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Nutritional Life Cycle Assessment:
Setting a New Research Agenda
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Current status of the control variables for seven of the planetary

boundaries. The green zone is the safe operating space, the Pla n eta ry

yellow represents the zone of uncertainty (increasing risk), and
the red is a high-risk zone.

R Climate change Bo u n d a ri es

Biosphere integrity diversiEY,

/" Novel entities
Functional ~ g
diversity--’

Stratospheric ozone depletion

‘} \ Threshold

Land-system
change

: | Atmospheric aerosol loading
Freshwater use ‘

Phosphor‘ﬁé‘ - - L
Nitrogen Ocean acidification
Biochemical flows
B Beyond zone of uncertainty (high risk) B Below boundary (safe)
In zone of uncertainty (increasing risk) Boundary not yet quantified

Source: Steffen et al. (2015).
Science 2015;347:1259855 AYAAAS




Current status of the control variables for seven of the planetary

boundaries. The green zone is the safe operating space, the Pla n eta ry

yellow represents the zone of uncertainty (increasing risk), and
the red is a high-risk zone.

— Climate change B O u n d a ri e S

diversity . —

Biosphere integrity [ TNU Novel entities

Functional

~
~

Phosphor-ﬁ”s;‘"---. .

Nitrogen " Ocean acidification
Biochemical flows
B Beyond zone of uncertainty (high risk) B Below boundary (safe)
In zone of uncertainty (increasing risk) Boundary not yet quantified

Source: Steffen et al. (2015).
Science 2015;347:1259855 AYAAAS




Food Systems CYCLE

Nearly 811 million people suffer from chronic hunger (2020)

Global prevalence of obesity increased to 13.1 % in 2016; 39 %
of adults overweight

Micronutrient deficiencies common globally - regardless of
weight

More than 3 billion people cannot afford a healthy diet: healthy
diet two to five times more expensive than an energy

(caloric) sufficient diet, and up to two times more expensive
than a nutrient sufficient diet

By 2050, 2 billion more people than there are today, mainly in
Africa (world population estimated at 9.7 billion)

Source: Mclaren et al., 2021,
p.99




Overview

1. Life Cycle Assessment
* Towards nutritional LCA

2. Case studies:
* Avocado LCA
* LCA of a novel protein source

3. Current research themes
* Modelling issues
e QOther themes



What is nLCA?
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Functions of food:

nutritional value

hedonic enjoyment
socio-cultural functions
monetary value

“ ... nutritional LCA (nLCA), a phrase used to
describe an LCA study where the
provision of nutrient(s) is considered as
either the main function or one of the
main functions of a food item.” (p.5,
McLaren et al., 2021).



Figure &: Decision tree to support davelopment of a nutrition life cycle assessment study

Goal and Scope for ALCA Goal and Scope for RLCA Inventery Analysis for Impact Assessment for Interpretation for ALCA
(Chapters 3, &) (Chapters 3, 4, 5, 6) nLCA [Chapters &, 5, 6] nLCA [Chapter 7] (Chapters 8, 9]
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Source: McLaren et al.,
2021, p.99
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Methodology issues requiring refinement of current methods:

- Is there an optimal number of nutrients to be considered in an nLCA,
and should it include nutrients to be limited?

- What is the optimal use of nutrient indexes in LCA?

- How to deal with comparisons across different food groups versus only
within food groups

- How to represent nutritional changes in processing that occur outside
a curtailed system boundary (e.g. during preparation of meals at home)

- Representation of nutritional value using indicators that extend beyond
nutrient quantities (e.g. accounting for health impacts/outcomes)

- Modelling of future scenarios (using attributional/consequential
approaches)
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Methodology issues requiring extension beyond current methodological
framework:

- Use of nLCA studies at the meal and dietary scales

- Assessing food systems within environmental limits

- Extension into food systems sustainability assessment

- Representation of multi-functionality of food items in nLCA

- Assessment of non-nutrients and anti-nutritional compounds
- Development of nutrition impact category

- How to deal with food fortification in nLCA.

