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Abstract

We present a generalised phase field-based formulation for predicting fatigue crack growth in metals. The theoretical
ramework aims at covering a wide range of material behaviour. Different fatigue degradation functions are considered and
heir influence is benchmarked against experiments. The phase field constitutive theory accommodates the so-called AT1, AT2

and phase field-cohesive zone (PF-CZM) models. In regards to material deformation, both non-linear kinematic and isotropic
hardening are considered, as well as the combination of the two. Moreover, a monolithic solution scheme based on quasi-
Newton algorithms is presented and shown to significantly outperform staggered approaches. The potential of the computational
framework is demonstrated by investigating several 2D and 3D boundary value problems of particular interest. Constitutive and
numerical choices are compared and insight is gained into their differences and similarities. The framework enables predicting
fatigue crack growth in arbitrary geometries and for materials exhibiting complex (cyclic) deformation and damage responses.
The finite element code developed is made freely available at www.empaneda.com/codes.
c⃝ 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Fatigue-induced fracture is considered to be one of the most frequent causes of failure in engineering components.
ue to its complex nature, the development of computational models capable of predicting fatigue cracking is

egarded to be highly challenging and has been the subject of extensive research. Generally, the evolution of fatigue
amage occurs in different stages. Firstly, nucleation of permanent damage takes place as a result of sub- and
icrostructural changes within the material, followed by the creation of microscopic cracks. Subsequently, these
icroscopic flaws start growing and eventually coalescence, leading to the formation of dominant macro-cracks.
hese macro-cracks then propagate leading to structural instability and complete fracture of the component. Fatigue
esign is commonly based on classical empirical methods [1]. Such methods involve the estimation of the total life
o failure as a function of the cyclic stress range, which is referred to as the S-N curve approach, or the strain range
plastic or total). These fatigue design strategies are commonly referred to as total-life approaches, where the fatigue
ife is defined as the number of cycles (N f ) or reversals (2N f ) to failure. The stress-life or S-N curve approach
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was first developed by Wöhler [2]. Under low cyclic stress amplitudes, the material behaves mainly in an elastic
anner and a very large number of cycles are required to cause failure; normally more than 106, which is referred

o as High-cycle Fatigue (HCF). This approach has become popular in applications involving low-amplitude cyclic
tresses such as steel bridges under traffic loading and railway axles. On the other hand, a much lower number
f cycles are needed to cause failure if the applied stresses are large enough to cause plastic deformations; in the
rder of 102 to 104, a regime referred to as Low-cycle Fatigue (LCF). In such situations, fatigue life is determined
n terms of the applied strain range, as first proposed by Coffin [3] and Manson [4]. In the case of components
xperiencing very large plastic deformations, complete structural failure can occur after very few cycles [5,6]. This
s often referred to as Extremely- or Ultra-low Cycle fatigue (ELCF or ULCF). Due to their empirical nature, stress-
ife and strain-based approaches have limited applicability and cannot be readily generalised to arbitrary materials,
eometries and loading histories.

Variational phase field fracture models can provide a reliable computational framework to predict High-, Low-
nd Extremely low-cycle fatigue, overcoming the limitations of semi-empirical approaches. Phase field fracture
ethods have been gaining increasing attention. Predictions are based on the thermodynamic framework outlined

n the works of Griffith [7] and Irwin [8], where a crack would only propagate if the energy release rate exceeds a
ritical value, the material toughness Gc. Francfort and Marigo [9] introduced a variational formulation for Griffith’s
hermodynamical framework, including the surface energy dissipated due to crack formation in the total potential
nergy. Inspired by the work of Mumford and Shah [10] on image segmentation, Bourdin et al. [11,12] introduced a
calar phase field variable that regularises the discrete crack topology into a diffuse crack representation. In addition,

iehe and co-workers [13,14] have made significant contributions to the development of the method by proposing
ew robust solution schemes.

Phase field fracture methods have been used in numerous applications, including dynamic fracture [15–17],
racking of composite materials [18–21], ductile damage [22–24], hydrogen-assisted cracking [25–28], and fracture
f functionally graded materials [29,30], among many others; see Refs. [31,32] for an overview. Recently, the
uccess of variational phase field methods has been extended to fatigue crack growth [33–37]. This is an exciting
nd natural extension for phase field fracture; Griffith’s thermodynamic principles should hold for fatigue crack
rowth and metal fatigue was actually the motivation for Griffith’s seminal work [7]. Lo et al. [34] combined
phase field kinetic law with a modified J -integral to capture Paris-law type fatigue crack growth behaviour.
arrara et al. [35] proposed a novel variational framework to capture the fatigue behaviour of brittle materials by

ntroducing a fatigue degradation function that degrades the material toughness. Simoes and Martı́nez-Pañeda [36]
imulated the fatigue failure of a NiTi stent, accounting for both fatigue damage and phase transformations. Hasan
nd Baxevanis [37] introduced a toughness degradation law through a measure of accumulated elastic strain energy
ensity that enabled capturing both total life and defect tolerant approaches to fatigue. Golahmar et al. presented a
hase field formulation for hydrogen assisted fatigue [38]. However, these studies are all limited to the analysis of
inear elastic materials; only very recently have phase field methods been used to predict fatigue crack growth in
lastic–plastic solids. Seiler et al. [39] used a local strain approach to empirically incorporate plasticity via Neuber’s
ule. Haveroth et al. [40] presented a new thermo-mechanical fatigue formulation using a Voce-type hardening law
nd a new degradation function that degrades both elastic and plastic strain energy densities. Finally, Ulloa et al. [41]
eveloped a phase field fatigue formulation for elastic–plastic solids suitable for both low and high cycle fatigue
egimes and capable of capturing ratcheting effects.

In this work, we present a generalised formulation for fatigue damage in metals. We aim to model a general class
f elastic–plastic materials and thus account for the combination of non-linear isotropic and kinematic hardening
ffects. Moreover, unlike previous work, we do not restrict our attention to one class of phase field fracture models
ut accommodate both brittle and quasi-brittle formulations; namely, the so-called AT1, AT2 and PF-CZM models.

