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A B S T R A C T   

A new gradient-based formulation for predicting fracture in elastic–plastic solids is presented. 
Damage is captured by means of a phase field model that considers both the elastic and plastic 
works as driving forces for fracture. Material deformation is characterised by a mechanism-based 
strain gradient constitutive model. This non-local plastic-damage formulation is numerically 
implemented and used to simulate fracture in several paradigmatic boundary value problems. The 
case studies aim at shedding light into the role of the plastic and fracture length scales. It is found 
that the role of plastic strain gradients is twofold. When dealing with sharp defects like cracks, 
plastic strain gradients elevate local stresses and facilitate fracture. However, in the presence of 
non-sharp defects failure is driven by the localisation of plastic flow, which is delayed due to the 
additional work hardening introduced by plastic strain gradients.   

1. Introduction 

It has been 100 years since Griffith’s seminal work [1] started a century of fracture mechanics research and, undoubtedly, some 
areas within this broad discipline have achieved a high degree of maturity. As a consequence, fracture mechanics is nowadays an 
essential tool for ensuring durability, efficiency and safety across a wide range of sectors and applications. However, many challenges 
remain and, despite the progress achieved, the discipline continues to attract a notable degree of interest from academics and prac
titioners [2,3]. Well-known longstanding issues are related to multi-physics problems and applications involving subcritical crack 
growth. With growing interest for fail-safe and damage-tolerance approaches to design comes the need to develop robust computa
tional methods capable of predicting the nucleation and growth of defects. In this regard, the phase field fracture method has attracted 
particular attention over the last decade. Phase field methods aim at substituting the boundary conditions at an interface by a partial 
differential equation for the evolution of an auxiliary (phase) field. Thus, the problem is solved by integrating a set of partial dif
ferential equations for the whole system, avoiding the explicit treatment of the interface conditions. Phase field methods are finding 
ever increasing applications, from microstructural evolution [4] to corrosion damage [5]. In the case of fracture problems, the phase 
field order parameter ϕ implicitly describes the crack-solid interface. The phase field can be thought of as a damage variable, taking a 
value of ϕ = 0 at intact material points and of ϕ = 1 when the material point is fully cracked, with a smooth variation in-between. 
Earlier efforts were focused on ideally elastic solids and consequently the phase field evolution equation was grounded on Grif
fith’s energy balance [6–10]. The method proved to be a success in modelling brittle fracture and the number of applications soared: 
composite materials [11–13], functionally graded materials [14–16], shape memory alloys [17], hyperelastic solids [18,19], hydraulic 
fracture [20,21], fatigue damage [22] and hydrogen-embrittled alloys [23,24], just to name some - see Ref. [25] for a review. 
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In recent years there has been an increasing interest in extending the success of phase field methods to the modelling of fracture in 
elastic–plastic solids. Models have been proposed for both brittle fracture under small scale yielding conditions [26,27] and ductile 
damage [28–32]; see Ref. [33] for a critical overview. The majority of these models base the constitutive behaviour of the solid on von 
Mises plasticity theory. However, conventional continuum models, such as von Mises plasticity, fail to capture the dislocation 
hardening mechanisms governing crack tip mechanics [34,35]. Namely, Geometrically Necessary Dislocations (GNDs) arise due to the 
need to accommodate the large plastic strain gradients that develop in the vicinity of the crack tip. This extra storage of dislocations 
elevates local strength due to mechanisms such as forest hardening or due to long range back-stresses associated with the stored elastic 

Nomenclature 

r Nye’s factor 
ηp plastic strain gradient tensor 
σ Cauchy stress tensor 
ξ micro-stress vector 
ε, εe,εp total, elastic and plastic strain tensors 
Bu

i nodal strain–displacement matrices 
Ni shape functions nodal interpolation matrices 
ℓf phase field fracture length scale 
ℓp strain gradient plasticity length scale 
ηp effective plastic strain gradient 
Γ discontinuous surface 
γ crack density functional 
σ̂ material strength 
κ ill-conditioning parameter 
λ first Lame parameter 
Cep elastic–plastic material Jacobian 
n surface unit normal 
T traction vector 
u displacement field vector 
ℋ phase field history field 
μ shear modulus 
ν Poisson’s ratio 
Ω domain of the solid 
ω scalar micro-stress 
ϕ phase field order parameter 
ψ , ψe, ψp total, elastic and plastic strain energy densities 
ρ total dislocation density 
ρG density of Geometrically Necessary Dislocations (GNDs) 
ρS density of Statistically Stored Dislocations (SSDs) 
σe effective stress 
σY initial yield stress 
σflow tensile flow stress 
τ shear flow stress 
εp equivalent plastic strain 
φ fracture energy density 
Δa crack extension 
b Burgers vector length 
cw phase field scaling constant 
E Young’s modulus 
Gc material toughness 
K0 reference stress intensity factor 
KI mode I stress intensity factor 
M Taylor’s factor 
m rate sensitivity exponent 
N strain hardening exponent 
Ni nodal shape functions 
r, θ polar coordinates 
R0 reference fracture process zone length 
ux,uy horizontal and vertical components of the displacement field  
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energy of GNDs. Strain gradient plasticity models have been developed to account for the role of plastic strain gradients and the 
associated dislocation hardening mechanisms at the continuum level [36–38]. The analysis of stationary crack tip fields using strain 
gradient plasticity models reveals much higher stresses than those predicted with conventional plasticity, with this stress elevation 
being sustained over tens of microns ahead of the crack [39,40]. Thus, it is necessary to incorporate strain gradient plasticity for
mulations into fracture modelling to appropriately characterise the small scale phenomena associated with crack tip deformation. Non- 
local and gradient approaches to damage in elastic–plastic solids have been presented without incorporating the phase field formalism. 
Examples include integral-type approaches [41], implicit and explicit gradient models [42,43], micromorphic theories [44–46] and 
energy-based approaches [47]. Gradient-damage models have been compared with phase field fracture approaches in the context of 
elastic solids, showing that the structure of the phase field balance equation prevents the nonphysical damage zone broadening 
observed in gradient-damage models [48,49]. Such a comparison has not been presented yet in the context of elastic–plastic fracture. 

