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Abstract—State-of-the-art performance for many emerging
edge applications is achieved by deep neural networks (DNNs).
Often, the employed DNNs are location- and time-dependent,
and the parameters of a specific DNN must be delivered from an
edge server to the edge device rapidly and efficiently to carry out
time-sensitive inference tasks. This can be considered as a joint
source-channel coding (JSCC) problem, in which the goal is not to
recover the DNN coefficients with the minimal distortion, but in
a manner that provides the highest accuracy in the downstream
task. For this purpose we introduce AirNet, a novel training and
analog transmission method to deliver DNNs over the air. We
first train the DNN with noise injection to counter the wireless
channel noise. We also employ pruning to identify the most
significant DNN parameters that can be delivered within the
available channel bandwidth, knowledge distillation, and non-
linear bandwidth expansion to provide better error protection for
the most important network parameters. We show that AirNet
achieves significantly higher test accuracy compared to the
separation-based alternative, and exhibits graceful degradation
with channel quality.

Index Terms—Neural network compression, joint source-
channel coding, network pruning, distributed inference

I. INTRODUCTION

An increasing number of edge devices are capable of
carrying out complex signal processing and inference tasks.
Currently, the state-of-the-art performance for many emerg-
ing edge applications is achieved by deep neural networks
(DNNs). It is normally assumed that a DNN trained for a
specific task is stored on the edge devices, e.g., an autonomous
car, a drone or a mobile phone, to carry out inference on
collected data. However, with the growing adoption of data-
driven machine learning technologies, it will not be possible
to store the parameters of all DNNs that may be needed by
a device. Moreover, a DNN may be specific to a location
or may be updated frequently due to non-stationarity of the
environment, and it may need to be acquired by the edge
device at the time of inference.

In this work, we consider scenarios, in which the parameters
of a DNN have to be transmitted from an edge server (e.g.,
a base station), which has access to training data, to an edge
device (e.g., an autonomous car) over a wireless channel for a
time-sensitive inference task, as shown in Fig. 1. The conven-
tional approach would be to first train a DNN, which is then
compressed to be delivered efficiently over the bandwidth-
limited channel. This approach can benefit from the existing
literature on DNN training and compression.
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Fig. 1: System model.

We propose an alternative ‘“‘analog” strategy for the
bandwidth-efficient delivery of DNN parameters over a wire-
less channel. We utilize a novel joint source-channel coding
(JSCC) approach, which directly maps the DNN parameters
to channel symbols in an analog manner. Our strategy, called
AirNet, allows us to greatly reduce the bandwidth as well
as the computational burden of encoding and decoding. Our
approach also reduces the requirement for accurate channel
estimation. To the best of our knowledge, this is the first work
that considers wireless transmission of DNN parameters for
rapid edge inference applications. Our specific contributions
can be summarized as follows:

e We propose a novel wireless DNN training and trans-
mission scheme under bandwidth and transmission power
constraints. In addition to employing network pruning and
knowledge distillation to compress the DNN dimensions
during training, we show that the non-linear Shannon-
Kotelnikov (SK) mapping can provide unequal error
protection and further bandwidth efficiency.

o We show that the proposed AirNet scheme achieves a
satisfactory level of accuracy, while significantly reduc-
ing the bandwidth compared to state-of-the-art digital
schemes, which employ DNN compression followed by
channel coding.

o We perform extensive evaluations of our scheme, con-
sidering different channel models, training strategies,
and channel conditions, and show that it consistently
outperforms digital approaches.

II. RELATED WORK

Although DNNs provide significant performance improve-
ments for many different tasks, they usually require high
computational and memory resources. From the communica-
tions perspective, the memory footprint of a DNN is a crucial
factor. On the other hand, it is known that DNNs are usually



overparameterized, and their size can be reduced by com-
pressing or removing (pruning) some redundant parameters
[1]. Many different pruning techniques have been proposed
[2]-[4]. In [2], Taylor expansion is utilized to approximate
the change in the loss function induced by pruning to decide
which parameters to remove, [3] considers lj-norm of the
network weights, while [4] studies the statistical information
from a layer to prune the previous layer. Authors of [5]
study the information-theoretic basis of pruning, assuming
independent and identically distributed (i.i.d.) DNN weights
with exponential distribution. Quantization can also be used
to compress DNN parameters (please see [6] for a survey).
In [7], quantized DNN parameters are further compressed by
utilizing context-adaptive binary arithmetic coding, minimiz-
ing the impact of compression on the overall performance
of the network. Another approach is to design compact and
computationally efficient DNN architectures [8], rather than
first training a large network and pruning it.