In addition, we couple our phase field fatigue framework with a quasi-Newton monolithic solution scheme and
show that it is more robust and significantly more efficient than the widely-used staggered schemes. This is of
notable importance given the computational cost associated with cycle-by-cycle fatigue predictions. Several 2D
and 3D boundary value problems are investigated to gain insight into the various constitutive choices of the
model for deformation and fracture. Firstly, we simulate the fatigue failure of planar specimens under uniaxial
cyclic loading. Predictions are compared with experiments on a carbon steel that exhibits combined non-linear
isotropic and kinematic hardening. Secondly, fatigue crack growth in a Compact Tension (CT) sample is investigated,

evaluating the differences between various phase field fracture models and solution schemes. Thirdly, the failure of
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an asymmetrically-notched bar is simulated to gain insight into the interplay between hardening mechanisms and
damage. Finally, we demonstrate the capabilities of the computational framework in predicting the failure of 3D
components by modelling crack nucleation and growth in a pipe-to-pipe connection.

The remainder of this manuscript is organised as follows. The generalised theoretical framework presented is
described in Section 2. In Section 3 we provide details of the numerical implementation, including the monolithic
quasi-Newton solution scheme. The results computed are shown and discussed in Section 4. Finally, the manuscript
ends with concluding remarks in Section 5.

2. Theory

In this section, we present our generalised formulation, suitable for arbitrary constitutive choices of crack density
function, fracture driving force, degradation function and cyclic material response. The theory refers to an elastic–
plastic body occupying an arbitrary domain Ω ⊂ Rn (n ∈ [1, 2, 3]), with an external boundary ∂Ω ⊂ Rn−1, on
which the outwards unit normal is denoted as n. We shall first define the kinematic variables (Section 2.1), then
derive the force balances using the principle of virtual power (Section 2.2), and finally particularise our theory to
relevant constitutive choices for the deformation and fracture behaviour of the solid (Section 2.3).

2.1. Kinematics

The primary kinematic variables are the displacement field vector u and the damage phase field φ. Small
displacements and strains are assumed, such that the total strain tensor ε reads

ε =
1
2

(
∇uT

+ ∇u
)
. (1)

lso, we adopt the standard decomposition of strains into elastic and plastic components, such that:

ε = εe
+ ε p . (2)

The nucleation and growth of cracks are described by using a smooth continuous scalar phase field φ ∈ [0; 1]. The
use of an auxiliary phase field variable to implicitly track interfaces has proven to be a very compelling computational
approach for numerous interfacial problems, such as microstructural evolution [42] and metallic corrosion [43]. In
the context of fracture mechanics, the phase field variable resembles a damage variable; it must grow monotonically
φ̇(x, t) ≥ 0 and describes the degree of damage, with φ = 1 denoting fracture and φ = 0 corresponding to the intact
phase. Since φ is smooth and continuous, discrete cracks are represented in a diffuse fashion, with the smearing of
racks being controlled by a phase field length scale ℓ. The aim of this diffuse representation is to introduce, over
discontinuous surface Γ , the following approximation of the fracture energy [11]:

Φ =

∫
Γ

Gc dS ≈

∫
Ω

GcΥ (φ,∇φ) dV, for ℓ → 0+, (3)

here Υ is the so-called crack surface density functional and Gc is the critical energy release rate or material
oughness. We extend this rate-independent description of fracture to accommodate time and history dependent
roblems. Thus, for a cumulative history variable ϑ̄ , which fulfils ˙̄ϑ > 0, and a fatigue degradation function f

(
ϑ̄
)
,

he fracture energy can be re-formulated as follows,

Φ =

∫ t

0

(∫
Ω

Gc f
(
ϑ̄ (t)

)
Υ̇ (φ,∇φ) dV

)
dt . (4)

As described below, this is complemented by appropriate constitutive choices that characterise the degradation
f the fracture energy with the fatigue history variable ϑ̄ .

.2. Principle of virtual power. Balance of forces

Now, let us derive the balance equations for the coupled deformation–fatigue system using the principle of virtual
ower. Define σ as the symmetric Cauchy tensor, T as a surface traction acting on the boundary of the solid ∂Ω and
as a prescribed body force per unit volume. With respect to the damage problem, we introduce a scalar stress-like
uantity ω, which is work conjugate to the phase field φ, and a phase field micro-stress vector ξ , which is work

3
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conjugate to the gradient of the phase field ∇φ. No external traction is associated with the phase field. We define
the kinematics of the body Ω using the fields u and φ. The corresponding velocities read u̇ and φ̇, while the virtual
velocities, defined over a vector space V , are denoted by ũ and φ̃ [44–46]. Accordingly, the principle of virtual

ower reads:∫
Ω

[
σ : ∇ũ + ωφ̃ + ξ · ∇φ̃

]
dV =

∫
∂Ω

(T · ũ) dS +

∫
Ω

(b · ũ) dV . (5)

By application of the Gauss divergence theorem and the fundamental lemma of calculus of variations, the local
orce balances are given by:

∇ · σ + b = 0
∇ · ξ − ω = 0

in Ω , (6)

ith natural boundary conditions:

σ · n = T
ξ · n = 0

on ∂Ω . (7)

.3. Constitutive theory

We shall now proceed to make suitable constitutive choices for the deformation, fracture and fatigue behaviour
f the solid. First, we define the total potential energy of the solid as the sum of the strain energy density of the
olid ψ and the fracture energy density ϕ, such that:

W (ε (u) , φ, ∇φ) = ψ (ε (u) , g (φ))+ ϕ (φ, ∇φ) , (8)

here g (φ) is a phase field degradation function, to be defined. The Cauchy stress tensor is then defined as σ = ∂εψ .
hus, the phase field reduces the stiffness of the solid. However, note that no damage-plasticity coupling term is
efined. The reader is referred to Alessi et al. [47] for a comprehensive discussion on potential constitutive choices
o capture the interplay between damage and elastic–plastic material behaviour. The strain energy density includes
oth elastic and plastic parts, which are computed as follows:

ψ0 = ψe (εe)
+ ψ p (ε p)

=
1
2
λ
[
tr
(
εe)]2

+ µ tr
[(

εe)2
]

+

∫ t

0

(
σ 0 : ε̇ p) dt , (9)

here λ and µ are the Lamé parameters and the subscript 0 denotes an undamaged quantity. In agreement with (4),
he fracture energy density is defined as,

