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Abstract— In this paper, we consider transmission of a contin-
uous amplitude source over a quasi-static MIMO Rayleigh fading
channel. The performance metric is end-to-end distortion of the
source caused both by the lossy compression and the channel
errors. We are interested in the high SNR behavior expressed in
the distortion exponent, which is the exponential decay rate of the
average end-to-end distortion as a function of SNR. Our goal is
to maximize this distortion exponent by considering joint source
and channel coding techniques. We provide digital strategies that
utilize layered source coding coupled with multi-rate channel
coding either by progressive or by superposition transmission,
as well as a hybrid digital-analog scheme. When either the
transmitter or the receiver has one antenna, we show that we
are able to achieve the optimal distortion exponent.

I. I NTRODUCTION

Many telecommunications applications require transmission
of analog sources over wireless channels. Examples include
digital TV, voice and multimedia transmission in cellular
and wireless LAN environments or sensor networks where
observations about some analog phenomena are transmitted
to a fusion center over wireless links. Besides having analog
sources, what is common in these applications is the random
time-varying characteristics of the transmission media and
the delay requirements. For these systems the appropriate
performance is the end-to-end average distortion and achieving
the optimal performance requires a cross-layer approach.

Multiple antenna systems can remarkably improve the per-
formance of wireless communication systems by providing
spatial multiplexing gain and/or spatial diversity gain. The
tradeoff between these two gains is explicitly characterized
in [1]. The best operating point on the diversity-multiplexing
tradeoff curve depends on the application. In this paper we
propose communication strategies that simultaneously operate
at different points on the tradeoff curve in order to optimize
the end-to-end distortion performance.

We consider a continuous amplitude, memoryless source
that is to be transmitted over a MIMO quasi-static Rayleigh
fading channel with minimum average distortion. We have
stringent delay constraints, where each source block ofK
samples has to be transmitted over a block ofN channel
uses, during which the channel is constant. We define the
corresponding bandwidth ratio asb = N/K, and analyze the
system performance with respect tob.

In our scenario, Shannon’s source-channel separation theo-
rem does not hold and a joint optimization is required. We
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know that digital transmission suffers from the ‘threshold
effect’, i.e., error probability is bounded away from zero when
the channel quality is worse than the attempted rate and digital
transmission cannot utilize the increase in the channel quality
beyond the threshold. For wireless systems where the channel
quality varies randomly, it is desirable to design source and
channel codes with graceful degradation in order to have
reasonable performance over a wide range of channel states.

In this paper, we focus on the high SNR behavior of the
average distortion. We apply layered successive-refinement
source coding ideas to achieve the optimal distortion perfor-
mance in the high SNR regime. As in [2], [3], we consider
two different source coding strategies. In the first one, called
layered source coding with progressive transmission (LS),
each layer is successively transmitted in time. The second
strategy, called broadcast strategy with layered source (BS),
superimposes the codewords of each layer and transmits them
simultaneously. We also discuss a hybrid layered digital-
analog transmission strategy coupling LS strategy with analog
transmission which we call hybrid LS (HLS).

We show that the rate allocation among layers in LS and
hybrid LS can be optimized using the diversity-multiplexing
tradeoff of the MIMO system. Furthermore, we argue that
BS with infinite layers is able to achieve optimal distortion
exponent for all bandwidth ratios, when either the transmitter
or the receiver has one antenna (SIMO or MISO).

II. SYSTEM MODEL

We assume a quasi-static MIMO fading channel withMt

transmit andMr receive antennas. The channel model is

Y =
√

SNR

Mt
HX + Z, (1)

whereX ∈ CMt×N is the transmitted codeword,Z ∈ CMr×N

is the complex Gaussian noise with i.i.d entriesCN (0, 1), and
H ∈ CMr×Mt is the channel matrix which has i.i.d. entries
with CN (0, 1). The channel is constant over a block of length
N while independent from block to block.H is assumed to be
known by the receiver and unknown by the transmitter. The
transmitted codeword is normalized in power so that it satisfies
tr(E[XHX]) ≤ MtN , i.e., average signal to noise ratio at
each receive antenna isSNR. We defineM∗ = min(Mt,Mr).

Since we are interested in the high SNR regime, we will
use the outage probability,Pout, instead of the channel error
probability as it forms a tight lower bound for a finite block
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Fig. 1. Channel allocation for two-layered source coding strategy.

length of N ≥ Mt + Mr − 1, and has the same exponential
behavior [1]. For a family of codes with rateR = r log SNR,
r is defined as the multiplexing gain of the family, and

d(r) = lim
SNR→∞

log Pout(SNR)
log SNR

(2)

as the diversity advantage. The diversity gaind∗(r) is defined
as the supremum of the diversity advantage over all possible
code families with multiplexing gainr. In [1], it is shown
that there is a fundamental tradeoff between multiplexing and
diversity gains and this tradeoff is explicitly characterized.

We consider an analog source denoted bys. For the analysis,
we focus on a memoryless, complex Gaussian source with in-
dependent real and imaginary components each with variance
1/2. Generalization to other memoryless sources follows as
discussed in [3]. The distortion-rate function for the complex
Gaussian source isD(R) = 2−R. Here we use compression
strategies that meet the distortion-rate bound.

