
Advances in Engineering Software 105 (2017) 9–16

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

Research paper

Abaqus2Matlab: A suitable tool for finite element post-processing

George Papazafeiropoulos a , Miguel Muñiz-Calvente

b , Emilio Martínez-Pañeda

c , ∗

a Department of Structural Engineering, National Technical University of Athens, Zografou, Athens 15780, Greece
b Department of Construction and Manufacturing Engineering, University of Oviedo, Gijón 33203, Spain
c Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark

a r t i c l e i n f o

Article history:

Received 20 November 2016

Revised 4 January 2017

Accepted 17 January 2017

Keywords:

Abaqus2Matlab

Post-processing

Finite Element Method

Weibull stress model

Inverse analysis

a b s t r a c t

A suitable piece of software is presented to connect Abaqus, a sophisticated finite element package, with

Matlab, the most comprehensive program for mathematical analysis. This interface between these well-

known codes not only benefits from the image processing and the integrated graph-plotting features of

Matlab but also opens up new opportunities in results post-processing, statistical analysis and mathemat-

ical optimization, among many other possibilities. The software architecture and usage are appropriately

described and two problems of particular engineering significance are addressed to demonstrate its capa-

bilities. Firstly, the software is employed to assess cleavage fracture through a novel 3-parameter Weibull

probabilistic framework. Then, its potential to create and train neural networks is used to identify damage

parameters through a hybrid experimental–numerical scheme, and model crack propagation in structural

materials by means of a cohesive zone approach. The source code, detailed documentation and a large

number of tutorials can be freely downloaded from www.abaqus2matlab.com .

© 2017 Elsevier Ltd. All rights reserved.

1

e

e

a

o

n

m

c

c

t

o

p

n

n

a

t

t

o

e

w

m

i

u

e

t

d

a

a

M

o

c

a

m

s

B

g

a

A

t

s

t

a

h

0

. Introduction

Partial Differential Equations (PDEs) govern the physics of most

ngineering systems. As analytical solutions are limited and gen-

rally restricted to idealized cases, the development of efficient

nd robust numerical methods marks a milestone in the solution

f boundary value problems in structural mechanics, electromag-

etism, heat transfer, mass diffusion and fluid dynamics, among

any other disciplines. The Finite Element Method (FEM) has be-

ome the leading numerical technique for solving PDEs in the me-

hanical, civil, aeronautical and bioengineering industries. Among

he wide range of packages available, Abaqus [1] is undoubtedly

ne of the most popular finite element tools for academics and

ractitioners.

However, practical applications often require considering

on-linear conditions, where uncertainties hinder high fidelity

umerical predictions. In such circumstances, the use of advanced

nalysis methodologies – such as inverse approaches, statistical

ools or hybrid experimental–numerical techniques – has proven

o compensate the lack of information, yielding results that are

therwise unobtainable. Matlab [2] , a multi-paradigm computing

nvironment, is generally considered to be the most powerful soft-

are in this regard due to its advanced capabilities in statistics,
∗ Corresponding author.

E-mail address: mail@empaneda.com (E. Martínez-Pañeda).

t

A

t

t

ttp://dx.doi.org/10.1016/j.advengsoft.2017.01.006

965-9978/© 2017 Elsevier Ltd. All rights reserved.
achine learning, neural networks, curve fitting, model-based cal-

bration and optimization. Yet, a connection between the two most

sed packages in, respectively, finite element modeling and math-

matical analysis, is still lacking. To fill this gap, a novel software

ool is here proposed: Abaqus2Matlab , which allows to run Abaqus

irectly from Matlab and to post-process the results, providing

 link between the two well-known packages in a non-intrusive

nd versatile manner. The present proposal enjoys the benefits of

atlab’s user friendly and centralized environment, as opposed

ther powerful tools like Python, which require add-on libraries.

Abaqus2Matlab is distributed as source code with the aim of fa-

ilitating research. Numerous codes have been made freely avail-

ble through the years, positively impacting the computational

echanics community. For instance, Sigmund and co-workers pre-

ented an efficient topology optimization implementation [3,4] ,

ordas and collaborators [5–7] described an object-oriented pro-

ramming library for the extended finite element method (X-FEM)

nd meshless methods, Giner et al. [8] implemented the X-FEM in

baqus through a user subroutine, Parks and Paulino [9] described

he numerical implementation of the PPR potential-based cohe-

ive zone model, Nguyen [10] proposed an open source program

o generate zero-thickness cohesive elements and Martínez-Pañeda

nd Gallego [11] provided a user subroutine to effectively define

he material property variation of functionally graded materials in

baqus. Other open-source software that has recently contributed

o scientific progress includes FReET [12] , a code to conduct sta-

istical, sensitivity and reliability assessment; FraMePID-3PB [13] ,

http://dx.doi.org/10.1016/j.advengsoft.2017.01.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2017.01.006&domain=pdf
http://www.abaqus2matlab.com
mailto:mail@empaneda.com
http://dx.doi.org/10.1016/j.advengsoft.2017.01.006

10 G. Papazafeiropoulos et al. / Advances in Engineering Software 105 (2017) 9–16

Table 1

Format of a record written in an Abaqus re-

sults file.

