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ABSTRACT

In conventional federated learning (FL), differential privacy
(DP) guarantees can be obtained by injecting additional noise
to local model updates before transmitting to the parameter
server (PS). In the wireless FL scenario, we show that the
privacy of the system can be boosted by exploiting over-the-
air computation (OAC) and anonymizing the transmitting de-
vices. In OAC, devices transmit their model updates simulta-
neously and in an uncoded fashion, resulting in a much more
efficient use of the available spectrum. We further exploit
OAC to provide anonymity for the transmitting devices. The
proposed approach improves the performance of private wire-
less FL by reducing the amount of noise that must be injected.

Index Terms— federated learning, differential privacy,
anonymity

1. INTRODUCTION

Federated learning (FL) [1] allows multiple devices, each
with its own local dataset, to train a model collaboratively
with the help of a parameter server (PS) without sharing their
datasets. At each iteration of FL, the PS shares the most
recent global model with the devices, which then use their
local datasets to update the global model. Local updates are
aggregated and averaged at the PS to update the global model.
The fact that data never leaves the devices is considered to
protect its privacy. However, recent works [2–4] show that
model updates or gradients also leak a lot of information
about the dataset. This calls for additional mechanisms to
guarantee privacy. Differential privacy (DP) is a widely-
adopted rigorous notion of privacy [5]. Given an algorithm
whose output is some statistics about a dataset, if the change
in the output probability distribution is tolerably small, when
the input database is changed with a very close neighbour-
ing one, then the algorithm is deemed differentially private.
Many recent works exploit DP-based algorithms to provide
rigorous privacy guarantees in machine learning [6–11].

We consider co-located devices communicating with the
PS over a wireless multiple access channel (MAC). Recent
work has shown that rather than the conventional digital
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communication, the devices can transmit their local updates
simultaneously in an uncoded fashion to enable over-the-air
computation (OAC) [12–14]. This results in a much more
efficient use of the available resources, and significantly im-
proves the learning performance. It is also remarked in [13]
that the analog computation in a wireless domain makes pri-
vacy more easily attainable. A common method to provide
DP guarantees is adding noise to the output with a variance
proportional to the maximum change in the output under
neighbouring datasets [5]. In the digital implementation of
FL, where each device separately communicates with the PS,
noise is added to the gradients after each local iteration [9] to
ensure DP; whereas in analog computation, the PS only sees
the sum of the updates together with the channel noise, which
effectively protects all the updates. Thus, the same amount of
protection can be achieved with less perturbation, improving
also the final accuracy.

Privacy in wireless FL through OAC has been recently
studied in several works [15–18]. In [15], distributed stochas-
tic gradient descent (SGD) is studied with quantized gradi-
ents and privacy constraints. In [16], if the channel noise is
not sufficient to satisfy the DP target, a subset of the devices
add additional noise to their updates, benefiting all the de-
vices. In [17] and [18], transmit power is adjusted for the
same privacy guarantee. We note that, in [16–18], channel
state information (CSI) at the devices is crucial not only to
align their computations at the PS but also for the privacy
guarantee. However, in practice, devices acquire CSI from
pilots transmitted by the PS. Hence, as an adversary, the PS
can adjust the pilots to degrade the privacy level. Addition-
ally, in [16], devices depend on others for privacy, which in-
troduces additional point-of-failure.

Differently from the works cited above, we provide pri-
vacy in wireless FL by exploiting the anonymity of the trans-
mitters in OAC. Our main contributions can be summarized
as follows: (1) We study the effects of randomly sampling the
devices participating in each iteration, and batching in local
datasets on the privacy. By forcing a constant receive power
at the PS across iterations, we provide anonymity to the trans-
mitting devices, and employ it for privacy; (2) By distributing
the noise generation process across the workers, we make the
privacy guarantee resilient against the failure of transmitting
nodes; (3) Our protocol is robust against pilot attacks.



2. PRELIMINARIES

Before presenting the system model and the proposed solu-
tion, we give some preliminaries on DP and the threat model.

