

novel crack propagation criterion is proposed.

2 Model formulation

2.1 Specimen geometry and parameters

The experimental results reported in this study are

taken from those obtained by Abanto-Bueno and

Lambros (2006). They manufactured polymeric model

FGMs based on selective UV irradiation of polyeth-

ylene cocarbon monoxide (ECO). ECO is a very

ductile semicrystalline copolymer that undergoes

accelerated mechanical degradation when exposed to

UV light, so that by gradually irradiating a sheet of the
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material from one end to the other, a sample with

continuous in-plane property gradation from stiff and

brittle to more compliant and more ductile can be

obtained. From the ASTM standard G154, Lambros

and coworkers (Lambros et al. 1999; Li et al. 2000)

have developed a technique to gradually irradiate the

ECO specimens by placing a shield between the UV

source and the ECO film that changes its position as a

function of time, gradually uncovering the irradiated

material. A very thin sheet of in-plane dimensions

300 9 150 mm2was irradiated for times varying from

5 h to 300 h. Once irradiated, the sheet was divided

parallel to the irradiation direction, and two samples of

150 9 150 mm2 were obtained. One of these speci-

mens was then cut perpendicularly to the irradiation

direction into 15 strips of 10 mm width, which were

used in uniaxial tension tests to measure the Young’s

modulus E, failure stress rf , and failure strain ef as a
function of distance along the ECO sheet. The

remaining 150 9 150 mm2 sample from the original

sheet was used to generate SENT fracture specimens.

Therefore, although the material property variation

was measured independently of the fracture experi-

ments, both originate from the same manufacturing

process.

Abanto-Bueno and Lambros (2006) monitored the

near-tip field using the optical technique of digital

image correlation (DIC), that allows for an accurate

measurement of displacement and strain fields by

comparing digital images of a specimen surface before

and after deformation. In their investigation a hybrid

DIC scheme, which combines the popular minimiza-

tion methods of Coarse-fine and Newton-Raphson, is

adopted to measure in-plane displacements and

strains. The DIC measured displacement field was

then used to extract the fracture parameters by

performing a least square minimization of the asymp-

totic expression of the displacement field in the

vicinity of the crack tip; as in the case of an

homogeneous material, but with material properties

evaluated at the crack tip position (Eischen 1987).

The testing protocol of Abanto-Bueno and Lambros

(2006) included mixed mode fracture experiments on

the base homogeneous material and various graded

FGM samples. Mixed-mode fracture is inherent to

FGMs since for a crack inclined to the property

gradation direction, the stress state near the crack tip is

mixed-mode irrespective of the far field loading. In

order to validate and develop a complete numerical

investigation of the fracture process of FGMs, Abanto-

Bueno and Lambros experimental work is especially

interesting because evaluates the three characteristic

geometries of mixed-mode fracture in FGMs.

Thereby, near-tip mixity can be attained either by

asymmetric external loading, as in the homogeneous

case, or by placing the notch at an angle to the

direction of mechanical property variation, or by a

combination of both. The effect of each of these cases

was investigated using three specimens labeled here

FGM I, II, and III. The geometry, dimensions and

measured variation of local material properties of the

three specimens are shown in Table 1 and Fig. 1.

2.2 Finite element model

The simulations were developed in the latest version

of ABAQUS (2013). The specimens dimensions

correspond to those reported by Abanto-Bueno and

Lambros (2006). The sample thickness, common to all

homogeneous and FGM cases, was 0.406 mm and

thereby plane stress conditions are assumed. Mimick-

ing the experimental procedure, loading is applied as a

fixed vertical displacement along the upper edge of the

specimen, the vertical displacement is constrained in

the lower edge and, in order to remove rigid body

motion, the horizontal displacement is also set to zero

at the lower right hand corner. Given the fact that in

both the homogeneous and graded cases the material

used fails by crazing while showing very little shear

yielding, linear-elastic behavior is assumed in this

work as it was also assumed in the data analysis of

Abanto-Bueno and Lambros (2006).

2.2.1 Application of material gradient

The assignment of material properties must reflect the

property distribution in the FGM specimen being

simulated. However, almost all of the FE approaches

Table 1 Dimensions of the FGM specimens

H (mm) W (mm) h (mm) a (mm) u (rad)

FGMI 75 70 37.5 30 p/2

FGMII 90 70 32 26 p/3

FGMIII 90 70 32 25 p/3

Numerical analysis of quasi-static fracture in FGMs 407

123



mainly concentrate on homogeneous materials or

piecewise homogeneous materials; specific FE for-

mulations relating to nonhomogeneous materials with

continuously varying properties are scarce. Neverthe-

less the inclusion of continual spatial variation of

properties in the FE formulation does not entail a

computational problem, as the stiffness matrix may be

determined by averaging across each element. Mate-

rial properties can vary between elements or between

integration points. The former leads to a discontinuous

step-type variation in properties. Assigning element

properties individually, or dividing a structure into

numerous areas and then assigning properties to areas

(Bao and Wang 1995) may be inappropriate in failure

analysis or crack path predictions, where local stress

values may be of critical importance.