[Scientific development of specific impact assessment methods is also
identified in the report. However, the UNEP Life Cycle Initiative already
functions as the forum for pursuing this topic.]
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Communication:

- How to represent unknown data in LCA e.g. on digestibility, food matrix
effects

- Representation of data variability and uncertainty

Data issues (we know what we want to collect but it is not available):

- Environmental and nutritional data for developing countries

- Food loss and waste

Guidance on use of nLCA to support decision-making:

- Suitability of ‘generic’ LCA methodology for different application areas
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Avocado LCA results: insights (1)
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Figure 11 Contribution (%) of Inputs/sub-stages to overall climate change impact of the orchard stage

Source: “Environmental Life Cycle Assessment of NZ Avocados
(Majumdar and McLaren, 2021)
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 Basis for comparison
« 100 g of different products?

+ Serving size? How typically eaten?
 Nutritional value?
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Protein source [l  Avocado (6.0 kg CO,e/100 g protein, NZ average)
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Figure 1: Carbon footprints of different dietary proteins on the global market - farming to retail only *

Source: “LCA of NZ Mussels and
Oysters” (thinkstep ANZ, 2021)



2. Case study:
novel protein

Data from production-scale pilot
scaled to industrial production

Uncertainties calculated using (a)
Monte Carlo analysis and (b)
sensitivity analyses

Baseline Finland — but model
adapted for different countries

| W) Greck for updntan

Ovalbumin production using Trichoderma reesei
culture and low-carbon energy could mitigate the
environmental impacts of chicken-egg-derived
ovalbumin

Matasha Jirvié @2 =, Tuure Parviainen 034, Netta-Leena Maljanen 2, Yumi Kobayashi 034,
Lawri Kujanpéi @3, Dilek Ercili-Cura®, Christopher P. Landowski®, Toni Ryyndnen @2,
Emilia Nordlund @2 and Hanna L. Tuomisto ® 248

Owalbumin (OVA) produced using the fungus Trichoderma reesed (Tr-OVA) could become a sustainable replacement for chicken
egg white protein powder—a widely used ingredient in the food industry. Although the approach can generate OVA at pilot
scale, the environmental impacts of industrial-scale production have not been explored. Here, we d d an anticipatory
life cycle assessment using data from a pllot study to compare the impacts of Tr-OVA production with an equivalent fune-
tional unit of dried chicken egg white protein produced In Finland, Germany and Poland. Tr-OVA production reduced most
agriculture-associated Impacts, such as global warming and land use. Inereased Impacts were mostly related to industrial

inputs, such as electricity production, but were also associated with glucose consu

. Switching to low-carbon

sources could further reduce
agriculture for OVA production.

tal impact, d

he global growing demand for chicken egg white protein pro-

duction results in many environmental impacts, such as land

use, climate change, water scarcity, resource depletion and
eutrophication' ™. Ovalbumin (OVA) is the most abundant pratein
in egg whites, consisting of aver 50% of egg white proteins. It has
been expressed in several host organisms, including Esdherichic
cali and Pichia pastoris, mainly in the lab™*. Advances in cellular
agriculture concepts have made it possible to produce recombi-
nant ar cell-cultured OVA on a karge ensugh scale o consider it
an economically feasible option to chicken-based egg white pow-
der’. Using the filamentous ascomycete fungus Trichodermma reesed,
a well-estahlished and efficient production organism, cell-cultured
OVA is now produced in 2 bioreactor at a pilot scale. The process
is a form of acellular production where microorganisms are grawn
to produce an extracelbular recombinant protein, in this case OVA
(bengthe 386 amine acids)™. The coding gene in chickens (Gallus
gullus domesticies) is SERPINBI4 (hibtps:/ (wwwuniprot.org/uniprot
PO1012). The final product of cell-based production is a protein
powder that typically shows comparable functional properties to
chicken egg white protein powder and can be used as a replacement
in food formulations.