2.1. Differential Privacy (DP)
Definition 1. (ε, δ)-DP [5]: A randomized mechanismM :
D → R is (ε, δ)-differentially private (DP) if

Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S) + δ,

∀S ⊆ R and ∀D,D′ ∈ D such that ‖D −D′‖1 ≤ 1, which
is defined, in this work, as the two very close datasets with
the same cardinality differing only in one element. (ε, δ)-DP
is a characterization of the change in the output probability
distribution ofM under small changes in the input dataset. ε
characterizes the privacy loss under such a small change and
δ is the upper bound on the failure probability of the bound
Pr(M(D) ∈ S) ≤ eε Pr(M(D′) ∈ S). Thus, small ε and δ
are desired.

Definition 2. (α, ε)-Rényi DP [19]: Rényi divergence be-
tween two probability distributions is defined as

Dα(P ||Q) ,
1

α− 1
logEx∼Q(x)

(
P (x)

Q(x)

)α
.

A randomized mechanismM : D → R satisfies (α, ε)-Rényi
DP (RDP) if Dα (Pr (M(D) = x) ||Pr (M(D′) = x)) ≤ ε,
where α ∈ [1,∞), ∀D,D′ ∈ D such that ‖D −D′‖1 ≤ 1.
Dα(·||·) for α = 1 and α =∞ are defined by continuity.

Definition 3. Gaussian Mechanism (GM): A mechanism
M, which alters the output of another algorithm f : D →
R, by adding Gaussian noise, i.e., M(D) , f(D) +
N (0, σ2) is called a GM. GM satisfies (ε, δ)-DP [5] with ε =√

2 log(1.25/δ)∆f/σ and ∆f , maxD,D′∈D ‖f(D)− f(D′)‖2.
It also satisfies (α, ε′)-RDP with ε′ = α(∆f)2/(2σ2) [19].

Lemma 1. RDP to DP [19]: A mechanism satisfying (α, ε)-
RDP also satisfies (ε+ log(1/δ)/(α− 1), δ)-DP.

Lemma 2. Composition of GM under RDP [19]: Com-
position of T RDP mechanisms operating on the same
dataset with common α and with (ε1, ε2, . . . , εT ) gives an
(α,
∑T
i=1 εi)-RDP mechanism.

As seen in Lemma 2, composition under Rényi DP is very
simple to compute for GM. Moreover, it gives a much tighter
bound on the final ε value compared to the advanced compo-
sition theorem [5], which is used in [16, 18].

2.2. Threat Model
We assume that the PS is semi-honest and curious. It is hon-
est in the sense that it wants to acquire the final trained model,
and thus, follows the model averaging step accurately, but it
also would like to acquire all possible sensitive information
about single individual data points. Therefore, it can attack

the CSI estimation process to encourage the devices to in-
crease their transmit power or to add less noise to their trans-
missions by suggesting that their channel quality is worse
than it is in reality. We note that, if a common pilot signal
is used to learn the CSI by all the devices, the CSI values can
only be scaled by the same parameter across the devices.

We assume that the devices are honest and trusted. They
do not intentionally attack the learning process; however, we
also do not depend on a few devices for privacy as the devices
may fail to transmit unintentionally. We further assume that
the PS has a single receive antenna, thus it is not capable of
determining the identities of the transmitting devices through
transmission directions.

3. SYSTEM MODEL
We consider N wireless devices. Each device i ∈ [N ] ,
{1, 2, . . . , N} hosts their local dataset Di, which are i.i.d.
across the devices. A PS orchestrates these devices to learn
a global model w by minimizing a global loss function
L = 1

N

∑
i∈[N ]

1
|Di|

∑
d∈Di

`(w, d), where `(w, d) is an
application-specific empirical loss function. We assume that
the dataset is distributed among the devices with the identi-
cal probability and independent of each other. We employ
distributed SGD to iteratively minimize L across the devices.
At the beginning of iteration t, the PS broadcasts the global
model wt to all the devices. Then, the devices participating
in the learning process in that iteration transmit their gra-
dient estimates over a Gaussian MAC. In round t, the PS
receives the superposition of the signals transmitted by the
participating devices as

y[t] =
∑
i∈At

ci,txi[t] + z[t],

where z[t] ∼ N (0, N0I) is the channel noise, At is the set of
participating devices, xi[t] is the signal transmitted by device
i, and ci,t is the channel coefficient from device i to the PS.
We assume that the transmitters perfectly know and correct
the phase shift in their channels. Therefore, for simplicity,
we assume real channel gains in the rest of the paper, i.e.,
ci,t ∈ R+.