Santare and Lambros (2000) developed a formula-

tion for graded elements, which automatically inter-

polate material properties within the element. These

can substantially improve the solution quality based

on the same mesh density, especially for higher-order

graded elements. Kim and Paulino (2002b) have also

investigated elements with an internal property gradi-

ent and reached similar conclusions. Their work

differs in that the former samples the material

properties directly at the Gauss integration points of

the element, while the latter adopts a generalized

isoparametric formulation.

Rousseau and Tippur (2000) developed a technique

to assign spatially varying properties at integration

points by defining properties as a function of temper-

ature and providing the model with an initial
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Fig. 1 Geometry, dimensions and measured variation of local material properties as a function of the width of a FGMI, b FGMII and

c FGMIII
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temperature distribution that matches the elastic

modulus variation desired. The assignment of a zero

thermal expansion coefficient then eliminates

unwanted thermal strains. This technique enjoys great

popularity since it can be used in most of the

commercial FE packages. However, it is not suitable

for thermomechanical analyses and does not allow for

differences between the gradient profiles of the

Young’s modulus and the Poisson’s ratio. Further-

more, contrary to what is often assumed, Rousseau and

Tippur’s technique is not able to define a non-linear

continuous variation of the elastic properties in most

of the FE codes since, in order to obtain a consistent

variation between mechanical and thermal strains,

nodal temperature values are interpolated within the

element through shape functions one order lower than

those used for the displacements. In the case of

ABAQUS, an average value of the temperature in the

nodes is passed to the integration points when using

linear elements and an approximate linear variation is

assumed in quadratic elements. The former produces a

step-type variation in the elastic properties (i.e.,

homogeneous elements) and the latter translates into

a piecewise linear variation, regardless of the order of

the function describing the elastic gradient. Therefore,

one should be careful when assigning non-linear

material property variations by means of Rousseau

and Tippur’s technique since, for coarse meshes and

some gradient profiles, it can bring inaccuracies in the

results. In ABAQUS this can be overcome by defining

the gradation of properties through a user subroutine

UMAT or USDFLD, since both are called at integra-

tion points. However, if a UMAT subroutine is used,

the mechanical constitutive behavior of the material

must also be programmed and hence, it is not possible

to use the material models already implemented in

ABAQUS. Consequently, the material gradient is

implemented in this work through a USDFLD user

subroutine. Material elastic properties are defined as a

function of a field variable and its variation throughout

the specimen is programmed in the subroutine. In

addition, when computing the SIFs, the elastic prop-

erties in the crack tip must be defined and therefore a

UFIELD subroutine is also embedded in the FOR-

TRAN code in order to take into consideration as well

the elastic properties variation at the nodes.

The source code of the subroutine is provided in the

Appendix in order to allow other engineers to imple-

ment an effective continuous variation of the material

elastic properties without requiring programming

efforts. Another option could be to use the research

codes FGM-FRANC2D (Kim 2003) or WARP3D

(Healy et al. 2012) since both include the gradation

effect at the element level, based on the nodal-values

approach (Kim and Paulino 2002a). Both are freely

distributed, open-source finite element codes with

extended capabilities for fracture in FGMs, though the

former is not yet available to the public and the latter

does not have the capability to model plane stress

conditions (Walters et al. 2006).

2.2.2 Numerical fit of the material elastic properties

The variation of composition in FGMs depends on the

production technique (Lambros et al. 1999; Butcher

et al. 1999; Parameswaran and Shukla 2000) and

generally, the property variation tends not to mirror

that of composition. If the spatial composition profile

is known, property variation may be predicted by

means of theoretical mixing laws. Their use is frequent

in composites (Hashin 1983) and has also been

extended to FGMs (Reiter et al. 1997; Gasik 1998).

In these cases the assignment of the material property

variation in the model is done straightforwardly, fitting

the variation of the elastic properties through a

function with the shape of the theoretical prediction,

following the procedure mentioned in the previous

paragraph. However, in such models predicted prop-

erty variation is largely based in the assumed

composite structure and, therefore, is usually limited

in applicability and accuracy due to the geometric and

micromechanical assumptions upon which the theo-

retical mixing laws are based.

Hence, material property variation is usually

determined directly from experiment, being charac-

terized by a sequence of experimental data as a

function of the position, regardless of the form in

which these data were obtained. Either by producing

and testing individual homogeneous specimens with a

range of compositions (Carrillo-Heian et al. 2001;