Location Length Description

1 1 Record length (L)

2 1 Record type key

3 (L −2) Attributes

Listing 1. Function Fil2str.m to read Abaqus resul ts (∗ .fil) file.

i

i

T

t

o

2

t

t

fl

n

s

e

t

o

w

2

A

c

t

s

T

t

T

A

b

a

t

f

k

u

o

L

a tool to identify fracture parameters in concrete through inverse

analysis; NiHu [14] , an open source C++ library for the bound-

ary element method; ESFM [15] , a general framework for mesh-

less methods; NOSA-ITACA [16] , a finite element code for masonry

structures; PCLab [17] , an object-oriented Monte Carlo/Finite Ele-

ment software; and, μMECH [18] , an open source C/C++ library of

analytical solutions to classical micromechanical problems.

The present manuscript is organized as follows. The software

framework and architecture are explained in the following section.

Then, Section 3 provides usage instructions through simple exam-

ples. Section 4 shows the capabilities of the toolbox by addressing

two relevant engineering applications; namely, probabilistic anal-

ysis of cleavage fracture and inverse identification of damage pa-

rameters through neural networks. Finally, the work is summarized

in Section 5 .

2. Abaqus2Matlab

The main internal characteristics of Abaqus2Matlab are de-

scribed below. The structure of Abaqus results (∗.fil) file is briefly

described in the first place, as it is necessary to understand how

the presented software stores Abaqus results. The reading pro-

cedure is then detailed and insight is given into the software

architecture.

2.1. Creating and processing Abaqus’ results (∗.fil) file

The results (∗.fil) file can be used to transfer Abaqus analysis

results to other packages. The aforementioned file can be written

in binary or ASCII format, depending on the need for porting re-

sults between dissimilar operating systems. ASCII format is chosen

in the present approach due to its versatility.

2.1.1. Generation of Abaqus results (∗.fil) file

The Abaqus results file is obtained in ascii format by defin-

ing specific options in the input (∗.inp) or restart (∗.res) files. The

results file generation procedure differs between Abaqus/Standard

and Abaqus/Explicit, ∗FILE FORMAT, ASCII must be specified in the

former and

∗FILE OUTPUT in the latter. The reader is referred to

Abaqus documentation for more details.

2.1.2. Output

The following output types can be written to the results file: el-

ement, nodal, energy, modal, contact surface, element matrix, sub-

structure matrix and cavity radiation factor. Nodes and elements

are numbered globally in models that have been defined as an as-

sembly of part instances. A map between user-defined numbers

and internal numbers is printed to the data file (∗.dat) if any out-

put requested includes node and element numbers. Set and surface

names that appear in the results file are given along with their cor-

responding assembly and part instance names, separated by under-

scores.

2.1.3. Record format

The results (∗.fil) file is a sequential file that must be read up

to the location of the desired data. All data items are converted

into equivalent character strings and written in (logical) records.

Each single line contains a series of 80 string characters, which

may contain the full record or part of it. In the latter case, af-

ter completely filling the first line, the record string continues at

subsequent lines. The beginning of each record is indicated by an

asterisk (∗) and the data items are arranged immediately behind

each other within each record. Each record has the format shown

in Table 1 .

The location number denotes the position in the record where

a series of consecutive data items are written. The number of data
tems in each series is denoted by the length number. The first data

tem is an integer denoting the number of data items in the record.

he second one defines the record type key, an indicator denoting

he type of data. And finally the attributes are contained in a series

f L −2 data items, at the 3rd position of a record.

.1.4. Data item format

Integer numbers are denoted by the character I, followed by a

wo digit integer which shows the number of the digits of the in-

eger with the value of the integer following. On the other hand,

oating point numbers begin with the character D, followed by the

umber in the format E22.15 or D22.15, depending on the preci-

ion. And character strings begin with the character A, followed by

ight characters. If the length of a character string is less than 8,

hen the trailing positions are filled with blank spaces. If the length

f a character string is larger than 8, then the character string is

ritten in consecutive character strings, eight characters at a time.

.2. Reading Abaqus results files with Abaqus2Matlab

A function named Fil2str is defined in Matlab to read the

baqus results (∗.fil) file by considering the data as a string and

oncatenating lines horizontally, as shown in Listing 1 .