ϕ = f
(
ϑ̄
)

GcΥ (φ,∇φ) = f
(
ϑ̄
) Gc

4cwℓ

(
w(φ) + ℓ2

|∇φ|
2) . (10)

ere, w(φ) is the geometric crack function, to be defined, and cw is a scaling constant, given by

cw =

∫ 1

0

√
w(ζ ) dζ . (11)

2.3.1. Strain energy decomposition
To prevent the nucleation and growth of cracks under compression, the strain energy density can be decomposed

into tensile and compressive parts as follows:

ψ
(
εe, ε p, φ

)
= g (φ)

(
ψe

+

(
εe)

+ ψ p (ε p))
+ ψe

−

(
εe) . (12)

We choose to follow the so-called volumetric–deviatoric split proposed by Amor et al. [48]. Accordingly, for a
material with bulk modulus K , the elastic strain energy density is decomposed as,

ψe
+
(ε) =

1
2

K ⟨tr
(
εe)

⟩
2
+

+ µ
(
εe ′

: εe ′
)
, ψe

−

(
εe)

=
1
2

K ⟨tr
(
εe)

⟩
2
−
, (13)

where εe ′ denotes the deviatoric part of the elastic strain tensor and ⟨ ⟩ are the Macaulay brackets.
4
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2.3.2. Karush–Kuhn–Tucker (KKT) conditions
Damage is an irreversible process and, as a consequence, the phase field evolution law must fulfil the condition

φ̇ ≥ 0. To achieve this, we follow Miehe and co-workers [13,14] and define a history variable field H. Since the
effective plastic work is assumed to increase monotonically, the history field variable only relates to the elastic
fracture driving force, ψe

+
. Thus, as dictated by the Karush–Kuhn–Tucker (KKT) conditions, the definition of H

must satisfy:

ψe
+

− H ≤ 0, Ḣ ≥ 0, Ḣ(ψe
+

− H) = 0 . (14)

Accordingly, for a current time t , within a total time tt , we define the history field as,

H = maxt∈[0,tt ]ψ
e
+
(t) . (15)

.3.3. Fatigue damage
The damage resulting from the application of cyclic loads is captured by means of a fatigue degradation function

f (ϑ̄), a cumulative history variable ϑ̄ , and a fatigue threshold parameter ϑT . We follow the work by Carrara
t al. [35] on elastic solids and consider two fatigue degradation functions; one of an asymptotic form:

f (ϑ̄(t)) =

⎧⎨⎩1 if ϑ̄(t) ≤ ϑT(
2ϑT

ϑ̄(t)+ϑT

)2
if ϑ̄(t) ≥ ϑT

(16)

nd a second one, of logarithmic form:

f (ϑ̄(t)) =

⎧⎪⎪⎨⎪⎪⎩
1 if ϑ̄(t) ≤ ϑT[
1 − κlog

(
ϑ̄(t)
ϑT

)]2
if ϑT ≤ ϑ̄(t) ≤ ϑT 101/κ

0 if ϑ̄(t) ≥ ϑT 101/κ

(17)

where κ is a material parameter that characterises the slope of the logarithmic function. The impact of these choices
ust be assessed against experiments. Here, we provide a comparison against testing data on hot-rolled structural

teels (see Section 4.1). In addition, the evolution of the fatigue history variable ϑ̄ is given by,

ϑ̄(t) =

∫ t

0
H (ϑϑ̇)|ϑ̇ | dt , (18)

where H (ϑϑ̇) is the Heaviside function such that ϑ̄ only evolves during loading.
Finally, it remains to define the fatigue threshold parameter ϑT and the fatigue history variable ϑ . For the latter,

we choose to adopt the following constitutive choice,

ϑ = g (φ)
(
H + ψ p) , (19)

which implies that fatigue damage is driven by both elastic and plastic straining. This choice is consistent with the
definition of a fracture driving force driven by both elastic and plastic strain energy densities. However, note that
the use of the history field (as opposed to ψe

+
) aims at minimising the elastic contribution, as arguably appropriate

in the context of low-cycle fatigue. For the fatigue threshold, we follow Carrara et al. [35] and assume:

ϑT =
Gc

12ℓ
, (20)

nless otherwise stated.

.3.4. Micro-force variables
We proceed to derive, without loss of generality, the fracture micro-stress variables ω and ξ . First, considering

(8), (9) and (15), we reformulate the total potential energy of the solid as,

W = g(φ)
(
H + ψ p)

+ f
(
ϑ̄
) Gc

4cw

(
w(φ)
ℓ

+ ℓ|∇φ|
2
)
. (21)

Consequently, the scalar micro-stress ω is defined as:

ω =
∂W

= g′(φ)
(
H + ψ p)

+ f
(
ϑ̄
) Gc

w′(φ) , (22)

∂φ 4cwℓ

5
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and the phase field micro-stress vector ξ reads,

ξ =
∂W
∂∇φ

=
ℓ

2cw
Gc f

(
ϑ̄
)
∇φ . (23)

The phase field evolution law (6)b can be reformulated by taking into consideration the constitutive relations
22) and (23), such that

Gc f
(
ϑ̄
)

2cw

(
w′(φ)

2ℓ
− ℓ∇2φ

)
−

Gcℓ

2cw
∇φ∇ f

(
ϑ̄
)
+ g′(φ)

(
H + ψ p)

= 0 . (24)

It is evident from (15) and (24) that the phase field evolution is driven by both elastic and plastic strain energy
ensities. This is in agreement with several phase field models for fracture in elastic–plastic solids [23,49,50].
owever, other approaches have also been considered in the literature (see, e.g. [45,51]) and the choice is not

traightforward. From a thermodynamical perspective, the majority of the energy stored in the solid (and thus
vailable to facilitate crack growth) is elastic. However, failure in ductile fracture experiments is often driven by
lastic phenomena and a simple energy balance is not suitable for crack growth processes involving significant
lasticity; e.g., the assumption of an isothermal process is no longer valid as plastic flow constitutes a source of
eat [32].