In this work, we present a new phase field fracture model for elastic–plastic solids that incorporates the role of dislocation 
hardening and plastic strain gradients through a mechanistic formulation based on Taylor’s [50] dislocation model. The potential and 
predictions of the model are showcased by addressing a number of boundary value problems of particular interest. Emphasis is placed 
on investigating the role of the plastic and phase field length scales, which result from the non-locality of the model in regard to plastic 
strain and damage gradients. The remainder of this manuscript is organised as follows. The new dislocation-based elastic–plastic phase 
field fracture theory presented is described in Section 2. Details of the finite element implementation are given in Section 3. Repre
sentative results are shown in Section 4. Spanning different triaxiality conditions, the predictions of the model are examined by 
modelling crack propagation in a boundary layer model, a compact tension specimen and an asymmetric double-notched specimen. 
The manuscript ends with concluding remarks in Section 5. 

2. Theory 

The implicitly multi-scale damage model for elastic–plastic fracture presented stands on a Taylor-based strain gradient plasticity 
formulation and a phase field formulation for elastic–plastic fracture. We shall first present the kinematics (Section 2.1) and balance 
equations (Section 2.2) of the coupled problem, and proceed to make specific constitutive choices (Section 2.3). The theoretical 
framework presented herein refers to an elastic–plastic solid occupying an arbitrary domain Ω⊂IRn (n ∈ [1, 2, 3]), with an external 
boundary ∂Ω⊂IRn− 1, on which the outwards unit normal is denoted as n. 

2.1. Kinematics 

As elaborated below, we employ a first-order approach in the modelling of gradient effects. Moreover, we restrict our attention to 
small strains and isothermal conditions. As a consequence, the primal kinematic variables of the problem are the displacement field 
vector u and the damage phase field ϕ. The strain tensor ε is defined as 

ε =
1
2
(
∇uT +∇u

)
, (1)  

and it can be additively decomposed into its elastic εe and plastic εp parts as 

ε = εe + εp. (2)  

The nucleation and subsequent propagation of cracks are described by using a smooth continuous scalar phase field ϕ ∈ [0; 1]. The phase 
field describes the degree of damage in each material point, as in continuum damage mechanics approaches. Here, we assume that ϕ =

0 corresponds to the case where the material point is in its intact state, while ϕ = 1 denotes the material that is fully broken. Since ϕ is 
smooth and continuous, discrete cracks are represented in a diffuse fashion. The smearing of cracks is controlled by a phase field length 
scale ℓf , which appears due to dimensional consistency and makes the model non-local, ensuring mesh objectivity. The purpose of the 
diffuse phase field representation is to introduce the following approximation of the fracture energy over a discontinuous surface Γ: 

Φ =

∫

Γ
Gc dS ≈

∫

Ω
Gcγ(ϕ,∇ϕ)dV, for ℓf → 0, (3)  

where γ is the so-called crack surface density functional and Gc is the material fracture energy [1,51]. The latter provides a measure of 
the toughness of the solid, as first presented by Griffith [1] and Irwin [51] for elastic solids and later extended to account for inelastic 
energy dissipation by Orowan [52]. 

2.2. Principle of virtual work and balance of forces 

We proceed to derive the balance equations using the principle of virtual work. The Cauchy stress tensor σ is introduced, which is 
work conjugate to the strain tensor ε. Correspondingly, a traction T is defined on the boundary ∂Ω, which is work conjugate to the 
displacements u. Regarding damage, we introduce a scalar stress-like quantity ω, which is work conjugate to the phase field ϕ, and a 
phase field micro-stress vector ξ that is work conjugate to the gradient of the phase field ∇ϕ. The phase field is assumed to be driven 
solely by the energy being released by the solid; i.e., no external traction is associated with ϕ. Accordingly, in the absence of body 
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forces, the principle of virtual work is given by: 
∫

Ω
{σ : δε + ω ⋅ δϕ + ξ ⋅ δ∇ϕ}dV =

∫

∂Ω
(T ⋅ δu)dS, (4)  

where δ denotes a virtual quantity. This equation must hold for an arbitrary domain Ω and for any kinematically admissible variations 
of the virtual fields. Hence, by application of the Gauss’s divergence theorem, the local force balances are given by: 

∇ ⋅ σ = 0
∇ ⋅ ξ − ω = 0 in Ω, (5)  

with natural boundary conditions: 

σ ⋅ n = T
ξ ⋅ n = 0 on ∂Ω. (6)  

2.3. Constitutive relations 

Now, we shall make constitutive choices for the deformation and fracture problems. The Taylor-based strain gradient plasticity 
theory adopted for the constitutive deformation behaviour of the solid is presented first (Section 2.3.1). Then, the phase field choices of 
crack density functional, fracture driving force and degradation function are described in Section 2.3.2. 