The function is programmed so as to allow compatibility be-

ween different MATLAB versions. The information from the re-

ults file is stored in a cell array C containing a single line string.

hat single line string subsequently enters an ad hoc function

hat depends on the results that the user wishes to post-process.

hus, more than 50 different functions are already available in

baqus2Matlab , covering the vast majority of results types that can

e obtained in Abaqus; new record functions can be easily gener-

ted from the existing template. An appropriate naming conven-

ion is adopted, where each function is defined by the word Rec
ollowed by the record key of the particular type of results. Record

eys for each specific set of results can be found in Abaqus doc-

mentation. For example, nodal coordinates (record key 1901) are

btained through function Rec1901.m , whose code is shown in

isting 2 .

G. Papazafeiropoulos et al. / Advances in Engineering Software 105 (2017) 9–16 11

Listing 2. Example of a specific record fu nction.

F

i

t

o

i

v

t

o

a

n

n

e

o

H

t

v

(

n

3

e

d

fi

o

w

Listing 3. Commands required to store the specific inf ormation in the ∗ .fil file.

Listing 4. Example of a specific Abaqus2Matlab script.

3

3

t

E

i

n

a

fi

s

o

b

d

∗

A

s

A

b

i

a

t

h

The programming of such functions follows a similar structure.

irst, the record length is obtained for preallocation purposes, us-

ng Matlab’s intrinsic function strfind to find the positions of

he records in Rec . For each case, the first 8 characters in front

f each position are stored in Rec2 . Afterwards, the record length

s identified and stored in the column vector NW by first con-

erting from string to double format using Matlab’s built-in func-

ion str2num . Subsequently, the elements of ind (i.e. position

f the second data item of records giving node definition results)

re scanned and for each element the number of digits of the

ode number is determined first, then the node number, and fi-

ally the nodal coordinates, by the insertion of a for loop within

ach record definition. Finally, the node numbers and the node co-

rdinates are concatenated horizontally to form the output array.

ence, the Rec1901 function takes as input a one-row string con-

aining the ASCII code of the ABAQUS results (∗.fil) file and pro-

ides as output a matrix with as many rows as nodes in the model

with the node number in the first column and the nodal coordi-

ates in the subsequent columns).

. Usage instructions

A brief description of the source code assembly is given first to

ase the understanding of the software and allow for personalized

evelopments. The most relevant operations are then detailed and

nally a simple optimization example is described to show the use

f Abaqus2Matlab . Comprehensive documentation can be found in

ww.abaqus2matlab.com .
.1. Organization of the source code

Source code files are organized through the following folders:

• OutputAnalysis folder, which contains the functions required

to post-process analysis type results (e.g. node definitions, el-

ement connectivity, eigenfrequencies, eigenvalues, etc.).
• OutputNodes folder, which contains the functions required to

post-process nodal type results (e.g. node displacements, con-

centrated forces, nodal temperatures, etc.).
• OutputElements folder, which contains the functions required

to post-process element type results, i.e. results at integration

points or centroids (e.g. stresses, strains, section forces, mo-

ments, etc.).
• Verification folder, which contains numerous Matlab scripts to

verify the Rec functions corresponding to each result type.
• AbaqusInputFiles folder, which contains the input files that are

run by Abaqus to verify each of the results functions.
• Html and Help folders, which contain all the documentation

files of Abaqus2Matlab .

.2. Main usage instructions

Firstly, the Documentation.m file must be compiled in order

o add all Abaqus2Matlab specific functions to Matlab’s libraries.

mphasis has been placed in the development of user-friendly and

ntuitive software. As a consequence, only three steps are required;

amely, (i) generate Abaqus’ input file, (ii) run the finite element

nalysis and (iii) extract the results required. Thus, one should

rst indicate in Abaqus’ input file the specific data that should be

tored in the results file (∗.fil). For example, for the particular case

f the nodal displacements, the code described in Listing 3 should

e included at the end the step definition (i.e., at the end of the

ocument if it is a one-step analysis), just before the command

END STEP.

The remaining steps are performed entirely inside

baqus2Matlab framework within Matlab. A template script is

hown in Listing 4 . First, the finite element job is run for a specific

baqus input file. Both the script file and Abaqus’ input file must

e stored in the same folder (i.e., the working directory). The

nformation in the results file (∗.fil) is then read and classified

ccording to the desired output data through Fil2str and – for

he displacement field – Rec101 , respectively.

Template scripts for the most often used types of Abaqus results

ave been developed and can be found in the Verification folder.

http://www.abaqus2matlab.com

12 G. Papazafeiropoulos et al. / Advances in Engineering Software 105 (2017) 9–16

Fig. 1. Optimization example: a 2-bar plane truss, including element and node (cir-

cles) numbering.

Listing 5. Main code for the optimization e xample.

Listing 6. TrussObjfun function.