.3.5. Degradation and dissipation functions
Now, we particularise our generalised framework by making specific choices for the fracture degradation function

g(φ), the so-called dissipation function w(φ) [33,52,53] and the fracture driving force threshold Hmin . Our theory
captures both brittle and quasi-brittle phase field approaches, accommodating the so-called AT1, AT2 and PF-CZM

models. The AT1 and AT2 models are based on the Ambrosio and Tortorelli regularisation of the Mumford–Shah
functional [11,54], with the former aimed at including a purely elastic response up to the onset of damage [55].
The phase field cohesive zone model PF-CZM employed here is inspired by the work by Wu [56] and Wu and
Nguyen [57], but it employs a fracture driving force based on the strain energy density, as in Ref. [16]. In other
words, fracture is driven by both elastic and plastic strain energy densities in the three phase field models considered,
as shown in (24).

Firstly, we start by defining the phase field degradation function, which should satisfy:

g (0) = 1, g (1) = 0, g′ (φ) ≤ 0 for 0 ≤ φ ≤ 1 . (25)

For the AT1 and AT2 models the same choice is adopted; a quadratic degradation function such that,

g (φ) = (1 − φ)2 . (26)

While for the PF-CZM model, the following form is used,

g (φ) =
(1 − φ)2

(1 − φ)2 + mφ (1 − 0.5φ)
with m =

3EGc

2ℓσ 2
c
, (27)

here σc is the material strength.
Secondly, we define the dissipation function, which should fulfil the following conditions:

w (0) = 0, w (1) = 1, w′ (φ) ≥ 0 for 0 ≤ φ ≤ 1 . (28)

The specific choice w(φ) = φ2 (cw = 1/2) recovers the AT2 model while w(φ) = φ (cw = 2/3) renders the AT1

formulation. No threshold for damage exists in the AT2 case as w′(0) = 0, unlike in the AT1 model. Finally, for the
PF-CZM we have w(φ) = 4φ (cw = 4/3), where w′(0) > 0 - as in the AT1 case. Accordingly, a damage threshold
should be defined for both AT1 and PF-CZM models; the following choices are adopted here,

AT1 : Hmin =
3Gc

16ℓ
, PF − CZM : Hmin =

σ 2
c

2E
. (29)

Accordingly, in the numerical implementation of the AT1 and PF-CZM models, the history field is taken to be
the maximum of (15) and Hmin .

It is also important to note that the PF-CZM model explicitly incorporates the material strength σc into the

constitutive equations — see (27) and (29)b. For the AT1 and AT2, a relation between the strength and the phase

6
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field length scale can be derived by considering the homogeneous solution to the phase field evolution law (see,
e.g. Ref. [32]):

AT1 : σc =

√
3EGc

8ℓ
, AT2 : σc =

3
16

√
3EGc

ℓ
. (30)

.3.6. Cyclic deformation: combined isotropic/kinematic hardening
The constitutive choices for relating the stresses to the strains aim at modelling a general class of elastic–plastic

aterials. Specifically, a nonlinear combined isotropic/kinematic hardening model is used to capture a wide range
f cyclic plasticity phenomena. The model is based on the work by Lemaitre and Chaboche [58], where a von Mises
ield criterion is combined with a non-linear description of isotropic and kinematic hardening effects.

For a material with current yield stress σY , experiencing a deviatoric backstress α′, the assumed yield function
reads,

F =

√
2
3
(σ ′ − α′) : (σ ′ − α′)− σY = 0 , (31)

here the first term is the von Mises effective stress. The flow rule then reads,

ε̇ p
= ε̇ p ∂F

∂σ
(32)

where ε̇ p is the equivalent plastic strain rate, defined as ε̇ p
=
√

(2/3)ε̇ p
: ε̇ p.

The hardening evolution law includes two components: an isotropic hardening one, describing the change in
ize of the yield surface, and a kinematic hardening one, characterising the translation of the yield surface in the
tress space. We employ an exponential isotropic hardening law to relate the change in yield stress to the equivalent
lastic strain ε p and the initial yield stress σ0 as,

σY = σ0 + Q∞

[
1 − exp

(
−bε p)] , (33)

here Q∞ is the maximum change in the size of the yield surface and b determines the rate at which the size of
he yield surface changes as the plastic strain develops. On the other side, kinematic hardening effects are captured
y means of an additive combination of a purely kinematic term, as in Ziegler’s linear hardening law [59], and a
elaxation term, which introduces the non-linearity. The model can accommodate several superposed backstresses,
hich can improve predictions. Accordingly, for each backstress component,

α̇k =
Ck

σY
(σ − α) ε̇ p

− γkαk ε̇
p with α =

N∑
k=1

αk , (34)

where C and γ are parameters calibrated against experimental data from a stabilised stress–strain cycle, and N is
the number of backstresses. Note that the maximum change in backstress is controlled by the ratio C/γ , where
γ specifies the rate at which the backstress changes as the plastic strain develops. The model reduces to Ziegler’s
linear hardening law when αk = 0 and to an isotropic hardening model when both Ck and γk are zero. On the other
hand, a purely (non-linear) kinematic hardening model is recovered if σY = σ0. The one-dimensional representation
of the non-linear combined isotropic-kinematic hardening law assumed is shown in Fig. 1. The maximum uniaxial
stress attained is denoted by σmax and αs corresponds to the magnitude of the backstress at saturation.

3. Numerical implementation

Details of the numerical implementation are provided here, starting with the finite element discretisation
(Section 3.1), followed by the formulation of the residuals and the stiffness matrices (Section 3.2), and ending with
a description of the quasi-Newton algorithm employed to enable an efficient and robust monolithic implementation
(Section 3.3). The theoretical framework outlined in Section 2 is numerically implemented in the commercial finite
element package ABAQUS by developing a user-defined UELMAT subroutine, this is described in Section 3.4.1

1 The code is available for download at www.empaneda.com/codes.
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Fig. 1. Sketch of the stress versus plastic strain response under uniaxial loading to illustrate the nonlinear combined isotropic/kinematic
hardening model.