The purpase of this sudy wasto assess the environmental impacts
of cell-cultured OVA production in comparison to chicken-based
egg white protein powder (hereafier referred to as egg white pow-
der, unlbess otherwise specified) production using an anticipatory
life: cycle assessment (LOA} method™ . Using an LCA quantifies the
emvironmental impact of T. reesei-produced OVA throughout all

EnerEy
strating the potential benefits of cellular agriculture over livestock

production steps and allows for the trade-off comparison between
different impact categories' . The impacts af the production pro-
cexs were estimated for that of an industrial level of 100,000 kg, using
data from a production-scale pilot and a techno-economic assess-
ment {TEA) produced by ¥TT . Uncertainties were calculated using
Monte Carlo (MC) analysis, while the sensitivities of the results were
estimated with various sensitivity analyses. Since production of T
reesei OVA (Tr-OVA) mainly rebies on the provision of dectricity
and the carbon intensity of countries varies', we also assess the pro-
duction of Tr-0VA in various countries. The flow chart in Fig. |
shiws the assumed process steps, including the most notable inputs
and outputs, and indicates the main focus of this study.

Results

Impact of Tr-OVA for different scenarios. Figure 2 shows the
envirenmental impact of Tr-OVA production per kg of product
and contribution per process for four scenarwos—Finland (FI),
Germany (DE), Paland (PL) and Finland using a low-carbon elbec-
tricity mix {FI-LL) that includes both renewable energy sources
and nuclear power (the Supplementary Data shows the full inputs
af thiz madel), which were chosen to reflect different carbon inten-
sity bevels of country electricity mixes within the European Union''.
The largest contributor for most impact categories comes from the
input of glucose with a share of 2-54%, depending on the impact
category and country. For land use, the contribution of glucose
most cleasly dominates (86-92%), illustrating the reliance of land
use of agricultural products. In addition, for water scarcity —also

Huralia Institute, Faculty of Agrcuture and Foeestry, University of Helsinid, Mikkeli, Finland. “Helsinki Institute of Sustairability Science, University of
Hedsinka, Helsinki, Finland. %/TT Technacal Reseasch Centre of Finland Lid, Espoo, Finlznd. :Department of Agricultunal Scences, Faculty of Agriculbune and
Forestry, University of Helsinks, Hebsinki, Finland. “olar Foods Lid, Lappessrwanta, Finland. “Hatural Resowsces Institute Finland, Helsinki, Finland.
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3. Current research themes LIFECYCLE
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Key modelling issues in nutritional LCA (nLCA):

Nutritional assessment:
* Functional unit
* Nutritional value
* Nutritional value versus human health impacts
Represent nutritional variability:
* Food items e.g. cut of meat, seasonal variability
* Target population and their dietary needs

Other themes:

Assessing sustainability: nLCSA

Decision situation: general “direction of travel” versus detailed assessment
Procedural aspects: buy-in versus confrontation

Enabling transformative change
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Ham shoulder medium fat boiled Red meat

Beef rump steak prepared Red maat

Pottoes wie skins boiled average | Stwrchyvegetables  |0UOR 0.05 042 0. & _B& 1.24 o

Eggs Ichicken) boiled average Eqgs 043 (022 |182 0.3 351|053 F O O d ltem S {
Chicken with skin prepared Poultry 1.36 1.0z a7 0.5% 5256 4£.53 ®
Milk whale Dairy 021 05z | 158 034 63z |D28

Milk skimmed Dairy 020 |049 |203 0.56 532 |04k hd

Cheese Gouda 4B+ average Dairy 1.3 026 218 ET E.T4 - unlt O

Shrimps Dutch peeled boiled Fish 154 |05 |&39 1.64 778 |1.22

Herring salted Fish D28 |0z 0.8 0.1 159 |oaz ()