We assume that ci,t is independent across the users and
rounds, but remains constant within one round. We further
assume that only the agents with sufficiently good channel
coefficients participate in each round to increase power effi-
ciency. We assume this happens with probability p ∈ (0, 1)
for each device, independently of other devices. We leave the
analysis of this probability for different fading distributions
as future work. If the device i participates in a round, then it
samples uniformly from its own local dataset such that every
data point is sampled independently from the other samples
with probability q ∈ (0, 1). Let Bi,t denote the set of sam-
ples in the batch used by the ith device if it is participating in
round t. Let at , |At| and bi,t , |Bi,t|. Both at and bi,t are
binomial random variables with parameters p and q.



Each participating device computes a gradient estimate
based on the random samples in its batch. We bound L2-
norm of every per-sample gradient by L. If this is not the
case originally, then the gradient is downscaled by a factor
of L
‖∇`(wt,j)‖2

; that is, for a sample d, we define gt(d) ,

∇`(wt, d)×max
{

1, L
‖∇`(wt,d)‖2

}
, as done in [9].

Device i transmits

xi[t] = hi,t

ξi,t ∑
j∈Bi,t

gt(j) + βi,tni,t

 , (1)

where ni,t ∼ N (0, σ2
i,tI), ξi,t and βi,t are scaling factors,

and hi,t , (c̃i,t)
−1. c̃i,t is the CSI which can be manipulated

by the PS by a multiplicative factor of k ∈ (0, 1], i.e., c̃i,t =
k · ci,t. For simplicity, we assume that the local datasets are
of the same size, although our analysis can be extended easily
by adding another scaling factor to the gradient, if this is not
the case.

The PS updates the model as wt+1 = wt − ηy[t], where
η is the learning rate. We assume that the number of partic-
ipating devices at and the batch sizes bi,t are known to the
devices but not to the PS. This can be achieved by keeping a
common random number generator state across the devices,
or alternatively by encrypted communication between the de-
vices. Since this is only sharing two real numbers, the com-
munication overhead is limited.

4. MAIN RESULTS
As we discussed in the previous section, we sample the partic-
ipating devices and the local datasets to be used in each iter-
ation. It is well known that the privacy of randomized mech-
anisms can be amplified by subsampling [20–22]; however,
these results are for the centralized setting. To take advantage
of sampling in the distributed setting, we make sure that all
of the data samples are chosen independently and uniformly
with probability pq. However, the challenge is that since the
local datasets of different devices are distinct, the conditional
probability of a data point being chosen given some other data
point is already sampled may not be the same as the marginal
probability of the same event. For example, if these two data
points are hosted by the same device, then the conditional
probability of the second data point being chosen is q, instead
of pq. One way of overcoming this problem is shuffling the
whole dataset across the devices after each iteration to cancel
the effect of locality. However, this would incur a large com-
munication cost. A better way is to exploit the wireless nature
of the protocol as we explain next.

4.1. Ensuring the anonymity of devices
Since the PS can only see the aggregated signal, it cannot
know which devices have transmitted. Still, if the PS knows
the number of participating devices, then it can collect some
information across the iterations and infer some dependency
between the samples, such as two samples being hosted by

the same device. In such cases, the i.i.d. assumption on the
sampling probability of data points does not hold. Next, we
show how we mask the number of participating devices.

Lemma 3. If ξi,t = 1/bt,∀i ∈ At, where bt ,
∑
i∈At

bi,t,
the PS cannot infer the number of devices actively transmit-
ting in round t.

Proof. Since the devices scale their local gradients by bt be-
fore transmitting, and the PS can only see the average gradi-
ent at each round, the received power level at the PS is inde-
pendent of the number or identity of the transmitting devices.
Thus from the power level, it is not possible to infer any in-
formation about the number of transmitting devices.