3.1. Finite element discretisation

Making use of Voigt notation, the primal kinematic variables of the problem are discretised in terms of their
odal values ui = {ux , u y, uz}

T and φi at node i as:

u =

m∑
i=1

Nu
i ui and φ =

m∑
i=1

Niφi (35)

where m is the total number of nodes per element, Ni is the shape function associated with node i and Nu
i is

the shape function matrix, a diagonal matrix with Ni in the diagonal terms. Making use of the corresponding
B-matrices, which contain the derivatives of the shape functions, the discretised derivatives of u and φ can be
expressed as follows,

εεε =

m∑
i=1

Bu
i ui and ∇φ =

m∑
i=1

Bφi φi . (36)

3.2. Residuals and stiffness matrices

Let us now formulate the weak form of the problem. Considering the principle of virtual power (5) and the
constitutive choices described in Section 2, the weak form of the displacement and phase field problems read:∫

Ω

{[
g(φ) + ~

]
σ 0 : sym∇δu − b · δu

}
dV +

∫
∂Ω

T · δu dS = 0 , (37)

∫
Ω

{
g′(φ)δφ

(
H + ψ p)

+
Gc

2cw
f
(
ϑ̄
) [w′(φ)

2ℓ
δφ − ℓ∇φ∇δφ

]}
dV = 0 . (38)

Here, σ 0 is the undamaged stress tensor and ~ is a small, positive constant used to prevent ill-conditioning when
φ = 1; in this work, ~ = 1 × 10−7. Also, note that a hybrid approach is used, by which the strain energy density
split is only applied to the phase field balance but with φ degrading the total strain energy density in the linear

omentum balance equation [60]. Now, introduce the discretisation outlined in (35)–(36) into the weak form to

erive the corresponding residuals:

8
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F
s

I
a
b
s

3

A

Ru
i =

∫
Ω

{
[g(φ) + ~]

(
Bu

i

)T
σ 0 −

(
Nu

i

)T b
}

dV −

∫
∂Ω

(
Nu

i

)T T dS , (39)

Rφi =

∫
Ω

{
g′(φ)Ni

(
H + ψ p)

+
Gc

2cwℓ
f
(
ϑ̄
) [w′(φ)

2
Ni + ℓ2 (Bi )

T
∇φ

]}
dV . (40)

Finally, we obtain the consistent tangent stiffness matrices K by differentiating the residuals with respect to the
incremental nodal variables as follows:

K u
i j =

∂Ru
i

∂u j
=

∫
Ω

{
[g(φ) + ~] (Bu

i )T Cep Bu
j

}
dV , (41)

Kφ

i j =
∂Rφi
∂φ j

=

∫
Ω

{(
g′′(φ)

(
H + ψ p)

+
Gc f

(
ϑ̄
)

4cwℓ
w′′(φ)

)
Ni N j + f

(
ϑ̄
) Gcℓ

2cw
BT

i B j

}
dV , (42)

where Cep is the elastic–plastic material Jacobian. The global system of equations then reads,[
Kuu 0

0 Kφφ

]{
ru

rφ

}
=

{
u
φ

}
(43)

The u and φ solutions can be obtained monolithically (simultaneously) or following a staggered (sequential)
approach. Staggered solution schemes have been traditionally considered more robust but come at the cost of
losing unconditional stability, requiring the use of sufficiently small load increments to ensure that the solution
does not deviate from the equilibrium one. This can be a significant bottleneck for phase field fatigue calculations,
where errors can accumulate in every cycle. We will show how a robust and efficient monolithic solution
scheme can be achieved by using quasi-Newton methods, such as the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [61,62], enabling accurate fatigue crack growth estimations. Note that, a requirement of the BFGS
algorithm described below is that the stiffness matrix is symmetric and positive-definite. Hence, Kuφ

= Kφu
= 0.

3.3. A quasi-Newton solution scheme: the BFGS algorithm

Quasi-Newton methods have proven to be very robust when dealing with non-convex minimisation problems
(see, e.g. [63,64] and Refs. therein). As opposed to standard Newton approaches, the stiffness matrix K is not
updated after each iteration in quasi-Newton algorithms. Instead, an approximation of the stiffness is introduced
after a given number of iterations without convergence. This approximated stiffness matrix, K̃, satisfies:

K̃∆z = ∆r with z =

{
u
φ

}
, (44)

Here, ∆z = zt+∆t − zt and ∆r = rt+∆t − rt . We choose to adopt the BFGS algorithm, in which the approximated
stiffness matrix is typically defined as [65],

K̃ = K̃t −
(K̃t∆z)(K̃t∆z)

T

∆zK̃t∆z
+

∆r∆rT

∆zT∆r
(45)

rom a computational perspective, and upon the assumption of a symmetric stiffness matrix, the approximated
tiffness matrix can be expressed as follows [66],

K̃−1
=

(
I −

∆z∆rT

∆zT∆r

)
K̃−1

t

(
I −

∆z∆rT

∆zT∆r

)−1

+
∆z∆zT

∆zT∆r
. (46)

n this way, symmetry and positive definiteness are retained. As it can be observed, if the initial guess is symmetric
nd positive definite, as in (43), the updated K̃ is also symmetric and positive definite. The BFGS algorithm has
een implemented in most commercial finite element packages (such as ABAQUS), often in conjunction with a line
earch algorithm.

.4. Details of the ABAQUS implementation

A UELMAT subroutine is used to implement the generalised model into the commercial finite element package
BAQUS. The UELMAT, similar to user element (UEL) subroutines, requires defining the element residual and stiffness
9
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Fig. 2. Uniaxial cyclic loading experiments: sketch of a representative piece of material that is subjected to uniform straining; boundary
onditions and finite element mesh.

atrices, such that the coding resembles that of an in-house code (ABAQUS is solely used to assemble the global
matrices and solve the system). However, the UELMAT differs from the UEL in that it enables access to the ABAQUS’s
material library (material lib mech). We exploit this to obtain σ 0 and Cep for a given strain tensor. In addition,

e use the elastic compliance tensor to decompose the total strains into their elastic and plastic counterparts.

. Results

We proceed to showcase the capabilities of the computational framework presented by addressing several
oundary value problems of particular interest. Firstly, in Section 4.1, the number of cycles to failure is estimated
nder uniaxial cyclic loading and compared with experimental predictions on structural steels. This is accompanied
y a parametric study to evaluate the role of the various fracture and fatigue parameters of the model. Secondly,
atigue crack growth in a Compact Tension specimen is predicted, for different solution schemes and phase field
odels (Section 4.2). Thirdly, in Section 4.3, the interplay between damage and isotropic and kinematic hardening

ffects is examined in an asymmetrically-notched bar. Finally, we simulate the structural failure of a pipe-to-pipe
onnection to showcase the capabilities of the model for delivering large scale, 3D predictions (Section 4.4).