Listing 7. Constraint function TrussConfun.m.

t

o

i

m

o

t

t

f

[

2

b

t

b

p

m

v

i

fi

4

p

e

y

i

d

t

i

i

m

t

3.3. Simple example: truss optimization problem

A simple optimization example is shown to display

Abaqus2Matlab functioning. The weight of the 2-bar plane

truss shown in Fig. 1 will be optimized by minimizing the

members’ cross-sectional area. The truss is characterized by the

following quantities: Young’s modulus E = 6 8 . 94 8 GPa , density

ρ = 2767 . 99 kg/m

3 , bar length L = 9 . 144 m and applied concen-

trated forces P = 4 4 4 . 974 kN. Material costs can be lowered by

reducing the weight, which implies – for a constant density and

bar length – minimizing the sum of the cross-sectional areas, the

design variables under consideration. Constraints are imposed on

the displacements, where their maximum value should be limited

to d max = 0 . 0508 m in both directions, and stresses, where their

magnitudes should be lower than σmax = 172 . 369 MPa in both

tension and compression (absolute value). The design variables are

the cross section area of each member in the interval [0.00365,

0.02258] m

2 , with the lower bound being a consequence of the

upper limit imposed on the axial stress.

The main script employed to solve the problem is shown in

Listing 5 . The number of elements is first specified and an initial

guess for the 2 cross-sectional areas assigned. Before calling the

main optimization function, design variable limits are defined and

tolerances provided; the latter include an upper bound on the vari-

ation of the objective function (i.e., truss weight) during a step and

an upper bound on the magnitude of the constraint functions.

TrussObjfun (Listing 6) is a simple function that provides as

output the weight of the truss for given values of the design vari-

ables. TrussConfun.m , shown in Listing 7 , is employed to con-

struct the Abaqus input file and subsequently perform the calcula-
ions. The input file is created through TrussInpFileConstr.m
n every constraint evaluation, changing the data lines correspond-

ng to the cross section area. Next, postprocessing of the afore-

entioned results takes place, which concludes in the formation

f the inequality and equality vectors required as an output of

he constraint function in Matlab (c and ceq , respectively). All

he required information is then available for Matlab’s function

mincon to perform the optimization analysis.

Results show that design variables at the local minimum equal

0.0 0365, 0.0 0482] m

2 , while the minimum truss weight renders

.5987 kN. For the particular example under consideration, this has

een achieved after 6 iterations and 21 objective function evalua-

ions. Optimization methodologies, like the one outlined here, can

e used at the concept stage of the design process to achieve a

roposal that best fits performance and manufacturability require-

ents. Such tools have proven to substantially reduce design de-

elopment costs by avoiding expensive and time consuming design

terations.

Results can be obtained in a few minutes and all the necessary

les can be freely downloaded from Abaqus2Matlab website.

. Applications

The range of applications of Abaqus2Matlab is enormous, as it

rovides a non-intrusive connection between a sophisticated finite

lement package and the most comprehensive mathematical anal-

sis tool. For demonstration purposes, two problems of particular

nterest from the scientific and engineering perspective will be ad-

ressed here. On the one hand, the toolbox proposed is used to es-

imate cleavage fracture in metals, where a probabilistic approach

s needed due to the statistical nature of the micromechanisms

nvolved. On the other hand, an advanced inverse-optimization

ethodology is employed to obtain the parameters governing the

raction-separation law that describes deformation and fracture.

G. Papazafeiropoulos et al. / Advances in Engineering Software 105 (2017) 9–16 13

Fig. 2. Schematic overview of the use of Abaqus2Matlab to estimate the probability

of cleavage failure.

4

f

T

m

w

b

p

o

w

o

r

g

m

P

w

σ

r

a

e

σ

a

t

c

σ

t

n

c

w

v

p

2

d

r

a

t

p

r

n

A

a

w

p

Fig. 3. Failure probability as a function of the external load. The figure includes the

experimental data for 22NiMoCr37 steel (EuroData project [20]) and the predictons

from the present statistical model for the values of σ th , σ u and m displayed.

t

r

T

p

T

u

t

P

w

b

o

i

t

σ

b

w

a

l

d

p

t

u

t

i

u

t

r

t

l

a

r

l

p

o

m

a

i

m
.1. Cleavage fracture

Cleavage fracture originates from microcracks that nucleate

rom defects (carbides, cracks arrested at grain boundaries, etc.).

he location of these defects is statistical by nature and hence

odeling effort s rely on probabilistic analysis. Since the seminal

ork by Beremin [19] , cleavage fracture toughness estimations are

ased on Weibull statistics and the weakest link model, where the

robability of failure equals the probability of sampling (at least)

ne critical fracture-triggering particle. Grounded on this approach,

e propose a novel probabilistic framework that takes advantage

f the advanced statistical tools of MATLAB to estimate all Weibull-

elated parameters without any a priori assumptions.