Jedamzik et al. 2000), or by testing the graded material

directly by means of indentation or ultrasonic tech-

niques (Krumova et al. 2001) or by cutting and testing

small, effectively homogeneous, specimens from a

larger graded sample (Lambros et al. 1999; Rousseau

and Tippur 2000; Butcher et al. 1999), as in the case of

the experimental work (Abanto-Bueno and Lambros

2006) that serves as basis for the validation of the
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numerical model presented in this paper. To the

authors’ knowledge, the numerical fit of this experi-

mental data, its implementation in the numerical

model and its effect on the computational calculations

have not received the attention of the scientific

community. Mostly, the numerical fit is based on a

general approximation of all the experimental data,

either by assuming a linear change in the material

properties (Rousseau and Tippur 2000) or by means of

a polynomial function through a least squares fit (Oral

et al. 2008a, b). Following the criterion of the authors

of the experimental study (Oral et al. 2008a), a fourth-

order polynomial function was chosen to approximate

the data (Fig. 2). But, as it can be seen in Fig. 2, it is

impossible to completely remove the differences

between the measured elastic properties and the

polynomial curve fitting. And, even though no

systematic study of the problem has been published
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Fig. 2 Numerical fit of the material property variation of a FGMI, b FGMII and c FGMIII
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yet, it is reasonable to expect that, in fracture analyses

of FGMs, an accurate fit of the elastic properties near

the crack tip could be overriding, due to the depen-

dence of the fracture parameters’ magnitude on the

crack direction, property profile, crack-tip position

and specimen geometry.

In order to rate the effect of the numerical fit of the

experimental data in the calculation of the fracture

parameters a complete sensitivity study is developed.

First, the effect of an accurate fit of the local values of

the elastic properties at the crack tip is analyzed. In

order to do that, the value of the experimental point

that characterizes the local elastic properties in the

crack tip is modified a small amount (5–10 %). For

each of the FGM specimens evaluated, the new data

points derived from these changes are shown in

Table 2 and the corresponding polynomial curve fits

can be seen in Fig. 3. SIFs and T-stress for each curve

fit are calculated and compared.

Next, with the aim of evaluating the influence of an

accurate fit of the material gradient profile in the

computation of the SIFs and the T-stress, several

polynomial curve fits of different orders are consid-

ered, containing all of them the experimental data

characterizing the local property values in the crack

tip, as shown in Fig. 4. Fracture parameters for each

curve fit are calculated and compared. Based on the

conclusions of the sensitivity analysis a new method is

developed and evaluated.

2.2.3 Calculation of fracture parameters

By far the most common concern pertaining to linear

elastic fracture mechanics analysis is the accurate

prediction of SIFs in arbitrarily shaped cracked bodies.

There are usually several ways to calculate fracture

parameters once the stress and displacement fields

have been obtained. In the displacement-based SIF

computation techniques, the SIFs are obtained by

extrapolating from the displacement ahead of the crack

tip in the asymptotic expression. These methods have

the advantage that almost no additional calculation is

necessary, but they require a high degree of mesh

refinement and often suffer from instability as the crack

tip is approached (Anderson 2005). Also, for the FGM

case, choosing the appropriate correlation points can

be a difficult task (Tilbrook et al. 2005b). Amore often-

used procedure, the domain integral method, which is

an energy approach based on the J-integral (Rice 1968)

that has been proved to be efficient for homogeneous

materials, is used in this work.

Froma numerical and computational perspective, one

of the challenges concerns the need for examining the

limiting case of a vanishing contour for the proper

evaluation of the J-integral for crack tips in FGMs. This

need stems from the fact that for some non-homoge-

neous materials and crack tip orientations, the integrand

in the J-integral is not divergence free (Chen et al. 2000).

As a result, an evaluation of the integral on open contours

will exhibit path dependence. Thus, the standard J-

integral along an integral path C is defined as:

J ¼
Z
C
ðWd1j � rijui;1Þnj dC ð1Þ

where the comma denotes partial differentiation with

respect to corresponding coordinate, W is the strain

energy density, rij is the stress tensor, ui represents the
displacement vector components and nj is the outward

normal to the path C. For a closed boundary C ¼
C1 þ CA þ CB � C0 as shown in Fig. 5, the J-integral

is formulated such that:

I ¼
I
C
ðWd1j � rijui;1Þnj dC ¼ JC1

þ JCA
þ JCB

� JC0

ð2Þ

Applying Gauss’s divergence theorem gives:

I ¼
Z
A

½W;1 � ðrijui;1Þ;j� dA ð3Þ

where

W;1 ¼
1

2
rijeij

� �
;1

¼ rijeij;1 þ
1

2
eijDijkl;1ekl ð4Þ

Being eij the strain tensor and Dijkl the constitutive

tensor. Equations of equilibrium in the absence of

body forces take the form rij;i ¼ 0, and therefore:

Table 2 New data points according to the proposed amend-

ments for each specimen evaluated

FGM I FGM II FGM III

-10 % 242.72856 334.18539 347.14386

-5 % 256.21348 352.751245 366.42963

Expt. data 269.6984 371.3171 385.7154

?5 % 283.18332 389.882955 405.00117

?10 % 296.66824 408.4481 424.28694
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rijeij;1 ¼ ðrijui;1Þ;j ð5Þ

Substituting Eqs. (4) and (5) in Eq. (3) renders:

I ¼
Z
A

1

2
eijDijkl;1ekl dA ð6Þ

Along crack sides, dx2 ¼ 0 and the traction ti ¼ rijnj is
also zero. Consequently JCA

¼ JCB
¼ 0 and thus:

I ¼ JC1
� JC0

ð7Þ

In an homogeneous material, since Dijkl,1=0,I=0

and JC0
¼ JC1

, the J-integral is path independent.