As we have highlighted above, the considered DNN delivery
problem is a JSCC problem. Although Shannon’s separation
theorem [9], dictates the optimality of separate source and
channel coding, it holds under the assumptions of infinite
source and channel bandwidths, ergodic source and channel
distributions, and an additive distortion measure in general,
all of which are violated in our problem.

Many systems have been shown to benefit from designing
the source/channel codes jointly. More recently, DNN-based
efficient JSCC techniques have been shown to outperform con-
ventional digital approaches even for the wireless transmission
of well-studied sources such as images [10]-[13], speech [14],
or videos [15]. Deep JSCC has also been applied to other
downstream tasks, such as remote inference problems [16],
[17], retrieval [18], or anomaly detection [19] problems. In
our work, the goal of the receiver is to reconstruct a DNN,
but we measure its quality by the accuracy in the desired
inference task. Moreover, unlike images, DNN parameters
may not necessarily follow a common statistics that can be
exploited for efficient compression or JSCC; however, when
training data is available, a particular DNN architecture can be
trained or fine-tuned specifically for efficient wireless delivery.
The similar problem of wireless delivery of DNN parameters
is studied in [20], but in the absence of training data.

III. METHODS
A. System model

We consider an edge server, with a large database of training
samples. We assume that edge devices connect to this server
to download the parameters of the model to perform inference
on their local data samples. Our goal is to ensure the best
possible inference performance, under power and bandwidth
constraints on the channel from the edge server to the edge
devices. Please see Fig. 1 for an illustration of our model.

The channel between the encoder and the decoder is mod-
elled as a complex slow fading channel y = hx + z, where
x € C" and y € C" are the channel input and output
vectors, respectively, z € C® is the independent zero-mean

unit-variance complex Gaussian noise vector, and h € C is
the complex channel gain. Here, b represents the available
channel bandwidth limited due to the delay constraint of the
downstream task. We assume that the channel gain h remains
the same throughout the transmission, but changes from one
transmission to the next in an i.i.d. fashion. An average power
constraint is imposed on the channel input, that is, the channel
input vector must satisfy 1 S0 [z;]> < P = 1.

We will first consider the static additive white Gaussian
noise (AWGN) channel, by setting ||h|| to be a constant with
a zero imaginary counterpart. We will also consider different
channel conditions by varying channel’s average SNR, defined
as SNR = 10log;,(E[||h]|*]) in the dB scale.

For the fading channel experiments, we assume that the
channel state information (CSI) is available at the receiver.
Therefore, the received signal y = hx + z is first multiplied
by h*, which is the complex conjugate of h and divided by its
squared norm ||h||*. The resulting signal x+ H 3 HZ is equivalent
to an AWGN channel with a time-varying SNR.

At the receiver, we assume that the received symbols y € (ol
are decoded into the parameters of a d-dimensional DNN, w €
R, and used for obtaining local predictions p = g (a | W),
where a is an input, and g (- | W) is a function representing
the neural network’s forward pass. The goal is to achieve the
maximal possible accuracy with this inference task.

B. Training strategy

In the proposed delivery scheme, the trained neural network
weights will be delivered over the wireless channel in an ana-
log fashion; that is, they will be mapped directly to the channel
inputs rather than being first compressed into bits, which are
then coded and mapped to discrete constellation points. This
has two consequences: First, we need to train the DNN so
that it can be delivered using b channel symbols. Second,
the receiver will recover noisy network weights whose values
will depend on the channel realization. In order to achieve
satisfactory network accuracy, the DNN must be trained in a
way that guarantees robustness to channel imperfections. Our
training strategy consists of the following steps.

The encoder first trains a d-dimensional DNN with param-
eters w € R? where d > b, which will then be pruned to
the available channel bandwidth. Choosing a large DNN as an
initial point, rather than directly training a DNN of dimension
b is motivated by recent findings in the pruning literature [21],
which show that pruning a large DNN is generally easier
than finding low-dimensional sub-DNNs that would achieve
the same accuracy as the large DNN after being trained.

At each training iteration, we inject a certain amount of
noise to the network’s weights, as we hypothesize that the
network can learn robustness against channel noise if it expe-
riences it during training. The details about our noise injection
strategy can be found in Section III-D.