For a given Weibull stress σ w

and a threshold stress for crack

rowth σ th , the cumulative probability of failure P f , in terms of the

odulus m and scaling parameter σ u is given by,

 f = 1 − exp

[
−
(
σw

− σth

σu

)m

]
(1)

here the Weibull stress can be defined as,

w

= σth +

[

n e ∑

i =1

(
σ i

1 − σth

)m

(V i /V 0)

] (1 /m)

(2)

Here V 0 is a reference volume, V i is the volume of the i th mate-

ial unit (finite element) in the fracture process zone experiencing

 maximum principal stress σ i
1

and n e is the number of finite el-

ments/material units in the fracture process zone. The parameter

th is needed due to the fact that cracks do not propagate below

 certain threshold energy value. However, the concurrent estima-

ion of the threshold, modulus and shape parameters remains a

omplicated task; a common approach lies in assuming a value for

th and estimating m and σ u from a set of experiments. Here, all

hree parameters (σ th , m and σ u) will be obtained by means of a

ovel iterative procedure involving least squares estimates of the

umulative distribution functions.

The capabilities of Abaqus2Matlab to model cleavage fracture

ill be benchmarked with an extensive experimental data set de-

eloped within the Euro toughness project [20] . As in the ex-

eriments, a quenched and tempered pressure vessel steel DIN

2NiMoCr37 steel will be investigated; only tests where significant

uctile crack growth is not observed will be considered and the

eference experimental data will be that obtained at −40 °C with

 compact tension specimen of size 1 T. Comprehensive details of

he material tensile properties, specimen size and failure loads are

rovided in the original experimental article [20] and will not be

eproduced here for the sake of brevity.

The algorithm methodology is described in Fig. 2 . First, the fi-

ite element results are computed by running the corresponding

baqus job inside the proposed toolbox. A finite element mesh of

pproximately 20 0 0 quadratic plane strain quadrilateral elements

ith reduced integration is employed, with the elements being

rogressively smaller as the crack tip is approached. The values of
he volume element V i and the maximum principal stress σ i
1

are

ead and stored for each finite element and load level of interest.

he latter is characterized through the J -integral and the pin dis-

lacement, that are also read in the Abaqus2Matlab environment.

he statistical analysis is then conducted. The probability of fail-

re for each failure load reported experimentally is first computed

hrough,

 f =

j − 0 . 3

n j + 0 . 4

(3)

here n j denotes the number of experiments and j the rank num-

er. Afterwards, an iterative procedure is conducted to simultane-

usly estimate σ th , m and σ u . In each iteration the Weibull stress

s computed from the values of m and σ th from the previous itera-

ion and subsequently inserted in Eq. (1) to compute the values of

u , m and σ th in the current iteration by fitting a univariate distri-

ution through the least squares method. Convergence is achieved

hen the relative norm of the change in the solution is below an

ppropriate tolerance value. Therefore, taking advantage of Mat-

ab capabilities, Weibull parameters are calculated by finding the

istribution whose cumulative function best approximates the em-

irical cumulative distribution function of the experimental data.

The results obtained for the particular case considered (Euro

oughness data set, T1, −40 °C) are displayed in Fig. 3 . The fig-

re shows the probability of failure versus the external load from

he experimental study and the current statistical model. The cal-

brated Weibull stress parameters are also embedded in the fig-

re. As it can be observed, a good agreement is attained between

he failure probability estimated from Eq. (1) and the experimental

esults.

Results indicate that, for the particular case under considera-

ion, a 50% probability of failure will be attained for an external

oad of approximately J 0 = 150 N/mm, while the 5% and 95% prob-

bility bonds are attained at J 0 = 60 N/mm and J 0 = 250 N/mm,

espectively. Weibull-parameters estimation reveals that stresses

ower than σth = 1004 . 7 MPa are innocuous and that a failure

robability of 64% in a unit element is attained at a stress level

f σu + σth = 2214 . 5 MPa.

More insight into the local failure probability can be gained by

eans of a hazard map . A hazard map highlights the areas being

ffected or vulnerable to a certain type of failure, providing visual

nformation on the failure probability at each particular unit ele-

ent [21] . Thus, the local probability of failure (i.e., P f for a local

14 G. Papazafeiropoulos et al. / Advances in Engineering Software 105 (2017) 9–16

Fig. 4. Hazard map. The legend shows the local probability of failure .

Fig. 6. Geometry and dimensions of the Al2024 Compact Tension specim en.

s

�

i

i

p

n

t

s

t

c

a

p

p

l

fi
σ w

) is shown in Fig. 4 in logarithmic scale. The mesh can be eas-

ily constructed by reading the nodal coordinates and the element

connectivity through Abaqus2Matlab .