.1. Uniaxial tension–compression experiments

The performance of the proposed modelling framework is first investigated under uniaxial cyclic loading, using
train amplitudes of relevance to low- and extremely low-cycle fatigue applications. Model predictions for various
onstitutive choices are compared against experimental measurements of number of cycles to failure on hot-rolled
tructural steels. As the experiments are conducted on smooth, planar samples under uniaxial loading, the boundary
alue problem is essentially one-dimensional. As illustrated in Fig. 2, calculations are conducted on a square
late with characteristic dimension 1 mm, which is taken to be representative of the conditions experienced by
xially loaded test coupons subjected to uniform straining. The square plate is discretised using a uniform finite
lement mesh, with the characteristic element size being in all cases at least four times smaller than the phase field
ength scale ℓ. Linear quadrilateral plane strain elements are used. The vertical displacement is constrained at the
ottom of the plate (symmetry conditions) and the loading is applied by prescribing a symmetric quasi-static cyclic
isplacement with a load ratio of R = −1 and a zero mean value, as shown in Fig. 3. Four strain amplitudes (∆ε/2)

are considered: 1%, 3%, 5% and 7%, which are mainly of interest for LCF and ELCF applications.
The cyclic plasticity behaviour of the material is calibrated against the experiments by Nip et al. on hot-rolled

carbon steels [5,6]. The combined non-linear isotropic/kinematic hardening model described in Section 2.3.6 must

be used to attain a good fit with the experimental data. The magnitudes of the isotropic (Q∞, b) and kinematic

10
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Fig. 3. Loading conditions: piece-wise linear variation of the applied displacement under constant amplitude. Red segments correspond to
oading stages.

Fig. 4. Non-linear kinematic/isotropic hardening material model calibration: model predictions for the first two cycles, compared with the
experiments by Nip et al. [5].

Table 1
Material properties that provide the best fit to the experiments by Nip et al. [5,6] on a hot-rolled
carbon steel exhibiting combined non-linear isotropic/kinematic hardening behaviour.

E ν σ0 Q∞ b C γ

[MPa] [–] [MPa] [MPa] [–] [MPa] [–]

215,960 0.3 465 55 2.38 23,554 139

hardening parameters (C , γ ) that provide the best agreement with the experiments are listed in Table 1, together
ith the initial yield stress σ0 and the elastic properties (Young’s modulus E and Poisson’s ratio ν). Only one
ackstress is needed. Fig. 4 shows the agreement between the experimental data [5] and the present model over the
rst two cycles, for a representative strain amplitude of 1%.

The computational results obtained for selected values of the strain amplitude are reported in Fig. 5, using a
og–log plot. Computations are performed using the AT2 model and the asymptotic fatigue degradation function.
t is assumed that the sample has failed when the phase field reaches φ = 0.9. The magnitude of the material
oughness is taken to be equal to Gc = 1000 kJ/m2 and we vary the phase field length scale ℓ to investigate the role
f the strength and the fatigue threshold; recall (20) and (30), respectively. The numerical predictions are shown
11
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Fig. 5. Uniaxial cyclic loading experiments: Total strain amplitude (∆ε/2) versus the number of cycles to failure (N f ). Numerical results for
Gc = 1000 kJ/m2 and selected values of ℓ are compared against experimental data for carbon steels, as reported in the literature [5,6,67–70].

together with experimental data reported in the literature for carbon steels [67–70] and with the measurements
by Nip et al. [5,6] on the hot-rolled carbon steel used for calibrating the non-linear combined isotropic/kinematic
hardening model. Overall, a good agreement is attained with the experimental data but differences are observed at
low and high strain amplitudes. The role of the various fatigue and fracture parameters of the model in changing
predictions and improving the agreement with experiments is discussed below.

A parametric study is conducted and the results are shown in Fig. 6. We keep the fatigue threshold ϑT fixed
nd investigate the influence on the predictions of the phase field length scale, the fracture energy and the fatigue
egradation function. Consider first Fig. 6a, where the length scale is varied. It can be observed that a smaller length
cale translates into a larger fatigue life for a given strain amplitude. This is due to the relation between ℓ and the
trength in the AT2 model — see (30)b; the smaller the length scale, the larger the material strength. It can also
e noted that the curves are closer to each other, relative to the results shown in Fig. 5. The higher sensitivity to ℓ
bserved in Fig. 5 is due to the relation between the phase field length scale and the fatigue threshold, see (20). A
maller value of ℓ leads to a larger ϑT , while in Fig. 6a the magnitude of the threshold is fixed at ϑT = 104.167 MPa
corresponding to ℓ = 0.4 mm and Gc = 500 kJ/m2) to isolate the influence of the phase field length scale. The
nfluence of the material toughness is evaluated in Fig. 6b for ℓ = 0.4 mm. Four values of Gc are considered: 100,
00, 800 and 1000 kJ/m2. The results show significant sensitivity for low Gc values, with the number of cycles
o failure increasing with Gc, in agreement with expectations. However, one should note that the magnitude of the
racture energy does not typically influence the damage evolution law of cohesive zone models for fatigue [71,72].
s for the case of varying ℓ, changes in Gc do not lead to noticeable variations in the slope of the curve. The

ole of the fatigue degradation function is explored in Fig. 6c for the choices Gc = 1000 kJ/m2 and ℓ = 0.4
m. Results are obtained for both asymptotic (16) and logarithmic (17) degradation functions, and the latter is

ssessed for selected values of κ (0.3, 0.5, 0.8). Although differences are small for the values considered, it can
e observed that the slope of the curve is sensitive to κ , with larger κ values delivering fatigue responses that are
ore susceptible to changes in the strain amplitude. Thus, the use of a logarithmic degradation function provides

dditional flexibility, enabling a better match with the experimental results reported in Fig. 5. Finally, the role of
he fatigue threshold is investigated in Fig. 6d. While ϑT can be assumed to depend only on the toughness and the
hase field length scale ℓ, as given in (20) and adopted in Figs. 5a–c, one can also adopt an independent value. The
esults obtained reveal a longer fatigue life for higher values of ϑT , in agreement with expectations.

