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A B S T R A C T

We present a probabilistic framework for brittle fracture that builds upon Weibull statistics and strain gradient
plasticity. The constitutive response is given by the mechanism-based strain gradient plasticity theory, aiming to
accurately characterize crack tip stresses by accounting for the role of plastic strain gradients in elevating local
strengthening ahead of cracks. It is shown that gradients of plastic strain elevate the Weibull stress and the
probability of failure for a given choice of the threshold stress and the Weibull parameters. The statistical
framework presented is used to estimate failure probabilities across temperatures in ferritic steels. The frame-
work has the capability to estimate the three statistical parameters present in the Weibull-type model without
any prior assumptions. The calibration against experimental data shows important differences in the values
obtained for strain gradient plasticity and conventional J2 plasticity. Moreover, local probability maps show that
potential damage initiation sites are much closer to the crack tip in the case of gradient-enhanced plasticity.
Finally, the fracture response across the ductile-to-brittle regime is investigated by computing the cleavage
resistance curves with increasing temperature. Gradient plasticity predictions appear to show a better agreement
with the experiments.

1. Introduction

Macroscopic fracturing in metallic materials depends sensitively on
properties that pertain to the micro and atomic scales. Not surprisingly,
a considerable effort has been made to link scales in fracture mechanics,
with the ultimate goal of quantitatively predicting the strength, dur-
ability, and reliability of structural components (Suo et al., 1993;
Hutchinson, 1997). These endeavours aim at spanning the wide range
of scales at stake by enriching continuum theories to properly char-
acterize behaviour at the small scales involved in crack tip deformation.

The deficiencies intrinsic to conventional plasticity theory provide a
strong motivation for developing mechanistically-based models.
Namely, unrealistically low stresses are predicted ahead of the crack
tip, with toughness being unbounded for cohesive strengths of ap-
proximately 3 times the yield stress in a perfectly plastic material
( ˆ / 4Y in a mild hardened solid, see Tvergaard and Hutchinson,
1992). Opening stresses on the order of 3–5 times the initial tensile
yield stress fail to explain decohesion at the atomic scale. Cleavage
fracture in the presence of significant plastic flow has been experi-
mentally observed in numerous material systems (Elssner et al., 1994;
Bagchi and Evans, 1996; Korn et al., 2002). Since atomic separation
requires traction levels on the order of the theoretical lattice strength

(10 Y or larger), classic continuum theories would appear to rule out a
fracture mechanism based on atomic decohesion whenever plasticity
develops in the vicinity of the crack. Moreover, conventional plasticity
predictions reveal important discrepancies with separation strengths
calculated from first principles (Raynolds et al., 1996), and toughness
bounds attained by discrete dislocation dynamics (Cleveringa et al.,
2000; Irani et al., 2017), highlighting the need to bridge the gap be-
tween macroscopic modelling of cracking and the microstructural and
atomistic mechanisms of fracture.

Small scale experiments have consistently shown that conventional
plasticity theory is unable to characterize the material response of
metals at the micro level. Fostered by growing interest in micro-
technology, a wide range of mechanical tests on micro-sized specimens
have revealed that metallic materials display strong size effects when
deformed non-uniformly into the plastic range. Experiments such as
indentation (Nix and Gao, 1998), torsion (Fleck et al., 1994), or
bending (Stölken and Evans, 1998) predict a 3-fold increase in the ef-
fective flow stress by reducing specimen size (smaller is stronger). This
size effect is attributed to gradients of plastic strain that require a de-
finite density of dislocations to accommodate lattice curvature (Ashby,
1970). These geometrically necessary dislocations (GNDs) are not ac-
counted for in conventional theories of plasticity, neglecting the length
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scale dependency intrinsically associated with plastic flow. A large
theoretical literature has appeared seeking to extend plasticity theory to
small scales by the development of isotropic strain gradient plasticity
(SGP) formulations (Aifantis, 1984; Gao et al., 1999; Fleck and
Hutchinson, 2001; Anand et al., 2005). Using SGP theories to provide
an implicit multi-scale characterization of the mechanical response
ahead of a crack appears imperative as, independently of the size of the
specimen, the plastic zone adjacent to the crack tip is physically small
and contains strong spatial gradients of deformation (Martínez-Pañeda
and Betegón, 2015). The investigation of stationary crack tip fields has
shown that plastic strain gradients promote local strain hardening and
lead to much higher stresses relative to classic plasticity predictions
(Jiang et al., 2001; Wei, 2006; Komaragiri et al., 2008; Martínez-
Pañeda et al., 2017b). Accurately capturing crack tip stresses has
proven to be fundamental in predicting fatigue damage (Gil-Sevillano,
2001; Brinckmann and Siegmund, 2008; Pribe et al., 2019), notch
fracture mechanics (Martínez-Pañeda et al., 2017a), microvoid cracking
(Tvergaard and Niordson, 2008), and hydrogen assisted failure
(Martínez-Pañeda et al., 2016a, b). Since plastic strain gradients can
alter crack tip stresses over several tens of μm, it is expected that strain
gradient plasticity models will also play an important role in the
modelling of cleavage fracture and the ductile-to-brittle transition
(Martínez-Pañeda et al., 2019; Qian et al., 2011).