Note that, with this scheme, each network parameter is
transmitted as a single channel symbol, and cannot benefit
from coding. However, it is known that some network param-
eters are more important than others for the inference task,



and we may want to protect those better against channel noise.
Therefore, we also consider pruning the network to less than b
parameters, and then expanding it with a non-linear bandwidth
expansion method, as described in Section III-F.

C. Network pruning

To reduce the network dimension to the channel bandwidth,
we adopt a simple pruning method [3], where 10% of the
remaining convolutional filters with the smallest /;-norm are
removed from the network at each step. In order to re-gain
the accuracy, after each pruning iteration the network is fine-
tuned. During fine-tuning we utilize both noise injection and
knowledge distillation to ensure satisfactory performance of
the network under noisy conditions. In this work, we assume
that the side-information about the pruned DNN’s structure
(the number of filters remaining in each layer) is reliably
transmitted to the receiver as metadata.

D. Noise injection

Noise injection has been originally proposed as a regular-
ization technique to prevent overfitting in DNNs [22]. We
note that in our setting such a strategy not only prevents
overfitting, but also allows the network to adapt to the noisy
channel characteristics for efficient inference. Therefore, at
each training iteration, we calculate the network’s predictions
as p = g (a | W), where W = n(w) is a noisy set of network’s
weights, and 7(-) represents either an AWGN or a fading
channel, as described in Section III-A.

E. Knowledge distillation

Knowledge distillation [23] has been shown to be an effec-
tive method for increasing performance of small DNN models.
The main idea behind knowledge distillation is to transfer
some knowledge from a large DNN model, called the reacher,
to a smaller model, denoted as the student. The loss function
in knowledge distillation is defined as:

Liotar = —t> Y _pilogpi — Y _ pilogp; (1

(4 7

where p; = e* /3] j e are the soft softmax predictions of
the teacher model, ¢ is the temperature parameter, which we set
to 2 in all our experiments, p; are the ground truth predictions,
and p; are the student network’s predictions.

F. SK expansion for analog error correction

SK mapping is a method for performing efficient bandwidth
compression or expansion in analog transmission [24]. The
main idea is to project source symbols onto a lower- or higher-
dimensional space, in order to reduce the bandwidth or counter
the channel noise by expanding the bandwidth. In our problem,
we first prune the network to a dimension smaller than b, and
then expand it back to dimension b. The motivation for doing
this, rather than directly pruning to dimension b, follows from
the fact that DNNs can be pruned quite aggressively without
significant loss in performance, while the SK expansion allows
unequal error protection across DNN parameters.

SK mapping has been discussed in [25] for JSCC. The
authors use Archimedes’ spiral for encoding, and show its
usefulness in the analog compression and expansion tasks.
In our work, we employ a similar approach for bandwidth
expansion using Archimedes’ spirals, defined as:

z1 = —wcos(w), rg = —wsin(w), w > 0, ()
71' 77
r] = ——wcos(—w+m), xg = ——wsin(—w+m), w <0,
™ ™
3)

where A is a scaling factor, which we fix to 0.1. We map each
network parameter w to a point (x1,x2) on the 2D space. We
encode the sign of the parameters by assigning positive-valued
parameters to the spiral parameterized by (2), and the negative-
valued parameters to the spiral parameterized by (3). At the
receiver, we map the 2D points back to the original values by:

W= :I:arg;nin (21 — O(w))? + (x9 — 9(10))2) @

where 6(-) represents the union of the spirals defined in Egs.
(2) and (3), and the sign depends on which spiral the decoded
point belongs to. Using the above formulas on all the DNN
parameters allows us to perform 1 : 2 bandwidth expansion. In
order to achieve higher orders of expansion, we simply map
the resulting points (z1,x3) from the 2D space to a higher
dimensional space with the same mappings.

We note that the aforementioned solution only allows us to
achieve expansion ratios of 1 : 27, where n is the number
of successive expansion steps. In order to achieve interme-
diate levels of expansion, we propose a simple algorithm
for selecting a subset of layers to be expanded, instead of
expanding the entire network uniformly. In the algorithm, we
first calculate the predictions of the original network, without
noise. Subsequently, we perform iterative evaluations, where at
each iteration we inject noise to only one layer at a time, and
calculate the mean squared error (MSE) between the original
predictions and the predictions produced by the network with
one of the layers perturbed with noise. Finally, we perform
SK expansion of the layers, which, after perturbation, result
in the highest MSE, thus are the most sensitive to noise.