2.3.1. Mechanism-based strain gradient plasticity 
The elastic–plastic response of the solid is described by the so-called mechanism-based strain gradient (MSG) plasticity theory 

[37,53]. The aim is to capture the role of GNDs in the mechanics of crack initiation and growth. MSG plasticity theory is grounded on 
Taylor’s dislocation model [50] where the shear flow stress τ is defined in terms of the dislocation density ρ, the shear modulus μ and 
the Burgers vector length b as 

τ = αμb
̅̅̅ρ√
. (7)  

Here, α is an empirical coefficient that is assumed to be equal to 0.5. The dislocation density ρ is additively decomposed into the density 
of statistically stored dislocations (SSDs), ρS, and the density of GNDs, ρG, as 

ρ = ρS + ρG. (8)  

Defining r as Nye’s factor, which is assumed to be equal to 1.9 for fcc polycrystals, the GND density ρG is related to the effective plastic 
strain gradient ηp by 

ρG = r
ηp

b
. (9)  

The effective plastic strain gradient ηp is defined by considering three invariants of the plastic strain gradient tensor, as follows 

ηp =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
c1ηpηp + c2ηpηp + c3ηpηp

√
. (10)  

The coefficients have been determined to be c1 = 0, c2 = 1/4 and c3 = 0 from three dislocation models for bending, torsion and void 
growth [37] leading to 

ηp =

̅̅̅̅̅̅̅̅̅̅̅
1
4

ηpηp

√

(11)  

where the components of the strain gradient tensor are given by 

ηp
ijk = εp

ik,j + εp
jk,i − εp

ij,k (12)  

In Taylor’s dislocation model, the tensile flow stress σflow is the product of the shear flow stress τ and Taylor’s factor M, which is equal to 
3.06 for fcc metals, so as 

σflow = Mτ (13)  

Rearranging (7)–(9) and substituting into (13) renders 

σflow = Mαμb
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ρS + r
ηp

b

√

(14)  

The SSD density ρS can be readily determined from (14) knowing the relation in uniaxial tension (ηp = 0) between the flow stress and 
the material stress–strain curve, 
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ρS =

[
σref f (εp)

Mαμb

]2

(15)  

Here, σref is a reference stress and f is a non-dimensional function of the equivalent plastic strain εp, as given by the uniaxial 
stress–strain curve. Substituting into (14), the flow stress σflow reads 

σflow = σref

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f 2
(
εp
)
+ ℓpηp

√

(16)  

where ℓp is the intrinsic material plastic length parameter, which enters the constitutive equation as a result of dimensional consis
tency. The value of ℓp is commonly obtained by fitting micro-scale experiments [54]. The model recovers the conventional von Mises 
plasticity solution when ℓp = 0. It remains to make constitutive choices for σref and f(εp); unless otherwise stated, we here assume the 
following power-law hardening behaviour: 

σ = σref f (εp) = σY

(
E
σY

)N(
εp +

σY

E

)N
= σY

(

1 +
Eεp

σY

)N

(17)  

where σY is the initial yield stress and N is the strain hardening exponent. This choice of hardening law leads to a power law relation 
between ρS and εp; this description can be enriched to account for the processes of multiplication and annihilation of SSDs (see, e.g., 
[55,56]). 

2.3.2. Phase field fracture 
Variational phase field fracture models differ on their choices for the crack density functional, the fracture driving force and the 

degradation function. Here, we outline our choices, which generally correspond to those of the standard or AT2 phase field model [57] 
and include a driving force for fracture that considers both elastic and plastic strain energy densities. We start by defining the total 
potential energy of the solid as, 

W(ε(u), ϕ, ∇ϕ ) = ψ(ε(u), g(ϕ) )+φ(ϕ, ∇ϕ) (18)  

where ψ is the strain energy density and φ is the fracture energy density. The total strain energy density ψ can be additively 
decomposed into its elastic ψe and plastic ψp parts, and thus computed as follows: 

ψ = ψe(εe)+ψp(εp) =
1
2

λ[tr(εe) ]
2
+ μ tr

[
(εe)

2 ]
+

∫ t

0
(σ : ε̇p

)dt. (19)  

The Cauchy stress tensor is then defined as σ = ∂εψ . In this work, the fracture driving force is taken to be equal to the total strain energy 
density, following Miehe et al. [30] and Borden et al. [29]. Other approaches have also been considered in the literature. For example, 
only the elastic, stored energy is assumed to be available for crack growth in Refs. [26,27]. A suitable choice is not straightforward. In 
quasi-static experiments at room temperature, most of the plastic work is dissipated into heat [58] and is not available to be converted 
into fracture energy. However, an energy balance ̀a la Griffith is not suitable for fracture processes involving significant plasticity [59]. 
For example, the assumption of a continuous temperature at the crack tip is no longer valid as local plastic flow constitutes a source of 
heat [60]. Thus, in the case of fracture in the presence of significant plastic flow, the phase field balance law weakens its connection 
with Griffith’s (and Orowan’s) thermodynamics and becomes more phenomenological in nature. Unlike some classes of plasticity 
damage models, the contribution of the elastic work to fracture is not neglected, and this allows using the same framework for pre
dicting ductile damage and quasi-cleavage fracture, as observed in (e.g.) embrittled alloys. 