Kale curly boiled Vegetables o1& |ooE |14 0.35 i00  [O09 an al Sl S

Mushracms bailed Vegetablas 0.52 026 |52 y

Pinezpple Fruit o0 |00 |oo7o 0.18 M1 | 147

Banana Fruit 031 il - & B8 1.33

Beans French boiled Legumes on 589 0.7%9

Peas frozen boiled Legumes o1 170 0.3

Bread wheolemeal average Cereals oo 093 013

Bread white water based Cereals oz 1.32 o7

Cashew nuts unsalted Muts 0.43 oog 044 0T zm o1&

Peanuts unsalted Muts 0.74 015 0.75 o1z 292 0.21

Apple p_ie Dutch w shortbread w Swraats 0.23 023 039 0.0 £.53 035

margarine

Almond paste filled tarts average | Sweets 0.39 0Lzo D44 0o £.31 0.27

Crisps potato average Snacks 0.48 005 049 0ure T.AT 0.33

Wine red BAlcoholic beverage | 020 0.30 174 025 MA* 3.08

Wine white dry Alcoholic beverage | 0.23 D3 | 164 034 -E

Peanut butter Spreads 0.a7 [ 0L.BB 013 387 0.24 |

Sauce for chips 26% oil Spreads 0.29 0.0& 070 IR 1] BB &4 1.23

Juice apple Juice 015 0.22 1 033 14950 |4.04

Juice orange pasteurized Juice - 00 | 059 015 mey 124

Sausage cooked Meat 1.52 0.23 298 043 1344 | 234 Source: “|ntegrati0n of

Bacon rashers streaky Meat 1.10 014 221 0.35 7.00 440 environment and nutrition in ||fe
Dil alive Dils 0.72 0.o7 0.72 0.08 MNa* MA® . .
Oil sunflower seed Dils 0.50 0.05 0.50 0.0& 16702 | HAa= CyCIe assessment of food items:

: : opportunities and challenges”
"= MA = Mot azilable 25 nutrsent level listed 25 0

Mote: Values in each column are coloured based on r2n king froem red [highest) to green [lowest]. Food composition data (MCLaren et al . 2021)
were abiained from the Dutch Food Comgposition Datsbase [MEVD) [RIVM, 20017). These example ::l‘.:'.- alu=s for food
temswere published by RIVM [2021) and ar= calculabed on a oadle-to-consumer basis.



Towards nutritional value:
use of nutritional indices

Table 1

Nutrient indices and included nutrients.
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Points of differentiation: included nutrients

Nutrient Index'

Macronutrients

Vitamins

Minerals

Disqualifying nutrients

Other”

ONQI® (Katz et al.,

2010)
WNDS* (Arsenault
et al., 2012)
NRF9.3° (Fulgoni
et al., 2009)
NRF9™'
LIM3™*

NBC® (Fern et al.,
2015)

Q[é.l

D16.2

DNS’ (Chaudhary
et al., 2018a)

Fiber, omega 3 (n-3) fatty acids,

protein quality, fat quality
Protein, fiber, unsaturated fat

Protein, fiber

Protein, fiber
None

Fiber, protein, linoleic acid,
o-linolenic acid, choline

Fiber, protein, linoleic acid,
o-linolenic acid, choline

None

None

Folate, A, C, D, E, B-12, B-6
c
A,CE

A, CE
None

Folate, niacin, riboflavin, thiamin,

pantothenic acid, A, B-12, B-6, C, D,

E, K
Folate, niacin, riboflavin, thiamin,

pantothenic acid, A, B-12, B-6, C, D,

E, K
None

None

K, Ca, Zn, Mg, Fe

Ca

Mg, Ca, Fe, K

Mg, Ca, Fe, K
None

Ca, Cu, Fe, Mg,
Mn, P, K, Se, Zn

Ca, Cu, Fe, Mg,
Mn, P, K, Se, Zn

None

None

Saturated fat, trans fat, sodium,
total/added sugar, cholesterol
Saturated fat, sodium, added
sugar

Saturated fat, added sugars,
sodium

None

Saturated fat, added sugars,
sodium

Total fat, saturated fat, trans fat,

cholesterol, total sugar, sodium

None

Total fat, saturated fat, trans fat,

cholesterol, total sugar, sodium

Sugar, cholesterol, saturated fat,

total fat

Total bioflavonoids,
total carotenoids
None

None

None
None

Water

Water

None

None

! See sources for full information on nutrients; multiple variations of a specific index, which differ by the included nutrients, can exist.

2 E.g., other antioxidants, phytochemicals.
% overall Nutritional Quality Index (ONQI).
4 Weighted Nutrient Density Score (WNDS).
5 Nutrient Rich Foods Index (NRF9.3); composed of the NRF and LIM.
51 Nutrient Rich Foods (NRF).
2 Limiting Nutrient (LIM).
® Nutrient Balance Concept (NBC); composed of the QI and DI
61 Qualifying Index (QI).
? Disqualifying Index (DI).
7 Disqualifying Nutrient Score (DNS).