.2. Fatigue crack growth in a Compact-Tension specimen

The influence of the various phase field models and solution schemes presented above is investigated by

odelling fatigue crack growth in a Compact Tension (CT) sample. The geometry and dimensions of the sample

12
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Fig. 6. Uniaxial cyclic loading experiments: parametric study. Influence of (a) the length scale ℓ, (b) the toughness Gc , (c) the fatigue
degradation function, and (d) the fatigue threshold. In sub-figures (a)–(c), the fatigue threshold ϑT is held fixed, as given by (20), and the
results shown in (d) have been computed using the asymptotic degradation function.

Fig. 7. Fatigue crack growth in a CT specimen: (a) Geometry and boundary conditions and (b) finite element mesh.

re shown in Fig. 7, together with the finite element mesh employed. A total of 19,521 4-node plane strain elements
re used, with the characteristic element size in the crack propagation region being 5 times smaller than the phase
eld length scale. The specimen is subjected to symmetric quasi-static cyclic displacement at the pins, with an

mplitude of 0.05 mm, a zero mean and a load ratio of R = −1. The nonlinear combined isotropic/kinematic

13
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Fig. 8. Fatigue crack growth in a CT specimen. Phase field contours at (a) 12 cycles, (b) 20 cycles and (c) 28 cycles. These representative
esults have been obtained with the AT1 model.

Fig. 9. Fatigue crack growth in a CT specimen: influence of the phase field formulation. Crack extension ∆a versus number of cycles N ,
s predicted by the AT1, AT2, and PF-CZM models.

ardening material model is used, with the material properties described in Table 1. The assumed values for the
oughness and the phase field length scale are Gc = 2.7 kJ/m2 and ℓ = 0.25 mm, respectively.

We start by assessing the role of the constitutive choices for the phase field fracture description. As described
n Section 2.3, three options are considered, corresponding to the so-called AT1, AT2, and PF-CZM models. In all
hree cases, the qualitative outcome is in good agreement; as shown in Fig. 8, the crack propagates in a stable

anner along the expected mode I trajectory. However, noticeable differences are observed when evaluating the
rack extension ∆a versus number of cycles N curves, see Fig. 9.

As shown in Fig. 9, fatigue crack growth curves are obtained for AT1, AT2, and PF-CZM models, with three values
f the material strength (σc) being used in the PF-CZM case. Consider first the results predicted for AT1 and AT2

models; similar fatigue crack growth rates are predicted but the number of cycles to failure is higher for the AT1

case. This is attributed to the presence of a damage threshold, which is absent in the AT2 formulation, and to the
igher material strength that results from considering Eq. (30) for the same Gc and ℓ values. Specifically, Eq. (30)
ives strength values of 935 MPa and 496 MPa for AT1 and AT2, respectively. As a result, the initiation of crack
rowth takes place later for the AT1 model, relative to the AT2 one. We emphasise that the degradation function

s independent of ℓ (and thus of the strength) for the AT1 and AT2 models, see (26), and consequently fatigue

14
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Fig. 10. Fatigue crack growth in a CT specimen: influence of the solution scheme. Crack extension ∆a versus number of cycles N as
predicted with a staggered and a monolithic quasi-Newton scheme. The phase field AT2 model has been used.

crack growth rates are similar. However, the PF-CZM model predictions exhibit a different trend. The initiation of
crack growth appears to be largely insensitive to the choice of σc but fatigue crack growth rates differ, with smaller
strength values being associated with larger fatigue lives. This is a result of the strength dependency of the phase
field degradation function in the PF-CZM model — see (27); for a given φ magnitude, a greater stiffness degradation
will be attained for a higher strength. It is also interesting to note that the predictions from the AT2 and PF-CZM

models coincide when a strength of σc = 500 MPa is used in the latter — versus σc = 496 MPa for AT2, if
estimated from (30). However, the AT1 result with an estimated strength of σc = 935 MPa lies between the PF-CZM

predictions for σc = 500 and σc = 200 MPa. There is a need to determine the most physically sound relation
between Gc, σc and ℓ, given that the length scale governs the size of the fracture process zone and thus cannot be
purely seen as a numerical parameter.

The influence of the solution scheme is examined next. Specifically, we compare the performance of the
monolithic quasi-Newton algorithm presented in Section 3.3 with a single-pass, alternative minimisation staggered
scheme.2 Monolithic approaches are unconditionally stable, implying that results are independent of the number of
load increments used. This is not the case for staggered approaches, and consequently we obtain results for four load
stepping choices: 16, 40, 200 and 400 increments per cycle. As shown in Fig. 10, the staggered solution converges
slowly towards the monolithic one. Even when using 400 load increments per cycle, the fatigue crack growth curve
obtained does not match the monolithic result (obtained with 16 increments per cycle). Differences become very
significant when reducing the number of load increments. Furthermore, convergence problems are observed for
the simulations with a low number of increments (16 and 40 increments per cycle), with calculations stopping
after 17 cycles. Thus, these results show that monolithic quasi-Newton schemes are more robust and significantly
more efficient than widely used staggered schemes, which can require prohibitive computation times for accurate
cycle-by-cycle predictions of high cycle fatigue.

4.3. Failure of an asymmetrically-notched plate

We proceed to investigate the interplay between cyclic hardening and damage by simulating the fatigue failure
of an asymmetrically-notched plate. The geometry, boundary conditions and dimensions (in mm) are shown in

2 We note that while staggered and alternative minimisation schemes are occasionally treated as independent solution strategies in the
literature [73], the only difference lies in the inclusion of the H term. Since it has been reported that enforcing damage irreversibility via
the history field does not influence the results for these kinds of problems [32], we here treat both approaches as equivalent.
15



Z. Khalil, A.Y. Elghazouli and E. Martı́nez-Pañeda Computer Methods in Applied Mechanics and Engineering 388 (2022) 114286

m
i
p
m
a
m
a
h
b
h
d
o

4

f
t

Fig. 11. Asymmetrically-notched specimen subjected to cyclic axial load: (a) Geometry and boundary conditions and (b) finite element mesh.