Statistical tools are indispensable to assess cleavage fracture

as experimental data tends to be widely scattered; two identical

specimens of the same material may have very different tough-

ness values due to the random location of the fracture-triggering

particle. Abaqus2Matlab enables the usage of Matlab’s in-built sta-

tistical capabilities to estimate all Weibull parameters without

any prior assumptions. This novel iterative framework allows for

more precise estimations of failure probabilities, a crucial aspect in

risk quantification and operational decision making in engineering

applications.

4.2. Cohesive zone modeling

Classic fracture mechanics is an indispensable design tool

that provides the basis for structural integrity assessment in en-

gineering standards. The need to design components that ex-

ploit material performance to its maximum has however shifted

scientific research from stationary cracks to crack propagation and

damage. This is particularly true in ductile metals or composites,

where a stable crack propagation stage precedes catastrophic fail-

ure. Among the many damage mechanics tools available, cohesive

zone models are particularly attractive to characterize the reserve

strength of the system once cracking has occurred, and to design

accordingly [22] . The pivotal ingredient of cohesive zone model-

ing is the traction-separation law that governs material degrada-

tion and separation. As depicted in Fig. 5 , for a given shape of the

traction-separation curve, the cohesive response can be fully char-

acterized through two parameters, the cohesive energy �c and the

critical cohesive strength T c . Thus, for the bi-linear law of Fig. 5 ,

the cohesive energy can be expressed as a function of the critical
Fig. 5. Bi-linear traction separation law characterizing the cohesive zone model .
eparation δc and the critical cohesive strength T c ,

c =

1

2

T c δc (4)

The two parameters governing the cohesive response can be

nferred from experiments. Generally, a trial and error procedure

s followed, but such methodology is time consuming and error-

rone. Here, a novel technique that builds on inverse analysis and

eural network optimization is proposed to estimate the parame-

ers governing the traction-separation law. Abaqus2Matlab enables

uch an approach, not only by linking the advanced optimiza-

ion tools available in Matlab with Abaqus damage modeling out-

omes, but also by allowing to read and modify Abaqus input files

ccordingly. Thus, not only is Abaqus2Matlab useful for post-

rocessing purposes but it can be also used to optimize and pre-

rocess through a two-way interaction between Abaqus and Mat-

ab. This is done by creating a Matlab function that reads the input

le from Abaqus (∗.inp) and, for this particular example, overwrites
Fig. 7. Neural network optimization flowc hart.

G. Papazafeiropoulos et al. / Advances in Engineering Software 105 (2017) 9–16 15

Fig. 8. Initial neural network training steps, (a) First set of T c − �c values, and (b) corre sponding load versus crack mouth opening displacement curves.

Fig. 9. Graphical summary of the characteristics of the Neural Network employe d.

Fig. 10. Cohesive strength T c and fracture energy �c estimations at each iterati on.

t

t

r

m

b

8

i

a

W

1

s

d

T

a

s

s

n

o

p

(

A

a

e

s

a

a

e

p

t

i

i

i

i

t

M

A

t

h

t

m

�
he line where the magnitude of δc and T c are defined. The func-

ion can be downloaded from Abaqus2Matlab ’s website and easily

e-written to edit any other specific command.

The material under consideration in the present study is Alu-

inum 2024. Both uniaxial and Compact Tension tests have

een performed. The former lead to a Young’s modulus of E =
5 , 826 MPa (Poisson’s ratio ν = 0 . 33) while the plastic behav-

or can be fitted through a Hollomon’s law σ = kε n p with k = 733

nd n = 0 . 157 . As depicted in Fig. 6 , the specimen has a width of

 = 50 mm, a thickness of B = 20 and a total crack length of a =
7 . 323 mm, being the fatigue pre-crack equal to a 0 = 7 . 323 mm.

The optimization procedure proposed correlates numerical re-

ults and experimental data of load versus crack mouth opening
isplacement (CMOD) by following the flowchart shown in Fig. 7 .

hus, the first step involves assigning a set of initial values to T c
nd �c . These initial values should be chosen so as to span a con-

iderably wide range, ensuring that the optimal solution falls in-

ide. The more numerous the merrier, as the performance of the

eural network increases with the number of points. Nevertheless,

nly 5 pairs of T c versus �c points will be employed in this exam-

le to show the model capabilities even with a few initial values

see Fig. 8 a).

The finite element calculations are then performed, where

baqus capabilities to model cohesive zone damage are employed

nd a very refined mesh of quadrilateral quadratic plane strain el-

ments with reduced integration is adopted. The curve load ver-

us CMOD is obtained in Abaqus2Matlab by reading the nodal re-

ction forces and the displacement in particular sets (Rec104
nd Rec101 functions). Computations are efficiently performed for

ach pair of T c - �c values by taking advantage of Abaqus2Matlab ca-

abilities to read and modify Abaqus’ input file. The results ob-

ained in each case are shown in Fig. 8 b; each curve is character-

zed by 12 equally distant points so as to correlate with the exper-

mental data.