IV. RESULTS

In this section we evaluate the performance of the proposed
AirNet and compare it with other schemes in the literature.

A. Experimental setup

In this work, we consider image classification task over
CIFARI10 [26] dataset which contains 60000 RGB images
of size 32 x 32 pixels, divided into 10 different classes. For
a fair comparison with [5], [7], we consider Small-VGG16
[27], which employs the same convolutional layers as standard
VGG16, but utilizes a different classifier head, which consists
of two linear layers, first containing 512 neurons, followed by
ReLU activation, and the second containing 10 neurons for
class predictions. We perform multiple training runs of our
network, for different values of training SNR, channel types,



0.90

0.85

=== Ideal channel

0.70

—»— AirNet w/ SK expansion
—&— AirNet
-

0.65 DeepCABAC [7)

—<= Air-MobileNet v2

0.60

0 5 0 15 20 25 30 3
SNR [dB]
(a) AWGN, b~ 1.2 x 10°

&

0.94

0.81

© 0.71

-== Ideal channel
»— AirNet w/ SK expansion (5 dB)
) —o— AirNet (5 dB)
0.6 . i
DeepCABAC [7] w/ CSIT
—¥— Succesive pruning [5] w/ CSIT
—<— DeepCABAC [7] w/o CSIT
0.5 Succesive pruning 5] w/o CSIT
0 5 10 15 20 25 30 35
SNR [dB]

(c) Fading, b ~ 1.2 x 10°

=P

=== Ideal channel

—— AirNet w/ SK expansion (5 dB)
—&— AirNet (5 dB)
DeepCABAC [7]
~¥— Succesive pruning [5]
0.0 0.5 1.0 1.5 2.0 2.5
b [x l[)7]

(b) AWGN, SNR = 5dB

0.94
0.92
0.90 1 pe
-
g 0881
=]
€ 0.86
).86 4
< > , === Ideal channel
Y —»— AirNet w/ SK expansion (5 dB)
0.84 / —e— AirNet (5 dB)
DeepCABAC [7] w/ CSIT
0821 —¥— Succesive pruning [5] w/ CSIT
e DeepCABAC 7] w/o CSIT
v ~¥- Succesive pruning [5] w/o CSIT
0.80 : : . . _
0.0 0.5 1.0 1.5 2.0 2.5
b [x107]

(d) Fading, SNR = 5dB

Fig. 2: Performance comparison between AirNet, digital, and analog schemes over AWGN and slow fading channels.

pruning ratios (depending on the channel bandwidth b) and
different training strategies. For knowledge distillation, we use
ResNet-50 [28], trained on CIFAR10 dataset, as the teacher.
For DNN training, we use SGD optimizer with learning rate of
0.01 and momentum of 0.9 for 30 epochs, reduce the learning
rate to 0.001, and train for further 30 epochs.

We compare our method to two state-of-the-art digital DNN
compression approaches - DeepCABAC [7], and succesive
pruning [5]. Both methods first perform DNN sparsification
with pruning, quantize the remaining DNN parameters, and
encode them into a minimal-length bitstream with arithmetic
or Huffman coding, respectively.

For the analog schemes, we employ the channel model
described in Section III-A with receiver CSI only. For the
digital schemes, we consider two alternatives. When the CSI
is available only at the receiver, the transmitter transmits at
a fixed rate. If the channel capacity is below this rate, the
transmission is considered to be failed. Then, we calculate the
fraction of successful transmissions and calculate the resulting
mean performance of transmitted DNNs. The second scenario
assumes that the CSI is available also at the transmitter. In this
case, the transmitter compresses the DNN to the rate dictated
by the channel capacity. Please note that in both scenarios we
consider digital transmission at the Shannon capacity, which
is a rather generous upper bound on the performance.

B. Inference performance

In this section, we compare AirNet with alternative digital
methods [5], [7] at different channel SNRs and bandwidths. As
an additional baseline, we introduce Air-MobileNet v2, which
has the same structure as popular MobileNet v2 [8], but is
trained similarly to our models. We consider both AWGN
and fading channels. Please note that the analog methods
are trained with noise injection corresponding to the channel
model used for testing.