Source: “Assessing nutritional,
health, and environmental
sustainability dimensions of agri-
food production ” (Green et al.,

2020)
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Nutritional value versus human ...
. LIFECYCLE
health impacts

Mutritional evaluation Environmental evaluation
Chicken wings
{1 sewing, 85 g)
Health nutritional index (HENI) Life-cycle assassment
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Food classification based on nutritional and environmental performance
To dacrease in priority To decrease Tolerable To increase

Fig. 1| Proposed framework to evaluate and compare the nutritional and environmental performances of individual foods. This framewcrk was used

to identify, prioritize and inform distary changes towards healthy and environmentally sustainable diets. lllustration based on a serving of chicken wings
(85 g). CVD, cardiovascular disease. The icons used in the figure were made with Freepik from www.flaticon.com.

Source: “Small targeted dietary changes can
yield substantial gains for human health and the
environment” (Stylianou et al., 2021)
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3. Current research themes LIFECYCLE
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Key modelling issues in nutritional LCA (nLCA):

Nutritional assessment:
* Functional unit
* Nutritional value
* Nutritional value versus human health impacts
Represent nutritional variability:
* Food items e.g. cut of meat, seasonal variability
* Target population and their dietary needs

Other themes:

Assessing sustainability: nLCSA

Decision situation: general “direction of travel” versus detailed assessment
Procedural aspects: buy-in versus confrontation

Enabling transformative change



Representing nutritional -
variability in food items: cuts LIiJLAECYCLE

of beet o

Table 3 Ratios of protein and saturated fatty acids in various cuts of
beef as per the USDA SR Legacy Database (USDA 2019)

Cut USDA code  SFA%®* TP%®  SFA:TP
Chuck 13351 3.28 26,50 0.20
Rib 13392 0.24 2473 037
Top loin 13446 5.10 28.19  0.18
Porterhouse 13463 704 2447 0.29
Ground (75% lean) 23577 0.59 1576 0.61
Ground (95% lean) 23557 2.18 2141 010

*Saturated fatty acids _ _
Source: “Protein quality as a

bFnj-l_cin complementary functional unit in life cycle
assessment (LCA)” (McAuliffe et al., 2023)



Representing nutritional
variability in food items:
seasonal variability

per 85 serving
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Target population LIFECYCLE
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RDI/AI relative to Men

©
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Fibre Pantothenic Vitamin E  Vitamin B6 Potassium Folate Niacin
acid (AD equivalents
® Men under 70 Women under 70  mPregnant women  ®Lactating women

RDI= recommended dietary intake

Al= recommended average daily intake



3. Current nLC(S)A thinking LIFECYCLE
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Key modelling issues in nutritional LCA (nLCA):

Nutritional assessment:
* Functional unit
* Nutritional value
* Nutritional value versus human health impacts
Represent nutritional variability:
* Food items e.g. cut of meat, seasonal variability
* Target population and their dietary needs

Other themes:

Assessing sustainability: nLCSA

Decision situation: general “direction of travel” versus detailed assessment
Procedural aspects: buy-in versus confrontation

Enabling transformative change
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nLCSA process

Decision situation: | Goal and scope definition

general “direction
of travel” versus
detailed
assessment

Procedural
aspects: buy-in
versus
confrontation

Enabling
transformative
change

State study objectives; set system
boundaries; decide methodological
issues; etc.

v 1

Inventory

Analysis

Collect data on inputs and outputs
crossing the system boundaries;
allocate burdens; model emissions;

etc.

v ¢

Impact

Assessment

Translate inventory results into a
meaningful and relevant set of
environmental issues affected by the

\ system; etc
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>
o
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£
£
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@ N

Interpretation

Use the results from the impact
assessment and inventory
phases to answer the questions
set in the goal and scope
definition; check that the
conclusions are consistent with
the assumptions made; etc

/

N )




Towards Solutions LIFECYCLE

Benefits of nLCA/nLCSA:
Scientific evidence as basis to inform decision-making
More holistic assessment (cf nutritional guidelines)
Support education for transformative change

More focus needed on:
Systems-based assessment (exploratory “what-if” LCA)
Contextually relevant analysis

Procedural aspects to ensure relevance and buy-in among
stakeholders (for policy support)
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