The next step involves training the neural network based on the

nput (T c and �c values) and output (load versus CMOD curves)

nformation. The network is composed of 10 hidden layers and is

rained by employing the Bayesian Regulation Method available in

atlab (see Fig. 9); full advantage of the Neural Net Fitting Matlab

pp can be gained with Abaqus2Matlab . In this example, 80% of

he models have been employed to train the network, 15% of them

ave been used for validation purposes and the remaining 5% serve

o test the final solution obtained.

Once the neural network is fitted and tested, it is used to esti-

ate – through least squares fitting – the optimal values of T c and

c by minimizing the differences between the load-CMOD curve

16 G. Papazafeiropoulos et al. / Advances in Engineering Software 105 (2017) 9–16

Fig. 11. Experimental and numerically optimized predictions of load versus cr ack

mouth opening displacement in Al2024.

A

a

i

o

s

g

e

a

a

t

m

h

d

A

P

S

a

R

[

[

obtained from the model and its experimental counterpart. To as-

sess the quality of the neural network prediction, the optimized

values of the cohesive strength and the cohesive fracture energy

are provided as input to the finite element model. The outcome

of this new finite element analysis is compared to the experi-

mental data. If the norm of the differences between the curves is

higher than a given tolerance, the neural network is trained again

by adding new input and output information from the previous it-

eration. Fig. 10 shows the optimal values of the strength and the

cohesive energy obtained in each iteration.

In the present example convergence is achieved after 7 itera-

tions and the final outcome is shown in Fig. 11 , together with the

experimental result. As it can be seen in the figure, the optimal

values (T c = 199 . 2 MPa and �c = 61 . 81 N/mm) lead to a very good

quantitative agreement with the load versus CMOD curve obtained

experimentally.

Hence, quantitative insight into the initiation and subsequent

propagation of damage can be obtained through neural network

optimization and a hybrid experimental–numerical strategy, in

what is usually referred to as a top-down approach [23,24] . Thus,

Abaqus2Matlab largely facilitates structural integrity assessment by

taking advantage of advanced damage models available in Abaqus

and modern optimization capabilities of Matlab. Moreover, its us-

age can be easily extended to a wide range of non-linear problems,

where inverse analysis is an indispensable tool.

A detailed description, and the associated codes of the novel

approaches employed in the two challenging engineering problems

addressed, can be downloaded from Abaqus2Matlab website.

5. Conclusions

A novel toolbox has been presented to couple Abaqus and

Matlab. Its development is motivated by the need of an open

source package that provides a non-intrusive link between the

highly-developed finite element capabilities of Abaqus and the

comprehensive analysis tools of Matlab. The software, con-

veniently titled Abaqus2Matlab , unfolds an extensive range of

modeling possibilities. Its capabilities are particularly attractive

from the post-processing perspective, enabling to complement

advanced finite element simulations with the numerous graphical

and mathematical analysis options of Matlab and its toolboxes.

Two practical cases with important implications in structural

integrity assessment are investigated to illustrate the potential of
baqus2Matlab . First, cleavage fracture is examined by means of

 three-parameter Weibull approach. A novel statistical framework

s proposed to estimate the modulus, the scaling and the thresh-

ld parameters through Abaqus2Matlab without any preceding as-

umptions. The software is also employed to model crack propa-

ation in Al2024 by extracting the cohesive parameters from the

xperimental data through inverse analysis. Abaqus2Matlab plays

 fundamental role by enabling model manipulation and genetic

lgorithm optimization. The general structure of the code facili-

ates its application to numerous engineering problems with mini-

um coding effort. Diverse examples (including the ones described

ere), comprehensive documentation and the source code can be

ownloaded from www.abaqus2matlab.com .

cknowledgments

E. Martínez-Pañeda acknowledges financial support from the

eople Programme (Marie Curie Actions) of the European Union’s

eventh Framework Programme (FP7/2007-2013) under REA Grant

greement no. 609405 (COFUNDPostdocDTU).

eferences

[1] Dassault Systèmes, Simulia Corp. ABAQUS version 2016 documentation. Provi-

dence: Dassault Systèmes, Simulia Corp.; 2016.
[2] MathWorks, Inc. MATLAB R2016a. Natick, MA: MathWorks, Inc.; 2016.

[3] Sigmund O . A 99 line topology optimization code written in matlab. Struct
Multidiscip Optim 2001;21:120–7 .

[4] Andreassen E , Clausen A , Schevenels M , Lazarov BS , Sigmund O . Efficient topol-

ogy optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim
2011;43:1–16 .

[5] Bordas S , Nguyen PV , Dunant C , Guidoum A , Nguyen-Dang H . An extended
finite element library. Int J Numer Methods Eng 2007;71:703–32 .