For FGMs, generally Dijkl;1 6¼ 0, therefore I 6¼ 0

and JC0
6¼ JC1

, whereby the J-integral is related

to the integral path. When the material properties

only vary along the x2 axis, Dijkl,1=0 and in
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Fig. 3 Numerical fit of the material property variation taking into account the proposed amendments of a FGMI, b FGMII and

c FGMIII
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Fig. 4 Numerical fit of the experimental data by polynomial functions of different order of a FGMI, c FGMII and e FGMIII. Detail of

the vicinity of the crack of b FGMI, d FGMII and f FGMIII
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consequence, for this case, the J-integral is still

path independent.

Considering a smooth function q which has he

value of unity on C1 and zero on C0, the J-integral

given in (1) can be written in terms of a closed

boundary integral:

J ¼
I
C
ðrijui;1 �Wd1jÞqnj dC ð8Þ

Applying the divergence theorem and assuming a

Young’s modulus E variation along the x1 axis, the

corresponding expression for the domain integral is

obtained:

J ¼
Z
A

ðrijui;1 �Wd1jÞ q;j dA�
Z
A

W;1q dA ð9Þ

Being the derivative of W under the second integral

with respect to the coordinate x1 in E( x1). So,

comparing with the homogeneous case, the second

integral is an additional term which represents the

effect of non-homogeneity. But if the domain integral

is evaluated in a region sufficiently small around the

crack tip, the value of the second term in Eq. (9)

involving the derivative ofW is very small, essentially

negligible (Gu et al. 1997). The same conclusions can

be extended to the Interaction Integral (Shih and Asaro

1988) as it is calculated using the same procedure.

Under mixed-mode conditions many finite element

packages, including ABAQUS, provide an interaction

integral method to compute the SIFs since it is not

straightforward to do it from a known J-integral. The

interaction integral is also used for the computation of

the non-singular term of the T-stress.

Therefore, a sufficiently refined mesh near the

crack tip was used in all the specimens analyzed in

order to allow for comparison between all cases.

Although the standard domain integral combined with

a fine mesh allows to reach accurate results, this

greatly increases the numerical costs. In order to

exploit the advantage of the contour integral, which

does not require a very fine mesh, one should use the

above mentioned research codes, FGM-FRANC2D or

WARP3D, which take into account the additional term

of the Domain Integral necessary to maintain the path

independence. Therefore, the computation of the

derivative of the strain energy density with respect to

the crack front (normal) direction is a pending task for

future developments of commercial FE software.

In this work, the entire specimens were modeled

using eight-noded quadrilateral plane-stress elements

with reduced integration (CPS8R). An example of the

mesh used in the simulations is shown in Fig. 6. The

near-tip discretization consisted of a focused mesh

centered at the crack tip and the inverse square root

singularity of the strain field at the crack tip is obtained

by collapsing quadrilateral elements into triangular

elements and placing the mid-side nodes at quarter-

Fig. 6 Representative finite element mesh used for calculating

fracture parameters

Fig. 5 J-integral Domain. C0 and C1 are two arbitrary contours

around a crack tip that are connected by segments along the

crack face (CA and CB) forming a closed contour
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points from the crack tip. Approximately 30,000

elements were used in total.

2.2.4 Simulation of crack propagation

Crack propagation was simulated by means of the

X-FEM. The X-FEM is a numerical technique for

modeling discontinuities by local enrichment func-

tions in the area of interest. This method allows to

follow crack paths independently of the finite element

mesh; being this feature especially important for

FGMs, since the gradation of the mechanical proper-

ties may lead to complex propagation paths also in

simple symmetric tests (Rousseau and Tippur 2000).

Cracks are modeled by means of the X-FEM using the

cohesive segments method (Remmers et al. 2008)

implemented in ABAQUS software. This method is

based on the principle of phantom nodes (Song et al.

2006) and a traction-separation cohesive behavior.

In quasi-brittlematerials a crack is usually assumed to

grow when the tensile strength is attained at the current

crack tip; propagation then occurs perpendicularly to the

direction of the maximum in-plane principal stress.

Therefore, crack initiationandpropagationdirectionwas

predicted using the local criterion of the maximum

principal stress (MPS). Based on the concept of local

homogenization near the crack tip (Gu andAsaro 1997),

fracture criteria originally developed for homogeneous

materials can be extended to non-homogeneous materi-

als such as FGMs. The values of the initial failure stress

and the subsequent fracture energy characterizing dam-

age evolution are assigned taking into consideration the

local failure properties recorded by Abanto-Bueno and

Lambros (2006) (see Fig. 1). Fracture energy variation

was provided following the same procedure as with the

elastic gradient implementation, although, based on the

local propagation criteria established, the changes of

fracture resistance as a function of the position only

influence the amount of applied load necessary to

propagate the crack. Notice that there is no effect of the

load magnitude on the crack trajectory within the

framework of linear elastic analysis. All the specimens

were discretizedwith the samemesh density bymeansof

approximately 450 four-noded quadrilateral plane-stress

elementswith reduced integration (CPS4R).Anexample

of themeshused in the simulations is shown inFig. 7.As

it can be seen in the figure, a uniform structured mesh is

used since the local enrichment functions intrinsic to the

X-FEM avoid the requirement of considerable mesh

refinement in the crack tip. This advantage of theX-FEM

is particularly relevant in crack propagation analyses

since, contrary to what happens in the standard finite

element method, there is no need to update the mesh

continuously to match the geometry of the discontinuity

as the crack progresses.