The strain energy density of the solid diminishes with increasing damage through the degradation function g(ϕ), which must fulfill 
the following conditions: 

g(0) = 1, g(1) = 0, g′(ϕ)⩽0 for 0⩽ϕ⩽1. (20)  

Here, we choose to adopt the widely used quadratic degradation function such that 

g(ϕ) = (1 − ϕ)2 (21)  

We proceed to formulate the fracture energy density as, 

φ(ϕ, ∇ϕ) = Gcγ
(

ϕ,∇ϕ
)

= Gc
1

4cwℓf

(
w
(

ϕ
)
+ ℓ2

f

⃒
⃒
⃒∇ϕ|2

)
. (22)  

where ℓf is the phase field length scale, cw is a scaling constant and w(ϕ) is the geometric crack function. The constitutive choice for the 
geometric crack function must satisfy the following conditions: 

w(0) = 0, w(1) = 1, w′(ϕ)⩾0 for 0⩽ϕ⩽1. (23)  

The scaling constant cw can be derived from the geometric crack function: 
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cw =

∫ 1

0

̅̅̅̅̅̅̅̅̅̅
w(ζ)

√
dζ. (24)  

Here, we assume w(ϕ) = ϕ2 and cw = 1/2, which are constitutive choices associated with the so-called AT2 phase field model. Without 
loss of generality, one can re-formulate the total potential energy of the solid (18) as, 

W = g(ϕ)ψ +
Gc

4cw

(
1
ℓf

w(ϕ) + ℓf |∇ϕ|2
)

(25)  

from which the fracture micro-stress variables ω and ξ can be readily derived as follows. While the scalar micro-stress ω reads 

ω =
∂W
∂ϕ

= g′

(ϕ)ψ +
Gc

4cwℓf
w′

(ϕ), (26)  

the phase field micro-stress vector ξ is given by, 

ξ =
∂W

∂∇ϕ
=

ℓf

2cw
Gc∇ϕ. (27)  

Inserting Eqs. (26) and (27) into the phase field balance Eq. (5b), the phase field evolution law can be reformulated as: 

Gc

2cw

(
w′

(ϕ)
2ℓf

− ℓf∇
2ϕ

)

+ g
′

(ϕ)ψ = 0 (28)  

Finally, we note that the phase field length scale ℓf can be related to the material strength [61,62]. Consider a simple 1D problem, such 
as the tensile testing of a smooth linear elastic bar; in the phase field evolution law ∇ϕ = 0 and ψ = Eε2/2, such that solving for ϕ in 
(28) renders: 

ϕ =
Eε2ℓf

Gc + Eε2ℓf
. (29)  

Hence with σ0 denoting the undamaged stress, the effective stress σ = (1 − ϕ)2σ0 reaches a maximum at 

σ̂ =

(
27EGc

256ℓf

)1/2

. (30)  

3. Numerical implementation 

We proceed to describe the numerical implementation of the coupled deformation-fracture theory presented in Section 2. First, in 
Section 3.1, the details of the implementation of the mechanism-based strain gradient (MSG) plasticity constitutive material model are 
presented. Numerical aspects related to the phase field problem are described in Section 3.2; namely, the need to enforce irreversibility 
and to prevent damage under compression. Finally, in Section 3.3, the weak form is discretised and the stiffness matrices and residuals 
of the coupled problem are derived. 

3.1. First-order MSG plasticity implementation 

We choose to implement the MSG plasticity constitutive model using a first-order scheme. First-order and second-order imple
mentations of MSG plasticity predict identical results over their physical domain of validity [63,64] and the use of a lower order 
approach circumvents convergence issues associated with the use of higher order terms [65]. A viscoplastic approach shall be adopted 
to achieve a first-order, self-consistent implementation of MSG plasticity. Recall that the Taylor dislocation model defines the flow 
stress σflow to be dependent on both the equivalent plastic strain εp and the effective plastic strain gradient ηp, see (16). It then follows 
that, 

σ̇flow =
∂σflow

∂εp ε̇p
+

∂σflow

∂ηp η̇p
. (31)  

Thus, as noted by Huang et al. [63], for a plastic strain rate ε̇p proportional to the deviatoric stress σ′, a self contained constitutive 
model cannot be obtained due to the term η̇p. A viscoplastic formulation can be used to relate the equivalent plastic strain rate ε̇p to the 
effective stress σe (rather than its rate), such that, 

ε̇p
= ε̇

⎡

⎢
⎣

σe

σref

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f 2
(
εp
)
+ ℓpηp

√

⎤

⎥
⎦

m

. (32)  
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Note that (32) differs from a standard viscoplastic model in that the reference strain rate ε̇0 has been replaced by the effective strain 
rate ε̇ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(2/3)ε′ : ε′