The performance comparison for an AWGN channel with
fixed bandwidth, is shown in Fig. 2a. Our method achieves
satisfactory performance even for low channel SNRs. The
digital alternatives tend to require a much higher SNR to
allow successful transmission of the DNN parameters. Our
network is able to recover almost perfect accuracy when
the channel SNR values are above 10dB, whereas digital
approaches require SNR > 50dB to achieve the same level of
accuracy. Air-MobileNet v2 achieves satisfactory performance
at high SNR regime, but fails when SNR is below 10dB. This
behaviour is probably caused by the noise sensitivity of certain
operations utilized in its structure, e.g., inverted residuals or
linear bottlenecks. For the fixed channel SNR (Fig. 2b), we
observe that our network requires less bandwidth compared to
the digital alternatives. It can be also observed that with SK
expansion following initial pruning of 91% of the weights,
even better performance is achieved, especially at low SNRs.
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Similar behaviour is observed for fading channels (Fig. 2c),
where AirNet outperforms the digital approaches, especially
when they also do not have access to instantaneous CSI
at the transmitter (CSIT). AirNet is able to perform well
in the fading regime, where the channel gain can differ
between transmissions. However, higher SNR of at least 20dB
is required to recover noiseless accuracy. SK improves the
performance in the low SNR regime. Results for a fixed SNR
(Fig. 2d) indicate that the expansion is necessary to achieve
satisfactory accuracy, as AirNet, even at high bandwidths, fails
to recover the accuracy that is close to the noiseless bound.

C. Performance for different training strategies

In this section, we compare different training strategies for
AirNet. The results are shown in Fig. 3a. We observe that each
step presented in Section III-B is crucial for the performance
of our network. The best accuracy, for a fixed bandwidth, is
achieved when we combine all the methods together, namely
pruning with noise injection (indicated as joint pruning in
Fig. 3a), and knowledge distillation. We see that knowledge
distillation from a larger model allows us to achieve a small
gain in the accuracy. Another important factor is to combine
pruning with noise injection. The network, which was first
pruned, and then fine-tuned with noise injection (denoted as
separate pruning), achieves weaker performance, only slightly
higher from the network trained without noise injection.

D. Performance for different bandwidths

The comparison between different bandwidths for AirNet is
shown in Fig. 3b. We observe that as we increase the band-
width, the robustness of the network against noise increases.
For the AWGN case, bandwidth of roughly 5.2 x 10® channel
symbols is sufficient to achieve the accuracy of 90% even at
SNR = 0dB. However, as we further reduce the bandwidth,
we sacrifice the robustness. Another finding is that the SK
expansion scheme is able to recover the accuracy loss due to
pruning the network. In other words, it is better to first prune
the network to a very low bandwidth and then expand it with

SK mapping, compared to pruning to a moderate bandwidth.
The advantage of the SK expansion becomes even more crucial
at SNR < 5dB as it provides better protection for the more
significant network parameters.

E. Graceful degradation

In Fig. 3c, we present the performance of networks trained
at different SNRy,.4;,, values, and tested on a wide spectrum
of SNR;.s: values. We note that AirNet, trained at a moderate
SNR, achieves satisfactory performance even with a relatively
large mismatch between the training and test SNRs; while
the accuracy is maximized when the two match. Networks
trained for low SNRy,4;,, fail to recover the full accuracy even
when the channel improves. Again, we see that the network
trained without noise injection (SNRy.q;, = 00) performs
the worst when the channel is noisy. We also observe that
AirNet exhibits graceful degradation; that is, its performance
slowly degrades as the channel gets worse. On the contrary,
digital transmission exhibits a threshold behaviour, where the
accuracy sharply drops when the channel conditions are worse
than the code rate.

V. CONCLUSIONS

We presented AirNet - a novel training and analog trans-
mission strategy for rapid and efficient wireless delivery of
inference capabilities, in particular, in the form of DNN param-
eters, without resorting to the conventional source and channel
coding steps. The strategy consists of joint pruning and
noise injection, which leads to low bandwidth requirements
and high robustness against channel noise. We also applied
knowledge distillation step to boost the performance. SK
mapping for bandwidth expansion is proposed as an unequal
error protection scheme to increase the robustness of the more
critical network parameters against channel impairments. Our
strategy consistently outperforms digital network compression
methods for AWGN and fading channel scenarios, showing its
promise for time-sensitive location-dependent edge inference
applications in future networks.
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