3 Results and discussion

3.1 Crack initiation

3.1.1 Homogeneous materials

The base homogeneous material studied is an ECO

sheet irradiated uniformly for 50 h under UV light. Its

elastic properties were measured by Abanto-Bueno

and Lambros (2006) as Young’s modulus E = 280

MPa and Poisson’s ratio m ¼ 0:45. Geometry and

dimensions are shown in Fig. 8.

By means of the procedure outlined in the previous

section, values of KI, KII and T corresponding to the

experimentally recorded instant of crack initiation

were calculated. Table 3 shows a comparison of the

results obtained with the corresponding experimental

values extracted by Abanto-Bueno and Lambros

(2006) and the results obtained numerically by the

same authors in collaboration with other researchers in

Fig. 7 Representative mesh used for predicting propagation

paths of cracks by means of the X-FEM
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a related work (Oral et al. 2008b). Good agreement is

observed, especially for the non-singular term of the T-

stress, which is usually more difficult to obtain.

3.1.2 Functionally graded materials

Young’s modulus distribution for the three graded

specimens is shown in Fig. 2. In all cases, a constant

value of 0.45 is considered for the Poisson’s ratio, in

accordance with the assumption of the experimental

work Abanto-Bueno and Lambros (2006). As

described in the previous section, material property

variation is implemented via a user subroutine

USDFLD although in the present isothermal analysis,

where the Poisson’s ratio is constant and a very fine

mesh is used, results agree with those obtained using

Rousseau and Tippur’s technique and therefore verify

the subroutine implementation. Computed values of

fracture parameters are compared with available

experimental and numerical results in Table 4.

As in the homogeneous case, results agree reason-

ably well with the available experimental data,

although there are some differences that need to be

analyzed. The greatest discrepancies arise in the T-

stress that, being a second-order term, is more difficult

to extract, both numerically and experimentally.

Besides, analyzed geometries bring great changes in

its value, which is also affected by the direction of the

material property variation. All the results, and

especially the T-stress, are affected by the method

chosen to extract them. As mentioned before, Abanto-

Bueno and Lambros, in both their experimental

(Abanto-Bueno and Lambros 2006) and their related

numerical work (Oral et al. 2008b) fit the experimen-

tally measured or numerically computed displace-

ments in the asymptotic displacement equation to

extract the value of the fracture parameters, while in

this work these are computed by means of the domain

Table 4 Experimental and numerical results for KI, KII and the T-stress for the FGM edge cracked specimens

Results Case KI (MPa m0.5) KII (MPa m0.5) T(MPa)

Expt. Abanto-Bueno and Lambros (2006) I 0.554 0.039 -4.272

Num. Oral et al. (2008b) 0.551 -0.022 -2.149

Present 0.599 -0.018 -1.526

Expt. Abanto-Bueno and Lambros (2006) II 0.755 0.179 -0.069

Num. Oral et al. (2008b) 0.722 0.204 -0.673

Present 0.734 0.257 -0.539

Expt. Abanto-Bueno and Lambros (2006) III 0.969 0.224 -0.930

Num. Oral et al. (2008b) 0.878 0.230 -0.870

Present 0.908 0.304 -0.763

Fig. 8 Edge cracked specimen geometry for homogeneous

material, H ¼ 90 mm; W ¼ 70 mm; h ¼ 45 mm; a ¼ 33 mm

and u ¼ p=3

Table 3 Experimental and

numerical results for KI, KII

and the T-stress for the

homogeneous edge cracked

specimen

Results KI (MPa m0.5) KII (MPa m0.5) T(MPa)

Expt. Abanto-Bueno and Lambros (2006) 0.903 0.245 -0.784

Num. Oral et al. (2008b) 0.793 0.212 -0.992

Present 0.812 0.291 -0.647
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integral without the need of any postprocessing. Also,

due to the limitations of the DIC method, experimen-

tally measured displacements exclude a rectangular

region around the crack tip. Whereas in the numerical

model data as close to the crack tip as possible are

considered, in accordance with the local homogeni-

zation criterion.

In the first graded specimen, a negative value of KII

is obtained, in contraposition with the positive value

extracted from the experiments. The value is relatively

small and whence the difference is minimal, but the

sign affects the direction of crack kinking. The crack

growth analysis conducted by Abanto-Bueno and

Lambros (2006) shows a positive kink direction and

therefore, the negative sign of KII obtained in the

numerical simulation correctly predicts the positive

sign of subsequent crack kinking.