√
, which facilitates attaining the rate-independent limit [66]. As shown by Huang et al. [63], the rate-independent 

result is well approximated for values of m equal or larger than 5. A magnitude of m = 5 is adopted throughout this work. 
The first-order version of MSG plasticity, so-called conventional mechanism-based strain gradient (CMSG) plasticity model, in

corporates gradient effects through the incremental plastic modulus. The balance equation (5a) is identical to that of the conventional 
plasticity theory and changes are implemented in the computation of the material Jacobian Cep and, consequently, of the stress tensor 
σ. The equations relating the rate of the stress tensor with the volumetric strain rate tr(ε̇) and the deviatoric strain rate ε̇′ are identical to 
conventional plasticity. Thus, for a bulk modulus K and a shear modulus μ, 

tr(ε̇) = tr(σ̇)
3K

, (33)  

ε̇′ = σ̇
2μ +

3ε̇p

2σe
. (34)  

Re-arranging Eqs. (32)–(34) one can obtain the material Jacobian. Thus, the rate of the stress tensor reads 

σ̇ = Ktr(ε̇)I+ 2μ
{

ε̇′ − 3ε̇
2σe

[ σe

σref

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f 2
(
εp
)
+ ℓpηp

√

]m

σ̇′

}

. (35)  

To compute the effective strain gradient ηp, we first interpolate the components of the plastic strain tensor εp within the element and 
then differentiate the shape functions. 

3.2. Addressing irreversibility and crack growth in compression 

Damage must be an irreversible process, i.e. 

ϕ̇⩾0, (36)  

and constraints should be defined to enforce this. Here, we choose to define a history field variable ℋ [8] to ensure damage irre
versibility. Since the effective plastic work is assumed to increase monotonically, the history field variable only relates to the elastic 
contribution to fracture, such that the following Karush–Kuhn–Tucker (KKT) conditions are satisfied: 

ψe − ℋ⩽0, ℋ̇⩾0, ℋ̇(ψe − ℋ) = 0 . (37)  

Accordingly, for a current time t, over a total time tt , the history field can be defined as, 

ℋ = maxt∈[0,tt ] ψe(t). (38)  

Moreover, we introduce a decomposition of the elastic strain energy density ψe to prevent cracking in compressive strain states. 
Specifically, we use the volumetric-deviatoric split proposed by Amor et al. [67], such that ψe is decomposed into tensile ψe

+ and 
compressive ψe

− terms, which are defined as follows: 

ψe
+ =

1
2

λ〈tr(ε)〉2
+ + μ(ε′ : ε′) (39)  

ψe
− =

1
2

λ〈tr(ε)〉2
− (40)  

where 〈 〉 denotes the Macaulay brackets. The present volumetric-deviatoric split is implemented using a so-called hybrid approach 
[68]. That is, the split is not considered in the balance of linear momentum and is only taken into consideration in the phase field 
evolution law. Accordingly, the history field is based on the largest value of ψe

+ and will be referred to as ℋ+ henceforth. 

3.3. Finite element discretisation 

Recall the principle of virtual work (4) and consider the constitutive choices outlined in Sections 2.3 and 3.2. The weak form for the 
coupled deformation-phase field fracture problem reads 

∫

Ω

{

(1 − ϕ)2σ0 : δε − 2(1 − ϕ)δϕ (ℋ+ + ψp) + Gc

(
ϕ
ℓf

δϕ + ℓf∇ϕ ⋅ ∇δϕ
)}

dV = 0, (41)  

where σ0 is the undamaged stress tensor. Now, adopting Voigt notation, consider the following finite element interpolation for the 
nodal variables: the displacement vector u and the phase field ϕ, 
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u =
∑n

i=1
Niui, ϕ =

∑n

i=1
Niϕi . (42)  

Here, n is the number of nodes and Ni are the interpolation matrices - diagonal matrices with the nodal shape functions Ni as com
ponents. Similarly, the corresponding gradient quantities are discretised as follows, 

ε =
∑n

i=1
Bu

i ui, ∇ϕ =
∑n

i=1
Biϕi, (43)  

where Bi are vectors with the spatial derivatives of the shape functions and Bu
i denotes the standard strain–displacement matrices. 

Now, making use of this discretisation, and considering that (41) must hold for arbitrary values of the primal kinematic variables, the 
residuals can be derived as follows: 

ru
i =

∫

Ω

{[
(1 − ϕ)2

+ κ
](

Bu
i

)T σ0
}

dV (44)  

rϕ
i =

∫

Ω

[

− 2
(

1 − ϕ
)

Ni(ℋ
+ + ψp) + Gc

(
ϕ
ℓf

Ni + ℓf BT
i ∇ϕ

)]

dV (45)  

with κ being a sufficiently small numerical parameter introduced to keep the system of equations well-conditioned when ϕ = 1. We 
choose to adopt a value of κ = 1 × 10− 7 in this work. The components of the stiffness matrices can then be obtained by differentiating 
the residuals with respect to the incremental nodal variables as follows: 