Cleavage fracture models are grounded on the concept of micro-
cracks nucleating from defects, such as inclusions or second-phase
particles (Pineau et al., 2016). The location of these defects is statistical
by nature and, consequently, modelling efforts rely mainly on prob-
abilistic analysis. The seminal work by the Beremin group (Beremin,
1983) established the fundamental framework on which most cleavage
models stand; Weibull statistics and the weakest link model are em-
ployed to estimate the probability of failure Pf , where Pf equals the
probability of sampling (at least) one critical fracture-triggering par-
ticle. In these models the stress level is the driving force for fracture
and, consequently, local strengthening due to plastic strain gradients
will influence failure probability predictions.

In this work, we make use of a mechanism-based strain gradient
plasticity formulation to accurately characterize crack tip stresses. The
constitutive description is coupled with a probabilistic framework
capable of obtaining all the statistical parameters of the model without
any prior assumptions. The capabilities of the present mechanism-based
scheme for probabilistic analysis of brittle fracture are benchmarked
against experimental data from the Euro toughness project (Heerens
and Hellmann, 2002). Experiments are reproduced over a wide range of
temperatures, so as to span the ductile-to-brittle regime. Strain gradient
plasticity predictions are compared with results from conventional
plasticity and insight is gained into the role of the stress elevation due
to strain gradients in assessing cleavage.

2. Numerical model

The implicitly multi-scale statistical framework for brittle fracture
presented stands on a Taylor-based strain gradient plasticity formula-
tion (Section 2.1), and a three-parametric Weibull type statistical model
(Section 2.2). The implementation is carried out by coupling a general
purpose finite element program with the statistical tools of Matlab, see
Section 2.3. An experimental campaign employing Compact Tension
specimens will be reproduced to highlight the capabilities of the model
(Section 2.4).

2.1. Mechanism-based strain gradient plasticity

We model strain gradient effects by means of the so-called me-
chanism-based strain gradient (MSG) plasticity theory (Gao et al., 1999;
Qiu et al., 2003). MSG plasticity is grounded on Taylor's dislocation
model. Accordingly, the shear flow stress τ is formulated in terms of the
dislocation density ρ as

µb= (1)

where μ is the shear modulus, b is the magnitude of the Burgers vector
and α is an empirical coefficient that is taken to be equal to 0.5. The
dislocation density is additively composed of the density S for statis-
tically stored dislocations (SSDs) and the density G for geometrically
necessary dislocations (GNDs),

S G= + (2)

The GND density G is related to the effective plastic strain gradient
p by

r
b

¯G

p
= (3)

where r̄ is the Nye-factor which is assumed to be 1.90 for face-centred-
cubic (fcc) polycrystals. Gao et al. (1999) used three quadratic in-
variants of the plastic strain gradient tensor to represent the effective
plastic strain gradient p as
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The coefficients were determined to be equal to c 01 = , c 1/42 = and
c 03 = from three dislocation models for bending, torsion and void
growth. Accordingly,
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where the components of the strain gradient tensor are obtained from

ijk
p

ik j
p

jk i
p

ij k
p

, , ,= + (6)