Given the unavoidable experimental error and taking

into consideration that differences found were duly

justified, results show that finite element calculations

allow to obtain fracture parameters for the precise

instant of crack initiation with reasonable accuracy.

3.2 Sensitivity analysis

3.2.1 Effect of an accurate fit of the local material

properties in the crack-tip

Among other factors, fracture parameters in non-homo-

geneous materials depend on the local properties at the

crack tip. In order to quantify the influence of an accurate

fit of themeasured elastic properties in the vicinity of the

crack, the value of the experimental point that charac-

terizes the local value of the Young’s modulus in the

crack tip is slightly modified (see Table 2; Fig. 3).

As expected and it can be seen in Fig. 3, a small

change in the value of one of the nearly 20 experi-

mental points fitted does not bring many differences

between the different least square fits derived from the

changes proposed. In order to quantify these devia-

tions, the average difference along the specimen width

between the numerical fits emerged from the proposed

changes and the numerical fit of the original experi-

mental data is calculated in a percentage scale by

means of the L2 norm. Results obtained from this

relationship are shown in Table 5.

Fracture parameters computed for each curve

derived from these changes are presented in

Tables 6–8. Percentage differences between the

calculated values and the values of the fracture

parameters corresponding to the numerical fit of the

original experimental data are also shown for com-

parison purposes.

Even though the differences between the numerical

fits that emerged from the proposed changes are

Table 5 Percentage differences between each numerical curve

fit of the experimental material properties and the original one

FGMI (%) FGMII (%) FGMIII (%)

-10 % 0.0145 0.0219 0.0131

-5 % 0.0037 0.0055 0.0033

?5 % 0.0037 0.0055 0.0033

?10 % 0.0149 0.0219 0.0131

Table 6 Numerical results for KI, KII and T-stress for each test

point considered. Values of SIFs in MPa m0.5 and T-stress in

MPa—FGMI

Test points KI (%) KII (%) T (%)

-10 % 0.591

(1.34 %)

-0.017

(5.55 %)

-1.509

(1.11 %)

-5 % 0.595

(0.67 %)

-0.017

(5.55 %)

-1.517

(0.59 %)

Expt. data 0.599 -0.018 -1.526

?5 % 0.603

(0.67 %)

-0.017

(5.55 %)

-1.535

(0.59 %)

?10 % 0.608

(1.50 %)

-0.017

(5.55 %)

-1.543

(1.11 %)

Expt. results 0.554 0.039 -4.272

Table 7 Numerical results for KI, KII and T-stress for each test

point considered. Values of SIFs in MPa m0.5 and T-stress in

MPa—FGMII

Test points KI (%) KII (%) T (%)

-10 % 0.720

(1.91 %)

0.252

(1.95 %)

-0.527

(2.23 %)

-5 % 0.727

(0.95 %)

0.255

(0.78 %)

-0.533

(1.11 %)

Expt. data 0.734 0.257 -0.539

?5 % 0.741

(0.68 %)

0.260

(1.17 %)

-0.544

(0.93 %)

?10 % 0.747

(1.77 %)

0.263

(2.33 %)

-0.550

(2.04 %)

Expt. results 0.755 0.179 -0.069
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extremely small in the three graded specimens, very

significant discrepancies, between 30 and 1,000 times

the differences between the numerical curve fits, can

be found among the values of the fracture parameters.

As a result more attention should be paid to an

accurate fit of the experimental elastic properties in the

vicinity of the crack.

3.2.2 Influence of the shape of the numerical curve fit

Besides the local properties in the crack tip, the shape

of the material gradient could also influence the

results. In order to evaluate the effect of an accurate fit

of the elastic gradient profile, several polynomial

curve fits of different orders are considered, containing

all of them the experimental data characterizing the

local property values in the crack tip, as seen in Fig. 4.

Computed values for each curve fit of the SIFs and the

T-stress for each graded specimen are presented in

Tables 9–11. Experimental results of Abanto-Bueno

and Lambros (2006) are also shown for comparison.

Tables 9–11 show sensitivity in all the fracture

parameters to the different curve fit considered in the

three specimens evaluated. Although changes in the

order of the polynomial function of the least squares fit

do not affect the SIFs and the T-stress as much as the

variation of the local elastic properties at the crack tip,

results prove the influence of the variation of the

elastic properties by itself in the calculation of fracture

parameters. Therefore, significant differences between

the curve fit and the experimentally measured elastic

properties can bring inaccuracies in the calculations.

Consequently, the numerical fit must be as accurate as

possible in the vicinity of the crack, but without

neglecting the relevance of a rigorous fit of the rest of

experimental data. In order to solve this problem a new

method is proposed: a point to point lineal fit.