Ku
ij =

∂ru
i

∂uj
=

∫

Ω

{[
(1 − ϕ)2

+ κ
](

Bu
i

)T CepBu
j

}
dV, (46)  

Kϕ
ij =

∂rϕ
i

∂ϕj
=

∫

Ω

{[

2(ℋ+ + ψp) +
Gc

ℓf

]

NiNj + Gcℓf BT
i Bj

}

dV. (47)  

The linearised finite element system is solved in an incremental manner, using the Newton–Raphson method. The solution scheme 
follows a so-called staggered approach [8], in that the solutions for the displacement and phase field problems are obtained sequen
tially. We note that, while working on this manuscript, two works have appeared showing that quasi-Newton solution schemes can be 
used to enable robust and efficient (unconditionally stable) monolithic implementations [69,70]. The use of quasi-Newton schemes 
will be the aim of future endeavours. 

4. Results 

We proceed to showcase the capabilities of the model in predicting elastic–plastic fracture and investigate the interplay between 
the plastic and fracture length scales. Firstly, we use a boundary layer model to conduct a parametric study and estimate the influence 
of different conditions on the crack growth resistance (Section 4.1). Secondly, in Section 4.2, crack propagation is modelled in a 
compact tension experiment. Finally, crack nucleation and subsequent failure is predicted in an asymmetric double-notched specimen 
(Section 4.3). 

4.1. Crack growth resistance curves (R-curves) 

We investigate the role of fracture and plastic length scale parameters on the fracture resistance by prescribing a remote mode I 
elastic KI-field. Under small scale yielding conditions, the stress state in a cracked solid is characterised by the stress intensity factor KI. 
Thus, the crack growth resistance can be characterised by predicting the crack extension Δa as a function of the remote KI, in what is 
usually referred to as crack growth resistance curves or R-curves. The remote KI-field can be prescribed using the William’s solution 
[71] and prescribing the displacement of the outer nodes of the model. Considering both a polar (r, θ) and a Cartesian (x, y) coordinate 
system centred at the crack tip, with the crack plane along the negative x-axis, the displacement field associated with a given value of 
KI reads: 

ui =
KI

E
r1/2fi(θ, ν) , (48)  

where E is Young’s modulus, ν denotes Poisson’s ratio, the subscript index i equals x or y, and the functions fi(θ, ν) are given by 

fx =
1 + ν
̅̅̅̅̅
2π

√ (3 − 4ν − cosθ)cos
(

θ
2

)

(49)  

fy =
1 + ν
̅̅̅̅̅
2π

√ (3 − 4ν − cosθ)sin
(

θ
2

)

(50) 
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We consider a circular solid and prescribe the magnitude of the displacement field in the outer boundary in agreement with (48)–(50). 
As shown in Fig. 1, only the upper half of the model is considered due to symmetry. The crack is introduced by defining the initial value 
of the phase field equal to one along the crack plane: ϕ(t = 0) = 1. The finite element mesh is refined in the crack extension region, 
with the characteristic element length being in all cases 5 times smaller than the phase field length scale, to ensure mesh insensitive 
results [23,72]. The model is discretised with a total of 10,550 quadratic quadrilateral elements with reduced integration and three 
degrees-of-freedom per node (ux,uy,ϕ). 

Fracture is simulated in a solid with the following material properties: σY/E = 0.003, Poisson’s ratio ν = 0.3, and strain hardening 
exponent N = 0.2. Inspired in the cohesive zone modelling work by Tvergaard and Hutchinson [73], we define a reference stress 
intensity factor as, 

K0 =

(
EGc

1 − ν2

)1/2

(51)  

and fracture process zone length as, 

R0 =
1

3π(1 − ν2)

EGc

σ2
Y
. (52)  

A relation between the non-dimensional group ℓf/R0 and the material strength can be established by considering both (30) and (52), 
such that 

R0

ℓf
=

256
81π(1 − ν2)

(
σ̂
σY

)2

≈

(
σ̂
σY

)2

. (53)  

Thus, the non-dimensional group R0/ℓf governs the material strength, which will influence the dissipation taking place with crack 
growth. Another relevant non-dimensional set is ℓp/R0, governing the capacity of the material to exhibit additional hardening due to 
the presence of plastic strain gradients and GNDs. We shall investigate the role that both ℓf/R0 and ℓp/R0 have on the material 
response. The results obtained are shown in Figs. 2 and 3, in terms of the normalised applied KI/K0 versus the normalised crack 
extension Δa/R0, for different ℓf/R0 and ℓp/R0 ratios. 