The tensile flow stress flow is related to the shear flow stress τ by

Mflow = (7)

with M denoting the Taylor factor, which equals 3.06 for fcc metals.
Rearranging (1–3) and substituting into (7) renders

M µb r
b

¯flow S

p
= +

(8)

The SSD density S can be readily determined from (8) knowing the
relation in uniaxial tension between the flow stress and the material
stress-strain curve,

f M µb[ ( )/( )]S ref
p 2= (9)

Here, ref is a reference stress and f is a non-dimensional function of the
plastic strain p, as given by the uniaxial stress-strain curve.
Substituting into (8), the flow stress flow reads

f ( )flow ref
p p2= + (10)

where is the intrinsic material length parameter that enters the con-
stitutive equation for dimensional consistency. The value of can be
obtained by fitting micro-scale experiments and typically ranges be-
tween 1 and 10 μm. The model recovers the conventional plasticity
solution when 0= .

2.2. Weibull three-parametric

We present a statistical framework that has the capability of pre-
dicting brittle and ductile failure and requires no prior assumptions
(Muñiz-Calvente et al., 2015; Papazafeiropoulos et al., 2017). First, for
a given Weibull stress w and a threshold stress for crack growth th, the
cumulative probability of failure Pf is given by

P 1 expf
w th

u

m
=

(11)

where u and m respectively denote the scaling parameter and the
modulus. Equation (11) is defined in (Beremin, 1983) without th but
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stresses smaller than the yield stress were considered innocuous, im-
plying the assumption of th Y= . A global Weibull stress is defined
based on weakest link considerations

V V( ) ( / )w th
i

n
i

th
m

i

m

1
1 0

(1/ )
e

= +
= (12)

Here V0 is a reference volume, Vi is the volume of the ithmaterial unit in
the fracture process zone experiencing a maximum principal stress i

1,
and ne is the number of finite elements/material units in the fracture
process zone. The parameter th is needed due to the fact that cracks do
not propagate below a certain threshold energy value. However, the
concurrent estimation of the threshold, modulus and shape parameters
remains a complicated task; a common approach lies in assuming a
value for th and estimating m and u from a set of experiments by
means of the maximum likelihood method (Muniz-Calvente et al.,
2016a,b). Here, all three parameters ( th, m and u) will be obtained by
means of the following procedure (see Fig. 1):

1) First, the probability of failure is computed for all the experiments
conducted at a given temperature. The Pf versus load curve, where
the load is expressed in terms of the J-integral, is computed by
means of

P j
n

0.3
0.4f

j
=

+ (13)

where nj denotes the number of experiments for a given temperature
and j is the rank number.

2) A finite element analysis is conducted, and the values of i
1 andVi are

computed at each element for the set of critical Ji at which failure
has been reported in the experiments. The domain integral method
is used to compute the value of Ji in each load increment.

3) The least squares method is employed to fit the Weibull distribution
by using cumulative probabilities. Since the threshold parameter th
is also an unknown, the procedure requires iterating over the fol-
lowing steps:
3.1) The Weibull stress w is first computed according to (12) from

the information provided by the finite element model (Step 2).
In (12), m and th correspond to the values of the previous
iteration (or an initial estimate, in the case of the first itera-
tion).

3.2) The Weibull stress w is introduced in (11) and the values of u,
m and th in the current iteration are computed by fitting a
univariate distribution using least squares estimates of the cu-
mulative distribution functions. Namely, the cumulative prob-
ability of failure (11) is written as,

P
m

log( ) log( log(1 )) 1 log( )u f w th+ = (14)

introducing a linear relationship between Plog( log(1 ))f
and log( )w th . From the Pf assigned to each load (Step 1)
and the Weibull stress computed for each of those loads (Step
2), we make use of least squares to fit this straight line on the
transformed scale. The slope and intercept of the line provide
with the values of m and u for a given th. The quality of the fit
will be given by the choice of th; we find the optimum by
maximizing the coefficient of determination R2 over all possible
threshold values. The optimum value of th is specific to the
current iteration and associated values of m and u.