Due to Lemma 3, learning any set of sampled data points
does not convey any information to the PS about the remain-
ing sampled data points unless it learns the identities of the
transmitting devices. Therefore, batching local samples inde-
pendently with probability q and similarly sampling the trans-
mitting devices independently with probability p is equivalent
to subsampling in the centralized setting with probability pq.

4.2. Robustness to transmission failures
As we have stated, we want our scheme to be robust against
transmission failures of devices that are scheduled to trans-
mit at a certain iteration, but failed to do so for some reason.
This is achieved by distributing the noise generation across
the devices.

Lemma 4. If we choose βi,t = 1/
√
at and σi,t = σ̂t,∀i ∈

At, then the received signal at the PS becomes

y[t] =
∑
i∈At

1

bt

∑
j∈Bi,t

gt(j) + n[t] + z[t], (2)

where n[t] ∼ N (0, σ2
t I), and σt = σ̂t. When k < at devices

in At fail to transmit, the noise variance degrades to σt =
σ̂t
√

(at − k)/at.

Proof. If k devices fail, there are at − k remaining devices
transmitting. Since the noise added by the devices are in-
dependent and each has the variance σ̂2

t /at, we have σ2
t =

σ̂2
t (at − k)/at. If there is no failure, k = 0, and we obtain
σt = σ̂t.

As we see in Lemma 4, in case of transmission failures in
At, the variance of the total noise degrades gracefully, and so
does the privacy.

4.3. Robustness to manipulated CSI values
In practice, given a channel noise variance N0, we need to
tune σ so that the total noise variance N0 + σ2 is sufficient
to meet the desired privacy level (ε, δ). However, if we rely
on the channel noise and our channel is better than we think,
then the total noise variance may be less than it should be,
resulting in larger ε and δ values than the desired privacy level.
This may cause a privacy breach. To avoid this, in the privacy



computations, we simply ignore the channel noise since CSI
values are prone to attacks by the PS. Then, the ε value we
get is the upper bound of the real ε value in the presence of
channel noise.

4.4. Privacy analysis
In the next theorem, we present a result which shows the
boosting effect of sampling on the overall privacy.

Theorem 1. Each round t in our FL scheme with OAC is
(α, 2p

2q2α
σ̃2
t

)-RDP, where σ̃t , σtbt
2L , if pq ≤ 1/5, σ̃t ≥ 4 and

the following inequalities are satisfied

1 < α ≤ 1

2
σ̃2
t log

(
1 +

1

pq(α− 1)

)
− 2 log(σ̃t), (3)

and

α ≤
1
2 σ̃

2
t log2(1 + 1

pq(α−1) )− log 5− 2 log(σ̃t)

log
(

1 + 1
pq(α−1)

)
+ log(pqα) + 1

2σ̃2
t

. (4)

Proof. Consider (2) and define f [t] , y[t] − n[t] − z[t] =
1
bt

∑
i∈At

∑
j∈Bi,t

gt(j). Remember that ∆f = maxD,D′

‖f(D)− f(D′)‖2, where D and D′ are two datasets with the
same size, differing only in one data point. For the same re-
alization of random batching and device selection processes,
Bi,t(D) and Bi,t(D

′) also differ at most in one element.
Since ‖gt(j)‖2 ≤ L, we find ∆f = 2L

bt
. With GM, according

to Definition 3, our mechanism is (α, α(∆f)2/(2σ2
t ))-RDP

without sampling. Moreover, by Lemma 3, the sampling
probability of each sample is pq. The remaining of the lemma
follows from direct application of [22, Theorem 11].

If the conditions in Theorem 1 are not satisfied, the RDP
of the sampled Gaussian mechanism can still be computed
numerically and improvement due to sampling is still valid.
The numerical procedure for this is given in [22, Section 3.3]
and it is demonstrated in Section 5.