Each of the sub-figures of Fig. 2 shows crack growth resistance curves for four selected σ̂/σY ratios for a given plastic length scale 

Fig. 1. Crack growth resistance model: geometry (in mm), loading configuration for the boundary layer formulation and detail of the finite 
element mesh. 
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value: (a) ℓp/R0 = 12.5, (b) ℓp/R0 = 25, (c) ℓp/R0 = 75, and (d) ℓp/R0 = 125. For all values of ℓp/R0, a flat R-curve is predicted when 
σ̂/σY = 0.5. This is in agreement with expectations, as there is no plastic dissipation if the yielding stress is not reached. Larger values 
of σ̂/σY exhibit a rising R-curve due to inelastic dissipation. We also observe that the initiation of crack growth occurs at KI ≈ K0 for all 
σ̂/σY and ℓp/R0 combinations. Again, this is in agreement with expectations - in the presence of a large crack (toughness-driven 
failure), phase field models are able to capture crack initiation at the appropriate energy release rate [10]. Comparing results across 
sub-figures, it can be readily seen that larger values of ℓp/R0 reduce the degree of toughening associated with plastic dissipation. This is 
more clearly observed in Fig. 3, where the different ℓp/R0 curves are shown for specific choices of σ̂/σY . A larger ℓp/R0 ratio implies a 
greater influence of plastic strain gradients and GNDs, which translates into higher crack tip stresses that facilitate crack growth. It is 
worth emphasising that cracking is observed for σ̂/σY values that are significantly larger than the strengths at which failure is pre
cluded when using the conventional plasticity theory. In the absence of gradient effects, crack tip stresses are not high enough to 
trigger crack growth for strength values equal or larger than σ̂ = 4.5σY for a material with N = 0.2 and σY/E = 0.003 [34,73,74]. The 
low crack tip stresses attained with conventional plasticity theories are at odds with the observations of brittle fracture in the presence 
of plasticity, as in low temperature cleavage of ferritic steels [75], the failure of bi-material interfaces or hydrogen embrittlement [76]. 
Brittle interfaces have strengths on the order of σ̂ = 10σY , which can only be reached if the local strengthening effect of crack tip 
plastic strain gradients is accounted for. 

4.2. Compact tension sample 

We shall now simulate a compact tension fracture experiment. The geometry is shown in Fig. 4, with the dimensions given in mm. 
The load is applied by prescribing the vertical displacement of the nodes in the pin holes, which are not allowed to move in the 
horizontal direction. We assume a material with Young’s modulus E = 71.48 GPa, Poisson’s ratio ν = 0.3, initial yield stress σY = 345 
MPa and strain hardening exponent N = 0.2. The material toughness is chosen to be equal to Gc = 9.31 MPa⋅mm and the phase field 
length scale equals ℓf = 0.15 mm. Accordingly, the characteristic element size along the crack propagation region is chosen to be of 
0.03 mm. The finite element mesh employed is shown in Fig. 4; approximately 28,000 quadratic quadrilateral elements have been 
employed. 

Fig. 2. Crack growth resistance: influence of the plastic length scale ℓp: (a) ℓp/R0 = 12.5, (b) ℓp/R0 = 25, (c) ℓp/R0 = 75, and (d) ℓp/R0 = 125.  
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The phase field contours for different levels of the applied displacement are shown in Fig. 5. The same qualitative trend is observed 
for both the conventional plasticity case (ℓp/R0 = 0) and the gradient-enhanced analysis (ℓp/R0 > 0). A mode I crack starts growing 
from the tip of the initial defect and propagates all the way up to the final failure of the compact tension specimen. Given the dif
ferences between the applied displacement u values reported in each sub-figure, it can be observed that crack growth takes place in a 
stable manner. 

The force versus displacement curves obtained for selected values of the plastic length scale ℓp are shown in Fig. 6. In all cases, the 
force increases with the applied displacement, up to a maximum value located within the 2.3–2.8 kN range, and then drops in a rather 
smooth manner, as a result of the stable crack propagation observed. Increasing the magnitude of the plastic length scale translates into 
higher crack tip stresses, which facilitate fracture: the peak load decreases with increasing ℓp/R0. The softening part of the force versus 
displacement response exhibits a similar qualitative trend for all ℓp/R0 values. 

Finally, Fig. 7 shows the contours of equivalent plastic strain for the cases of ℓp/R0 = 0 and ℓp/R0 = 1.53, shortly before the onset 
of crack growth. It can be observed that the shape and size of the plastic zone is similar for both conventional and gradient-enhanced 
plasticity. However, the local hardening resulting from large plastic strain gradients at the crack tip significantly reduces the crack tip 
plasticity levels in the ℓp/R0 > 0 case. The maximum εp values observed in the case of conventional plasticity exceed 10%, indicating 
that a finite strain analysis would provide a more precise description in such a case. 

4.3. Asymmetric double-notch specimen 

We investigate the capabilities of the model for predicting mixed-mode fracture and the coalescence of cracks by simulating 
fracture in an asymmetrically notched plane strain bar. The geometry (in mm), finite element mesh and loading configurations are 
shown in Fig. 8. Two notches of 2.5 mm radii are present at each side of the sample. The bottom edge of the sample has its vertical 
displacement constrained while a remote vertical displacement u is applied at the top edge. To prevent rigid body motion, the bottom- 
left corner has its horizontal displacement constrained. Following the conventional plasticity study by Fang et al. [77], the material is 

Fig. 3. Crack growth resistance: influence of the material strength σ̂ (phase field length scale ℓf ): (a) σ̂/σY = 0.5, (b) σ̂/σY = 3, (c) σ̂/σY = 4.5, and 
(d) σ̂/σY = 5.6. 
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Fig. 5. Compact tension sample: phase field ϕ contours for selected load levels, as characterised by the applied displacement u.  

Fig. 4. Compact tension sample: geometry (in mm), loading configuration and finite element mesh.  