3.3) The procedure is repeated until convergence is achieved. We
assume that the solution has converged when the following

criterion has been met

m m
m

|( ) ( ) |
( )

|( ) ( ) |
( )

0.0001t t

t

th t th t

th t

1 1+ <
(15)

where m( )t denotes the value of m in the current increment
while the subscript t 1 represents its value in the previous
increment. Consequently, the outcome of the analysis is the
threshold value below which cracking will not occur th, along
with the two Weibull parameters m and u. A stress level of

th u+ will denote a 63% failure probability in a given ma-
terial unit element.

Fig. 1. Flowchart describing the combined experimental-computational-statis-
tical procedure for estimating the three Weibull parameters th, m, and th.
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2.3. Numerical implementation

The framework presented in Sections 2.1 and 2.2 is numerically
implemented by exploiting Abaqus2Matlab (Papazafeiropoulos et al.,
2017). Hence, we run the commercial finite element package Abaqus
within the mathematical software Matlab to take advantage of Matlab's
in-built capabilities for fitting univariate distributions by means of the
least squares method.

We implement MSG plasticity in the commercial finite element
package Abaqus by means of a user material subroutine (UMAT). For
numerical reasons, we make use of the lower order version of MSG
plasticity, commonly referred to as the conventional mechanism based
strain gradient (CMSG) plasticity theory (Huang et al., 2004). As shown
in (Martínez-Pañeda and Niordson, 2016) and discussed in (Shi et al.,
2001), the lower and higher order versions of MSG plasticity predict
identical results except for a boundary layer of size roughly 10 nm. This
boundary layer falls outside of the domain of physical validity of con-
tinuum theories; strain gradient plasticity models a collective behaviour
of dislocations and it is therefore applicable at a scale much larger than
the dislocation spacing. Fortran modules are used to store the plastic
strain components across Gauss integration points, and the plastic strain
gradient is computed by numerical differentiation within the element.
First, the plastic strain increment is interpolated through its values at
the Gauss points in the isoparametric space, and afterwards the incre-
ment in the plastic strain gradient is calculated by differentiation of the
shape functions. The reader is referred to (Martínez-Pañeda et al.,
2017a) for more details.

2.4. Boundary value problem

We employ our framework to assess brittle failure in ferritic steels.
Numerical predictions are compared to experimental results from the
Euro toughness project on DIN 22NiMoCr37 steel (Heerens and
Hellmann, 2002). The Euro toughness project is frequently chosen as
paradigmatic benchmark for cleavage models due to the richness of its
data set. Experiments are conducted at 7 temperatures, from 154 °C to
20 °C, spanning the entire transition from brittle to ductile fracture.

Mimicking the experimental campaign, we model a compact tension
specimen of width W 100= mm, distance between pins F 75= mm and
initial notch length D 51= mm, referred to as size 2 T in (Heerens and
Hellmann, 2002). The finite element model includes the compact ten-
sion specimen and the pins. The load is prescribed by imposing a dis-
placement on the pins, and we model contact between the pins and the
specimen by using a surface to surface contact algorithm with finite
sliding. The path independent J-integral is computed outside of the
plastic zone by means of the domain integral method at each load in-
crement. An initial blunting radius of 2 μm is defined at the crack tip.
After a mesh sensitivity analysis, the specimen is discretized with 9800
quadrilateral quadratic plane strain elements. As shown in Fig. 2, a very
refined mesh is used near the crack tip so as to accurately capture the
influence of plastic strain gradients.

3. Results

We begin our analysis by investigating the stress elevation of strain
gradient plasticity and its influence on the Weibull stress distribution
(Section 3.1). Then, we calibrate the Weibull parameters for each
temperature and assess the probability of failure due to cleavage with
both conventional and MSG plasticity theories (Section 3.2). Section 3.3
explores the response across temperatures aiming to gain insight into
the role of plastic strain gradients in the ductile-to-brittle transition.