3.2.3 Point to point lineal fit

With the aim of removing the differences between the

data fit and the experimental data arises the possibility

to implement directly in the numerical model the

values of the Young’s Modulus extracted from the

experiments. In order to do so, elastic properties are

designated as a function of a field variable (or

temperature) and each one of the experimentally

registered values of the Young’s Modulus in the

specimen is defined with an assigned value of the field

variable that depends on its position in the sequence of

experimental data. Afterwards, the specimen is pro-

vided with a linear distribution of the field variable

that allocates the points depending on its position in

Table 9 Numerical results for KI, KII and T-stress for each

numerical fit considered—FGMI

Curve fit KI (MPa m0.5) KII (MPa m0.5) T(MPa)

Pol. order 3 0.584 -0.016 -1.499

Pol. order 4 0.599 -0.018 -1.526

Pol. order 9 0.601 -0.018 -1.523

Expt. results 0.554 0.039 -4.272

Table 10 Numerical results for KI, KII and T-stress for each

numerical fit considered—FGMII

Curve fit KI (MPa m0.5) KII (MPa m0.5) T(MPa)

Pol. order 3 0.745 0.261 -0.539

Pol. order 5 0.742 0.259 -0.525

Pol. order 9 0.743 0.260 -0.533

Expt. results 0.755 0.179 -0.069

Table 11 Numerical results for KI, KII and T-stress for each

numerical fit considered—FGMIII

Curve fit KI (MPa m0.5) KII (MPa m0.5) T(MPa)

Pol. order 3 0.975 0.329 -0.768

Pol. order 5 0.972 0.327 -0.774

Pol. order 9 0.965 0.322 -0.772

Expt. results 0.969 0.224 -0.930

Table 8 Numerical results for KI KII and T-stress for each test

point considered. Values of SIFs in MPa m0.5 and T-stress in

MPa—FGMIII

Test points KI (%) KII (%) T (%)

-10 % 0.895

(1.43 %)

0.298

(1.97 %)

-0.759

(0.52 %)

-5 % 0.902

(0.66 %)

0.301

(0.99 %)

-0.761

(0.26 %)

Expt. data 0.908 0.304 -0.763

?5 % 0.914

(0.66 %)

0.306

(0.66 %)

-0.764

(0.13 %)

?10 % 0.920

(1.32 %)

0.308

(1.32 %)

-0.766

(0.39 %)

Expt. results 0.969 0.224 -0.930

418 E. Martı́nez-Pañeda, R. Gallego
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the specimen. The finite element software assigns by

default the value of the elastic properties in places

where they are not defined considering a linear

variation between the nearest two points registered.

This results in a linear change between the data points

as is indicated by the red line in Fig. 9 for the three

specimens evaluated. The polynomial curve fit used

until now is also presented with the aim of establishing

a comparison. As it can be seen in the figure, both fits

follow quite well the trend of the experimental data.

In order to be accurate, this method is limited by the

fact that the experimental data needs to be separated by

a distance as similar as possible. However, this is

usually not an obstacle sincewhen property variation is

determined directly from experiment, as in most cases,

measurements are performed on points of the material
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Fig. 9 Numerical fit of the material property variation of a FGMI, b FGMII and c FGMIII
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containing a constant separation from each other with

the aim of correctly record the variation of the material

properties. Through the same procedure that has been

used so far, fracture parameters are calculated and

shown in Table 12. Experimental data from Abanto-

Bueno and Lambros (2006) and the results from the

common used polynomial fit are also shown.

As seen in Table 12, even though the experimental

error is unknown, results improve when using the

point to point lineal fit. Especially in the third

specimen, where the polynomial function loses accu-

racy when fitting the experimental data in the vicinity

of the crack (Fig. 9).

3.3 Crack growth

Crack propagation trajectories of the three specimens

were calculated based on the X-FEM and the local

fracture criterion of the MPS. Results are compared

with available experimental data from Abanto-Bueno

and Lambros (2006) in Fig. 10 and the performance of

local fracture criterion in the prediction of the crack

propagation path is analyzed.

As seen in Fig. 10 numerical prediction approaches

reasonably well the experimental data. In the case of

the first graded specimen, in both the numerical

(Fig. 10b) and the experimental results (Fig. 10a) it

can be appreciated that the crack propagation path

deviates from the natural trajectory of the first mode of

fracture. This is due to the fact that the crack is initially

orientated perpendicular to the material gradient,

creating an asymmetric stress field around the crack

tip that induces mixed-mode loading causing crack

deflection. As expected, the crack propagated towards

the more compliant part. This is understood to occur as

it results in greater release of elastic potential energy.

Crack propagation path for FGMII is shown in

Fig. 10c, d. Under the same loading conditions in an

homogeneous specimen, the crack propagation path

would register a small initial deviation, due to the

asymmetry of the loading within the initial crack

orientation, to grow then according to the trajectory

distinctive of the first mode of fracture. So that the

initial asymmetry in the exact moment of the onset of

crack propagation due to the position of the crack

within the direction of mechanical property variation

and the external loading translates over the trajectory

exclusively in a small initial deflection, that comes

across very well in the numerical simulation and

which is also referred in Abanto-Bueno and Lambros

experimental work (Abanto-Bueno and Lambros

2006). After this initial deviation, the crack grows

following the propagation path distinctive to the first

mode of fracture since is oriented parallel to the

material property variation

In FGMIII at the precise instant of crack initiation

there is a mixed-mode fracture induced by the

asymmetry of the loading within the crack position.