Fig. 6. Compact tension experiment: force versus displacement response obtained for selected values of the plastic length scale ℓp/R0.  
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assumed to exhibit linear work hardening such that, instead of (17), the conventional strain hardening behaviour is characterised by, 

σ = σY

(

1 +
εpEt

σY

)

(54)  

where Et is the elastic–plastic tangent modulus, assumed to be equal to Et = 714.8 MPa. Otherwise, the material properties resemble 
those of the previous case study, E = 71.48 GPa, ν = 0.3, and σY = 345 MPa. Also, the critical energy release rate and the phase field 
length scale respectively read Gc = 9.31 MPa⋅mm and ℓf = 0.15 mm. As shown in Fig. 8, the mesh is refined in the potential crack 
propagation region to ensure that ℓf is resolved; the characteristic element length is at least 5 times smaller than ℓf . 

The damage contours, as characterised by the phase field order parameter, are shown in Fig. 9 for different values of the applied 
displacement. Results are shown for both the conventional plasticity case (ℓp = 0) and for the mechanism-based formulation presented 
in Section 2, with ℓp/R0 = 3.06. In both cases, it can be observed from the u values that failure occurs in a rather sudden manner, with 
two defects nucleating from the tip of each notch and very fast coalescencing with each other. 

Interestingly, it appears that the case accounting for the role of plastic strain gradients would lead to a later failure. This is arguably 
because, in this boundary value problem, failure is driven by plastic localisation. Plastic strain gradients are less relevant ahead of 
blunted notches, relative to sharp defects, so it appears likely that the main role of strain gradient hardening is to delay plastic 
localisation. This is clearly observed in the force versus displacement response. As show in Fig. 10, increasing the magnitude of the 
plastic length scale further delays the localisation event, raising the maximum load. In all ℓp/R0 cases, in agreement with the damage 
contours, a sharp drop in the load carrying capacity is observed shortly after reaching the peak load, indicative of unstable crack 
growth. 

Fig. 7. Compact tension experiment: equivalent plastic strain εp shortly before the onset of crack growth. Results are shown for both conventional 
(ℓp/R0 = 0) and gradient-enhanced plasticity (ℓp/R0 = 1.53). 

Fig. 8. Asymmetric double-notch specimen: geometry (in mm), loading configuration and finite element mesh.  
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Fig. 9. Asymmetric double-notch specimen: phase field ϕ contours for selected load levels, as characterised by the applied displacement u. Results 
are shown for both conventional plasticity (ℓp = 0) and the present dislocation-based gradient plasticity model with ℓp/R0 = 3.06. 

Fig. 10. Asymmetric double-notch specimen: force versus displacement response obtained for selected values of the plastic length scale ℓp/R0.  
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5. Conclusions 

We have presented a new non-local damage formulation for elastic–plastic solids. The theoretical and computational framework 
presented builds upon two main pillars: (i) a dislocation-based model to capture micro-scale plastic deformation, and (ii) a phase field 
description of damage. The motivation behind this enriched continuum description of elastic–plastic deformation is to incorporate the 
role that plastic strain gradients (and geometrically necessary dislocations) play in promoting strain hardening and elevating the 
stresses ahead of cracks and other sharp defects. The phase field model provides a suitable energy-based framework for simulating the 
onset and evolution of damage without the limitations of discrete approaches. The non-locality of the plasticity and damage formu
lations provides a regularised framework for softening and damage, and results in the existence of two length scales in the constitutive 
theory: a plastic length scale ℓp that can be calibrated with micro-scale experiments, and a fracture length scale ℓf , which governs the 
strength of the solid. 

The non-local plastic-damage formulation presented is numerically implemented using the finite element method. Several nu
merical experiments are conducted to investigate the predictions of the model in a wide range of scenarios: small and large scale 
yielding, sharp and blunted defects, linear and power-law hardening behaviour. We find that, in agreement with expectations, 
decreasing the phase field length scale results in a strength elevation, which translates into a large degree of plastic dissipation during 
the crack propagation process; i.e., a higher crack growth resistance. The role of the plastic length scale is more difficult to anticipate. 
In the presence of a sharp crack, large gradients in plastic strain exist locally, elevating crack tip stresses much beyond the predictions 
of conventional plasticity. This results in a significant reduction of crack growth resistance and a smaller steady-state toughness. 
Failure is observed at high material strengths, rationalising brittle fracture in the presence of plasticity. However, in scenarios where 
failure is driven by the localisation of plastic flow, plastic strain gradients appear to delay fracture. The additional hardening resulting 
from the extra storage of dislocations reduces the plastic work, for the same load level, relative to conventional von Mises plasticity. 
This behaviour is likely to be related to the choice of a fracture driving force based on the total strain energy density (elastic and 
plastic). Notwithstanding, it appears sensible to consider, to a certain extent, the plastic work in the damage process when simulating 
ductile fracture mechanisms. 
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[12] Tan W, Martínez-Pañeda E. Phase field predictions of microscopic fracture and R-curve behaviour of fibre-reinforced composites. Compos. Sci. Technol. 2021; 
202:108539. 

[13] Bui TQ, Hu X. A review of phase-field models, fundamentals and their applications to composite laminates. Eng. Fract. Mech. 2021;248:107705. 
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