First, we define our uniaxial stress-strain hardening law as

1Y
p

Y

N
= +

(16)

where N is the strain hardening exponent. Thus, in (10), the reference
stress equals ( )ref Y

E N

Y
= and ( )f ( )p p

E
NY= + . Here, Young's

modulus takes the value E 200= GPa, and Poisson's ratio equals
0.3= . We proceed to calibrate N and Y with the uniaxial stress-strain

data available as part of the Euro toughness data set (Heerens and
Hellmann, 2002). The values of yield stress Y and strain hardening
exponent N obtained at each temperature are listed in Table 1. A re-
presentative fit is shown in Fig. 3a for the case of a temperature of
T 40= °C. As shown in Table 1, both Y and N decrease with in-
creasing temperature, in agreement with expectations. One should note
that the length scale parameter of MSG plasticity has shown a negligible
sensitivity to changes in temperature, as measured by Qian et al. (2014)
through nanoindentation. Hence, we consider an intermediate value of

5= μm for all temperatures (Martínez-Pañeda and Niordson, 2016).
The computation of the force versus displacement curves from the

calibrated values of Y and N shows a good agreement with the ex-
perimental data. The results obtained for the representative case of
T 40= °C are shown in Fig. 3b. The influence of the plastic strain
gradients is restricted to a small region next to the crack tip and, con-
sequently, the macroscopic force versus displacement curve is almost
insensitive to in the absence of damage. Locally, crack tip stresses are
however very sensitive to local strengthening due to gradients of plastic
strain.

3.1. Gradient effects on crack tip stresses

We examine first the tensile stress distribution ahead of the crack for
a representative case, T 40= °C, and a specific load level that falls
within the range of critical loads reported in the experiments, J 290=
N/mm. Results are shown in Fig. 4 for both conventional and MSG

Fig. 2. General and detailed representation of the finite element mesh employed.

Table 1
Material properties.

Temperature (°C) −154 −91 −60 −40 −20 0 20

Yield stress Y (MPa) 570 490 470 450 440 430 425
Strain hardening exponent N 0.14 0.14 0.13 0.13 0.13 0.12 0.12
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plasticity with 5= μm. The tensile stress is normalized by the yield
strength of the material at T 40= °C, and the distance ahead of the
crack is shown in logarithmic scale to highlight the different responses
given by MSG and conventional plasticity theories. As shown in the
figure, far away from the crack tip both MSG plasticity and conven-
tional J2 plasticity agree but differences start at about 20–30 μm ahead
of the crack. This distance is sufficiently large to engulf the critical
length of various damage mechanisms, including cleavage in ferritic
steels. The stress elevation due to plastic strain gradients is associated
with large geometrically necessary dislocation (GND) densities that act
as obstacles to the motion of statistically stored dislocations and elevate
local strength.

The stress elevation associated with large gradients of plastic strain
in the vicinity of a crack influences cleavage models by elevating the
Weibull stress w. We illustrate this by assuming m 3= and 2.5th Y=

and computing the Weibull stress through (12) as a function of the
remote load. Results are shown in Fig. 5 for two representative values of
the length scale parameter 5= μm and 10= μm, as well as for
conventional plasticity. As shown in the figure, the Weibull stress w
increases with increasing and differences increase with the remote
load. As we shall show below, differences are sensitive to the values of
m and th, and the gradient-enhanced w elevation can be substantial.
Note that, following (11), strain gradient plasticity elevates the local
probability of failure for a fixed value of u, th and m.

3.2. Statistical analysis of cleavage

The statistical framework outlined in Section 2 is now employed to
estimate the probability of failure as a function of the remote load, as
quantified by J. Fig. 6 shows the results obtained for 4 representative

Fig. 3. Calibration of material properties: (a) Uniaxial stress-strain response, and (b) force versus displacement curve in a CT specimen. The case of temperature
T 40= °C is chosen as representative.

E. Martínez-Pañeda, et al. European Journal of Mechanics / A Solids 77 (2019) 103785

5



temperatures, T 154= °C, T 91= °C, T 60= °C and T 40= °C. The
figure shows the experimental predictions, as given by (13), along with
the results for MSG plasticity with 5= μm and conventional J2
plasticity. Both conventional and MSG plasticity predictions exhibit
good agreement with the experiments for the calibrated Weibull para-
meters.