However, in an homogeneous specimen with the same

loading conditions, after an initial deviation the crack

should grow according to the idiosyncratic trajectory

of the first mode of fracture. As seen in Fig. 10e, f, this

is not the case, as once the crack trajectory tries to get

horizontal, forms an angle with the gradient direction

and therefore, the asymmetric stress field around the

crack tip induces mixed-mode loading causing crack

deflection.

Although numerical predictions show reasonably

good agreement with the experimental data, a close

observation of the results of the first and third cases

shows that the deviation of the trajectory from the crack

propagation path corresponding to the first mode of

Table 12 Numerical

results for KI, KII and T-

stress for each numerical fit

considered

Procedure Case KI (MPa m0.5) KII (MPa m0.5) T(MPa)

Experimental I 0.554 0.039 -4.272

Polynomial fit 0.599 -0.018 -1.526

PtP lineal fit 0.602 -0.018 -1.529

Experimental II 0.755 0.179 -0.069

Polynomial fit 0.734 0.257 -0.539

PtP lineal fit 0.718 0.251 -0.517

Experimental III 0.969 0.224 -0.930

Polynomial fit 0.908 0.304 -0.763

PtP lineal fit 0.935 0.296 -0.942
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fracture is slightly higher in the experimental case. This

may be due to many factors and it is not surprising that

there are some discrepancies between predicted and

observed deflection trajectories, given the stochastic

nature of crack initiation from a notch and the possible

influences of the microstructure. In fact, assumed local

homogenization criteria is expected to work well only

for ideally brittle non-homogeneous materials where

the toughness is taken to be independent of direction at a

fixed point (Gu and Asaro 1997). However, in a FGM

specimen, due to its change in material composition,

this is often not the case, and therefore the material

toughness variation as a function of the position cannot

be neglected. So that, in order to develop a more

(a) (b)

(c) (d)

(e) (f)

Fig. 10 Comparison of crack trajectories obtained experimentally by Abanto-Bueno and Lambros (2006) and the present X-FEM

simulation
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accurate crack propagation criterion for non-homoge-

neous materials, this should be stated as:

o

oa
ðG� GRÞ ¼ 0 ð10Þ

whereG is the energy release rate andGR is the critical

value of the energy release rate according to which the

crack starts to propagate, the toughness of the FGM.

Although in the specimens evaluated in this work the

spatial variation of the fracture resistance is unknown,

based on the variation of the failure properties

registered by Abanto-Bueno and Lambros (2006)

and shown in Fig. 1, one could expect that it would

increase the deviation predicted based on the effect of

the elastic gradient of the material, as it varies in the

same direction in the all the specimens evaluated.

Nevertheless, very little work has been published

on crack propagation in graded regions. Crack trajec-

tory becomes more complex after deviating from a

straight path and therefore, appropriate models for the

continued propagation of cracks forming an angle with

the material gradient will require a fracture criterion

which incorporates the effects of variations in local

mechanical properties, crack-tip toughness, bridging

and residual stresses, as well as changing crack shape

(Tilbrook et al. 2005a). To the authors’ knowledge,

this fracture criterion has not been developed yet.

4 Concluding remarks

In this work, performance of numerical tools to study

the structural integrity of advanced materials is

evaluated. Crack initiation and growth in planar FGMs

is investigated by means of the well-known finite

element package ABAQUS.

With the aim of overcoming the limitations of

Rousseau and Tippur’s technique (Rousseau and Tippur

2000), material gradient was implemented by means of

a user subroutine USDFLD and its template is provided

in the Appendix in order to facilitate the work of other

other researchers and practitioners. When computing

fracture parameters in a precise instant of the fracture

process, commercially available finite element software

has proven to obtain accurate results, although the use of

the before mentioned research codes, FGM-FRANC2D

or WARP3D, is recommended when the crack is not

perpendicular to the direction of the material property

variation in order to reduce CPU time.

However, when predicting crack propagation paths,

available finite element codes can only get accurate

results by means of local crack propagation criteria if

the elastic gradient is the dominant influence on crack

propagation. To develop a general purpose formula-

tion and implementation for predicting crack trajecto-

ries in FGMs a new fracture criterion that incorporates

the influence of variations in crack-tip toughness as

well as other mechanical effects, is needed.

In addition, this paper emphasizes that more

attention needs to be paid to the numerical fit of the

experimental data characterizing the change in the

material properties, and a new method is proposed to

improve the accuracy of the results. The commonly

used criterion based on a general approximation of the

overall experimental data could introduce inaccura-

cies in the calculations within a fracture analysis, as

small changes in the local elastic properties at the

crack-tip have been shown to have significant influ-

ence in the values of the fracture parameters. Further-

more, an accurate fit of the shape of the material

gradient is also relevant, as even by itself it influences

the fracture parameters. A point to point lineal fit has

proven to reach more accurate results.
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