Process to compute (ε, δ)-DP after T iterations: Ac-
cording to Lemma 2, if the received message at round t
is (α, εt)-RDP, then after T iterations, the mechanism is(
α,
∑
t∈[T ] εt

)
-RDP. According to Lemma 1, it is (

∑
t∈[T ] εt+

log(1/δ)/(α−1), δ)-DP. We observe that although εt depends
on the parameters in our mechanism, α does not. It is a pa-
rameter we choose to minimize (

∑
t∈[T ] εt + log(1/δ)/(α−

1), δ), which we compute for several α values and take the
best α among them. Since both the analytical (if it exists) and
the numerical computations of the composed (α, ε)-RDP is
computationally cheap, this is feasible.

5. NUMERICAL RESULTS
In this section, we numerically calculate the composite (ε, δ)-
DP of a learning task with δ = 10−5, for different sampling
rates given by pq, where pq = 1 means there is no sam-
pling, i.e., all the devices participate and they use all their
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Fig. 1. Total privacy measured by ε for different sampling
rates across iterations.

local datasets. We assume ∆f = 1 and σt = 1,∀t ∈ [T ]. For
pq = 1, we compute the total privacy spent, i.e., the compos-
ite ε by using both the advanced composition theorem [5, The-
orem 3.20], which is denoted by ‘act’ in the figure, and the
RDP approach given in Lemma 2. Since we numerically ver-
ify that RDP accounting performs much better for the same
sampling rate, we use it for the other values of p · q. For
numerically computing the composition with RDP, we used
Opacus library 1. We tested α values from 1 to 64, and picked
the one minimizing the composite ε value.

We observe in Fig. 1 that for pq = 1 and pq = 0.5, the
resultant ε values are very high, namely more than 100. This
is, in fact, very weak privacy. Roughly speaking, it means that
the output distribution of the final learned model can change
by a factor of 100 when only one element is changed in the
dataset. However, we see that when we have smaller sampling
rates, the privacy guarantee comes into an acceptable range.
In an edge network setting, we expect many devices to partic-
ipate in learning, with substantial local datasets. Therefore,
pq values on the order of 0.01 are not unreasonable.

6. CONCLUSION
We have exploited the anonymity in wireless transmissions
to enable private wireless FL across edge devices. This is
achieved by exploiting OAC rather than orthogonal transmis-
sions, which would reveal the identity of the devices. In
particular, we exploit random subsampling of both the de-
vices and the local data samples in achieving reasonable DP
guarantees. As opposed to recent works on the topic, we do
not depend on the channel gain or the noise at the PS for
privacy guarantees as these values are prone to attacks; al-
though our method is orthogonal to these techniques and can
be combined with them. Our results demonstrate yet another
favourable property of OAC in wireless edge learning. We
will evaluate the benefits of the proposed privacy mechanism
and its comparison with other alternatives on a practical learn-
ing problem in our future work.

1https://github.com/pytorch/opacus
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“Federated learning over wireless fading channels,”
IEEE Transactions on Wireless Communications, vol.
19, no. 5, pp. 3546–3557, 2020.

[14] Guangxu Zhu, Yong Wang, and Kaibin Huang, “Broad-
band analog aggregation for low-latency federated edge
learning,” IEEE Transactions on Wireless Communica-
tions, vol. 19, no. 1, pp. 491–506, 2019.

[15] Amir Sonee and Stefano Rini, “Efficient federated
learning over multiple access channel with differential
privacy constraints,” arXiv preprint arXiv:2005.07776,
2020.

[16] M. Seif, R. Tandon, and M. Li, “Wireless federated
learning with local differential privacy,” in 2020 IEEE
International Symposium on Information Theory (ISIT),
2020, pp. 2604–2609.

[17] Yusuke Koda, Koji Yamamoto, Takayuki Nishio, and
Masahiro Morikura, “Differentially private aircomp fed-
erated learning with power adaptation harnessing re-
ceiver noise,” arXiv preprint arXiv:2004.06337, 2020.

[18] Dongzhu Liu and Osvaldo Simeone, “Privacy for
free: Wireless federated learning via uncoded trans-
mission with adaptive power control,” arXiv preprint
arXiv:2006.05459, 2020.
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ferential privacy of the sampled gaussian mechanism,”
arXiv preprint arXiv:1908.10530, 2019.