[6] Nguyen PV , Rabczuk T , Bordas S , Duflot M . Meshless methods: a review and
computer implementation aspects. Math Comput Simul 2008;79:763–813 .

[7] Martínez-Pañeda E, Natarajan S, Bordas S. Gradient plasticity crack tip char-

acterization by means of the extended finite element method. Comput Mech
2017. doi: 10.10 07/s0 0466- 017- 1375- 6 .

[8] Giner E , Sukumar N , Taracón JE , Fuenmayor FJ . An abaqus implementation of
the extended finite element method. Eng Fract Mech 2009;76:347–68 .

[9] Park K , Paulino GH . Computational implementation of the PPR poten-
tial-based cohesive model in ABAQUS: educational perspective. Eng Fract Mech

2012;93:239–62 .
[10] Nguyen PV . An open source program to generate zero-thickness cohesive in-

terface elements. Adv Eng Softw 2014;74:27–39 .

[11] Martínez-Pañeda E , Gallego R . Numerical analysis of quasi-static fracture in
functionally graded materials. Int J Mech Mater Des 2015;11:405–24 .

[12] Novák D , Vo ̌rechovský M , Teplý B . FReET: software for the statistical and relia-
bility analysis of engineering problems and FReET-D: degradation module. Adv

Eng Softw 2014;72:179–92 .
[13] Lehký D , Keršner Z , Novák D . FramePID-3PB software for material param-

eter identification using fracture tests and inverse analysis. Adv Eng Softw

2014;72:147–54 .
[14] Fiala P , Rucz P . NiHu: an open source C++ BEM library. Adv Eng Softw

2014;75:101–12 .
[15] Hsieh Y-M , Pan M-S . ESFM: an essential software framework for meshfree

methods. Adv Eng Softw 2014;76:133–47 .
[16] Girardi M , Padovani C , Pellegrini D . The NOSA-ITACA code for the safety as-

sessment of ancient constructions: a case study in Livorno. Adv Eng Softw

2015;89:64–76 .
[17] Liu Y , Cheng L , Zeng Q , Feng Z , Zhang L . PCLab a software with interactive

graphical user interface for Monte Carlo and finite element analysis of mi-
crostructure-based layered composites. Adv Eng Softw 2015;90:53–62 .

[18] Svoboda L , Šulc S , Janda T , Vorel J , Novák J . μMECH micromechanics library.
Adv Eng Softw 2016;100:148–60 .

[19] Beremin FM . A local criterion for cleavage fracture of a nuclear pressure vessel

steel. Metall Mater Trans A 1983;14:2277–87 .
[20] Heerens J , Hellmann D . Development of the Euro fracture toughness dataset.

Eng Fract Mech 2002;69:421–49 .
[21] Muñiz Calvente M , Ramos A , Shlyannikov V , Lamela MJ , Fernández-Canteli A .

Hazard maps and global probability as a way to transfer standard fracture re-
sults to reliable design of real components. Eng Fail Anal 2016;69:135–46 .

22] Cornec A , Scheider I , Schwalbe K-H . On the practical application of the cohe-

sive model. Eng Fract Mech 2003;70:1963–87 .
23] Martínez-Pañeda E , García TE , Rodríguez C . Fracture toughness character-

ization through notched small punch test specimens. Mater Sci Eng: A
2016;657:422–30 .

[24] Martínez-Pañeda E , Cuesta II , Peñuelas I , Díaz A , Alegre JM . Damage modeling
in small punch test specimens. Theor Appl Fract Mech 2016;86A:51–60 .

http://www.abaqus2matlab.com
http://dx.doi.org/10.13039/501100004963
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0001
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0002
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0003
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0004
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0004
http://dx.doi.org/10.1007/s00466-017-1375-6
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0005
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0006
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0007
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0008
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0009
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0010
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0011
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0012
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0013
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0014
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0015
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0016
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0017
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0018
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0019
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020a
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020a
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020a
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020a
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020a
http://refhub.elsevier.com/S0965-9978(16)30651-2/sbref0020a

	Abaqus2Matlab: A suitable tool for finite element post-processing
	1 Introduction
	2 Abaqus2Matlab
	2.1 Creating and processing Abaqus’ results (*.fil) file
	2.1.1 Generation of Abaqus results (*.fil) file
	2.1.2 Output
	2.1.3 Record format
	2.1.4 Data item format

	2.2 Reading Abaqus results files with Abaqus2Matlab

	3 Usage instructions
	3.1 Organization of the source code
	3.2 Main usage instructions
	3.3 Simple example: truss optimization problem

	4 Applications
	4.1 Cleavage fracture
	4.2 Cohesive zone modeling

	5 Conclusions
	 Acknowledgments
	 References