The calibrated values of the modulus m, the threshold stress for
crack growth th, and the scaling parameter u are shown in Table 2.
Results are shown for 7 temperatures and both strain gradient and
conventional plasticity. Considering the effect of plastic strain gradients
leads to very significant differences in the values of the calibrated
Weibull parameters. Differences between conventional and MSG plas-
ticity are particularly notable in regards to the stress threshold for crack
growth th; much larger stresses are needed to propagate micro-cracks if
the influence of GNDs is accounted for. Furthermore, qualitative dif-
ferences are observed in the dependence of the threshold stress with

temperature. While the strain gradient plasticity-based prediction ex-
hibits the natural trend of decreasing th with decreasing T (the material
anticipates a reduced barrier to cleavage), this is not the case for con-
ventional plasticity. A plausible explanation behind the scatter ob-
served lies on the fact that the maximum tensile stress is load-in-
dependent in conventional plasticity (McMeeking, 1977); for lower
temperatures, a higher stress level is attained for the same J as Y is
larger. Contrarily, in strain gradient plasticity, crack tip stresses scale
with the remote load (Martínez-Pañeda and Fleck, 2019).

In addition, the conventional plasticity results show noticeably high
predictions for m at temperatures −60 °C and −40 °C. For these two
temperatures, there is a clear change in the shape of the Pf versus J
curve for values of Pf close to 0.75. Reducing the tolerance of the
convergence criterion or changing the initial estimations of m and th
did not have any influence on the outcome of the statistical fitting
procedure. Moreover, very similar results were obtained when re-
peating the procedure with specimens of different geometry; referred to
as 0.5 T and 1 T in (Heerens and Hellmann, 2002). The uniqueness of
the Weibull parameters (see, e.g., Ruggieri et al., 2000) is addressed by
repeating the analysis for four different geometries (0.5, 1 T, 2 T and
4 T) and two temperatures (−91 °C and −20 °C). Computations reveal
very similar values of m, th and u to those shown in Table 2 for both
conventional and strain gradient plasticity. Differences are largest with
geometry 4 T but remain below 10% in all cases.

More insight into the influence of plastic strain gradients on local
failure probability can be gained by means of a hazard map. In a hazard
map, the local probability of failure is shown over the entire en-
gineering component, highlighting the areas that are vulnerable to a
specific type of failure (Muñiz-Calvente et al., 2016a,b). The local
probability of failure is computed as Pf

i in each material unit i from a
local w

i . The results obtained are shown in log scale in Fig. 7 for both
conventional and strain gradient plasticity. Important differences can
be readily observed. While the local Pf only becomes meaningful close
to the crack tip in both cases, the potential damage initiation sites are
identified to be much more localized for the case of strain gradient
plasticity. In other words, only defects within tens of microns, as op-
posed to several mm, are identified as fracture-triggering particles when
plastic strain gradients are accounted for. The critical distance for
cleavage fracture in steels is considered to be significantly smaller than
1mm (Watanabe et al., 1987).

3.3. The ductile to brittle transition

We then proceed to examine the ductile-to-brittle transition by
computing the resistance curves for P 0.1f = , 0.5 and 1 across the
temperature versus load map. For each value of Pf three curves are
shown, the experimental data and the numerically computed results for
MSG plasticity and conventional J2 plasticity; see Fig. 8. The results
show how the load at which failure is predicted, P 0.5f = , increases with
the temperature - ductility is enhanced. As the load and the temperature
increase, ductile crack growth is observed, with the largest tempera-
tures showing several cases where crack extension equals a 2= mm,
the limit value for ductile growth tests (Heerens and Hellmann, 2002).
In addition, the gradient-enhanced prediction appears to follow more
precisely the experimental trend.

3.4. Influence of crack tip constraint conditions

Lastly, we investigate the influence of crack tip constraint condi-
tions by imposing a non-zero elastic T-stress (Betegon and Hancock,
1991). This is achieved by means of the so-called modified boundary
layer formulation. Consider a crack plane aligned with the negative x1
axis of the Cartesian reference frame (x1, x2). For a crack tip placed at
the origin and a given T value, we choose to prescribe a remote mode I
load, KI , by defining the nodal displacements in the outer periphery of

Fig. 4. Tensile stress along the extended crack plane (x 02 = ) for both MSG
plasticity and conventional plasticity at J 290= N/mm. The distance ahead of
the crack tip is given in logarithmic scale. The case of temperatureT 40= °C is
chosen as representative.