Fig. 11a. The specimen is discretised with a total of 95,854 linear quadrilateral plane strain elements. As shown
in Fig. 11b, the finite element mesh is refined along the crack propagation path, with the characteristic element
size being at least four times smaller than the phase field length scale. The specimen is subjected to a symmetric
quasi-static cyclic displacement of amplitude 0.5 mm, with zero mean and a load ratio of R = −1. The fracture
behaviour is characterised by the AT2 model, with properties Gc = 8000 kJ/m2 and ℓ = 0.04 mm.

One of the aims of this case study is to assess the role of kinematic and isotropic hardening effects. Thus, the
aterial constitutive behaviour is given by the non-linear combined isotropic/kinematic hardening model described

n Section 2.3, with the material properties listed in Table 1, but calculations are also conducted for the cases of
urely isotropic hardening (C = γ = 0) and purely kinematic hardening (σY = σ0). The results obtained for the three
aterial models under consideration are shown in Fig. 12, in terms of both the force versus displacement (Fig. 12a)

nd force versus number of cycles (Fig. 12b) responses. The results shown in Fig. 12a show how the values of
aximum force attained change more significantly with the number of cycles when kinematic hardening effects

re accounted for, as a result of the Bauschinger effect. Substantial differences are observed over the first cycles,
ighlighting the importance of properly characterising the cyclic behaviour of the solid. However, the differences
etween the three models are reduced as damage starts to govern the material response. As shown in Fig. 12b, the
igher strain energy levels attained with the combined and non-linear kinematic hardening models result in a faster
amage rate, while damage is underestimated for the purely isotropic hardening case. This is intrinsic to our choice
f an elastic–plastic driving force; see Eqs. (8)–(9).

.4. Fatigue crack growth in a pipe-to-pipe connection

Finally, we conclude our numerical experiments by demonstrating the capabilities of the framework presented
or predicting large scale fatigue failures in solids exhibiting combined non-linear isotropic/kinematic hardening. To
his end, fatigue crack nucleation and growth is simulated in a pipe-to-pipe connection composed of two orthogonal
16
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Fig. 12. Asymmetrically-notched specimen subjected to cyclic axial load: (a) Force versus displacement response, and (b) Force versus
umber of cycles response.

ircular pipes — see Fig. 13. The horizontal pipe has an outer diameter of 100 mm and thickness of 8 mm, while
he vertical pipe has on outer diameter of 80 mm and thickness of 6 mm. A quarter of the geometry is modelled
ue to symmetry. The domain is discretised with 10-node tetrahedral solid elements, employing approximately
00,000 degrees-of-freedom. As shown in Fig. 13b, the mesh is refined at the intersection between the two pipes,
here fatigue damage is expected to take place. The vertical pipe is subjected to symmetric quasi-static cyclic
isplacement of amplitude of 0.5 mm with a load ratio of R = −1. The horizontal pipeline is clamped on one

end. The AT-2 phase field damage model is used along with the nonlinear combined isotropic/kinematic hardening
constitutive description. The cyclic deformation is characterised by the material properties listed in Table 1. The
assumed values of Gc and ℓ are 100 kJ/m2 and 2.5 mm, respectively.

The process of crack nucleation and growth is depicted in Fig. 14. Four stages of the cracking process are shown,
from the initiation of damage to the complete rupture of the pipe-to-pipe connection. We emphasise that no initial

defects are introduced in the model.

17
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a

Fig. 13. 3D pipe-to-pipe connection subjected to cyclic axial load: (a) Geometry and (b) finite element mesh.

Fig. 14. 3D pipe-to-pipe connection subjected to cyclic axial load. Crack surface (φ > 0.9) after: (a) 5 cycles, (b) 8 cycles, (c) 10 cycles
nd (d) 12 cycles.
18
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Fig. 15. 3D pipe-to-pipe connection subjected to cyclic axial load. Detailed plot of the crack surface (φ > 0.9) at 12 cycles.

Finally, Fig. 15 shows a detailed view of the extent of the crack at the time of complete failure. The results show
hat the model can naturally predict crack growth due to fatigue damage under cyclic loading in three-dimensional
ettings for arbitrary geometries and dimensions.

. Conclusions

We have presented a generalised formulation for modelling fatigue crack growth in elastic–plastic solids. The
nitiation and growth of cracks is captured by means of a unified phase field formulation, that incorporates as special
ases the so-called AT1, AT2 and PF-CZM models. Two classes of fatigue degradation functions (asymptotic and
ogarithmic) are defined to capture fatigue damage, which is driven by both elastic and plastic mechanical fields. The
yclic deformation of the solid is characterised by a combined, non-linear kinematic/isotropic hardening model that
an be used to model the cyclic response of a general class of elastic–plastic materials. The theoretical framework
resented is numerically implemented using the finite element method and the resulting system of equations is solved
n a monolithic manner, by exploiting a quasi-Newton algorithm. Several 2D and 3D case studies are modelled to
ain insight into the role of the phase field formulation and the interplay between damage and cyclic hardening
ffects. Key findings include:

i) The model provides a good agreement with experimental data on carbon steels. However, the additional flexibility
rovided by the logarithmic degradation function is needed to capture the appropriate damage scaling. This comes
t the cost of defining one additional parameter.

ii) Fatigue crack growth predictions differ between those obtained with phase field models based on the Ambrosio–

ortorelli functional (AT1, AT2) and those inspired in cohesive laws, such as the PF-CZM. In the PF-CZM, higher
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fatigue crack growth rates are predicted with increasing material strength σc, due to the σc-dependency of the fracture
degradation function.

(iii) The use of quasi-Newton monolithic solution schemes delivers a more robust and efficient performance than
widely-used staggered approaches. The staggered scheme requires over 25 times more load increments to match
the monolithic result. The implications are important, given the inherent cost of cycle-by-cycle predictions.

(iv) For a crack driving force that includes both elastic and plastic contributions, neglecting kinematic hardening
phenomena such as the Bauschinger effect is non-conservative, and can lead to a significant underestimation of
damage.

The case studies addressed show how the modelling framework presented can be used to efficiently predict
fatigue crack initiation and growth in arbitrary dimensions and geometries, and for solids exhibiting complex cyclic
deformation responses. The finite element code developed can be downloaded from www.empaneda.com/codes.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
have appeared to influence the work reported in this paper.

Acknowledgements
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