Fig. 5. Weibull stress dependence on the remote load for both MSG plasticity,
with 5= μm and 10= μm, and conventional plasticity. The case of tem-
perature T 40= °C is chosen as representative.
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Fig. 6. Failure probability as a function of the external load. The figure includes the experimental data for 22NiMoCr37 steel (Heerens and Hellmann, 2002) and the
predictions from the present statistical model for the values of th, u and m listed in Table 2. Temperatures (a) T 154= °C, (b) T 91= °C, (c) T 60= °C and (d)
T 40= °C are chosen as representative.

Table 2
Calibration of Weibull parameters for MSG plasticity and conventional plasticity as a function of the temperature.

MSG plasticity

Temperature (°C) −154 −91 −60 −40 −20 0 20

u (MPa) 23.6 46.9 632.3 611.7 1060.4 183.0 16948.0
th (MPa) 5489.3 7295.1 7670.6 8136.7 8295.9 19888.0 13516.0
m 2.0 1.9 2.9 3.1 3.2 1.7 12.71

Conventional plasticity

Temperature (°C) −154 −91 −60 −40 −20 0 20

u (MPa) 9.2 14.9 1380.4 911.3 146.0 46.11 1731.7
th (MPa) 2251.7 2459.0 1015.7 1477.5 2289.1 2205.0 1474.7
m 1.9 1.8 13.5 12.8 3.2 0.78 19.87
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Fig. 7. Hazard map, showing the local probability of failure in log scale at each material unit for the case of T 40= °C and J 282.2= N/mm.
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the mesh as

u r K
E

r cos cos
E

rcos( , ) 1
2 2

(3 4 ) T 1
I1

2
= + +

(17)

u r K
E

r sin cos
E

rsin( , ) 1
2 2

(3 4 ) T (1 )
I2 = + +

(18)

where r and θ are polar coordinates centred at the crack tip. As shown
in Fig. 9, upon exploiting symmetry about the crack plane, only half of
the model is analysed. We introduce an initial blunting radius that is
105 times smaller than the outer radius. The modified boundary layer
model is discretized by means of 6422 quadrilateral quadratic plane
strain elements.

The results obtained, in terms of Weibull stress w versus remote
load KI are shown in Fig. 10. As in Fig. 5, we consider a temperature of
T 40= °C and assume m 3= and 2.5th Y= . A range of 3 values of the
T-stress is considered: T/ 0.5Y = , T/ 0Y = , and T/ 0.5Y = . The same
qualitative trends are obtained for both conventional plasticity and
strain gradient plasticity; for a given remote load KI , the Weibull stress
increases with increasing T. However, conventional plasticity predic-
tions of w appear to exhibit a higher sensitivity to crack tip constraint
conditions for the values of m and th assumed.

4. Conclusions

We have presented a 3-parameter statistical framework for cleavage
that incorporates the role of large plastic strain gradients in the char-
acterization of crack tip stresses. The model enables to accurately
compute Weibull stresses and calibrate - without any prior assumptions
- the three statistical parameters: threshold stress th, scaling parameter

u and modulus m. Finite element analysis is used in combination with
Weibull statistics to investigate cleavage in ferritic steels with both
conventional J2 plasticity and the mechanism-based strain gradient
(MSG) plasticity theory. The main findings are:

i) For given values of th, u and m, strain gradient plasticity effects
elevate the Weibull stress and the probability of failure.

ii) The calibrated Weibull parameters for MSG plasticity show sig-
nificant differences with the values obtained with conventional
plasticity. The threshold stress required to trigger cracking in the
gradient-enhanced case is 2–8 times larger than its conventional
plasticity counterpart.

iii) Hazard maps, where the probability of failure is shown in each
material unit, show that defects susceptible of initiating cracking
are confined in a much smaller region next to the crack tip in the
strain gradient plasticity case.

iv) The probability of failure is computed across the ductile-to-brittle
transition, with strain gradient plasticity predictions showing a
better agreement with experiments.

Fig. 8. Cleavage resistance curves (P 0.5f = ) and scatter bands (P 0.1f = and
P 0.9f = ) for the experimental data, MSG plasticity with 5= μm and con-
ventional plasticity.

Fig. 9. Sketch of the modified boundary layer model employed to assess the role of crack tip constraint conditions.

Fig. 10. Weibull stress dependence on the remote load as a function of the
elastic T-stress for conventional plasticity and MSG plasticity, with 5= μm.
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