The decoder maps the received output of each blockY to an
estimatês ∈ CK of the source. Average distortionED(SNR)
is defined as the average mean squared error betweens and
ŝ where the expectation is taken with respect tos, H and
Z. Note that this average distortion is due to both the lossy
compression of the source and the outages that occur over the
channel. In this work we optimize the system performance in
terms of the distortion exponent defined as [4]

∆ = − lim
SNR→∞

log ED

log SNR
. (3)

A distortion exponent of∆ means that the expected distortion
decays asSNR−∆ with increasing SNR whenSNR is high.

A similar problem of minimizing end-to-end distortion for
MIMO systems is explored in [7] as well, however, their
analysis is limited to single layer source coding and only the
integer multiplexing gains are considered for the optimization.

III. L AYERED SOURCE WITH PROGRESSIVE

TRANSMISSION

Although progressive transmission of images over lossy
channels have been well studied, layered source coding with
progressive transmission for improved distortion exponent
over fading channels is first considered in [2]. The main idea is
to do source coding in layers, where each layer is a refinement
of the previous ones, and to transmit layers successively in
time over the channel using codes with different rates. We
will argue that, this corresponds to each layer operating at a
different point of the diversity-multiplexing tradeoff curve of
the MIMO system. This enables the receiver to get as many
layers as it can depending on its current fading state.

Consider the two layer case, where the whole transmission
block of N channel uses is divided into two as in Fig. 1. In

the first portion oftN channel uses(0 ≤ t ≤ 1), base layer
is transmitted at a channel rate ofR1 bits per channel use
(bpcu). In the second portion, we transmit the enhancement
layer consisting of the successive refinement bits of the source
at a rate ofR2 bpcu. Although it might be suboptimal for finite
number of layers, we consider equal channel allocation among
the layers, that ist = 1/2. It it possible to prove that in the
limit of infinite layers, equal channel allocation achieves the
same limiting performance as the optimal channel allocation.

For the transmission rates, we can impose the constraint
R1 ≤ R2 since the enhancement layer is useless by itself.
This constraint also guarantees that the base layer is not
in outage whenever the enhancement layer is not. Upon
successful reception of both portions, destination achieves a
source description rateb(R1 + R2)/2 bits per source sample.
However, in case of an outage in the second portion only,
it gets bR1/2 bits per source sample. These correspond to
distortions ofD(b(R1 + R2)/2) andD(bR1/2), respectively.
In case of an outage at the base layer, the distortion is
D(0) = 1.

Let Pout(R, SNR) be the outage probability at rateR and
average received signal-to-noise ratioSNR, which we will
denote asPR

out. Then we can write the expected distortion
expression for 2-level LS as:

ED(R1, R2, SNR) .= (1− PR2
out)D(b(R1 + R2)/2)

+(PR2
out − PR1

out)D(bR1/2)) + PR1
out,(4)

where
.= is used for exponential equality as defined in [1].

Apparent from the expected distortion expression, there is
a tradeoff between the outage probability and the distortion
of the corresponding layer. As shown in [3] for SISO, there
exists an optimal rate pair(R1, R2) which results in the lowest
average distortion for any specific SNR. We will see now how
these results can be extended to MIMO.

In order to minimize expected distortion, we need to scale
rates asR1 = r1 log SNR, andR2 = r2 log SNR. Then high
SNR approximation for Eqn. (4) is found as

ED(r1,r2,SNR)
.=SNR−

b
2 (r1+r2)+SNR−

b
2 r1SNR−d∗(r2)

+SNR−d∗(r1). (5)

Optimal distortion exponent is achieved when all three expo-
nents are equal. We have

b

2
r2 = d∗(r2), d∗(r2) +

b

2
r1 = d∗(r1) = ∆.

For n layers, we obtain the following set of equations

b

n
rn = d∗(rn), (6)

d∗(rn) +
b

n
rn−1 = d∗(rn−1), (7)

. . .

d∗(r2) +
b

n
r1 = d∗(r1), (8)

where ∆ = d∗(r1). These equations can be graphically
illustrated on the diversity-multiplexing trade-off curve as
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Fig. 2. Allocation of rates to the layers on diversity-multiplexing tradeoff
curve.

shown in Fig. 2. This illustration suggests that the more layers
we have, the higher we can climb on the trade-off curve and
obtain a larger∆. Solving these equations for infinite layers
in the case of2× 2 MIMO, we find

∆ =
{

2(1− e−b) if b ≤ ln 2
1 + 3(1− e

ln 2−b
3 ) if b ≥ ln 2.

(9)

For a MISO system withMr = 1, we can express the optimal
distortion exponent in a simpler closed form expression in
terms ofMt and number of layersn as

∆ = Mt

[
1−

(
1

1 + b
nMt

)n]
. (10)

In the limit, we get

lim
n→∞

∆ = Mt(1− e−b/Mt). (11)

Note that above equations hold for SIMO (Mt = 1) if
we replaceMt with the number of receive antennasMr as
they have the same diversity-multiplexing tradeoff curve. The
distortion exponent achieved by LS with single and infinite
layers with respect to bandwidth ratio can be seen in Fig. 3
and Fig. 4 for2× 2 and4× 1 MIMO, respectively.

IV. H YBRID DIGITAL -ANALOG TRANSMISSION WITH

LAYERED SOURCE

Hybrid digital-analog transmission protocols proposed in
[5] provide “nearly robust” source-channel codes that perform
well for a range of noise conditions. Here we combine this
hybrid approach with progressive layered source coding to
minimize the average end-to-end distortion in a MIMO fading
channel. We call this strategy hybrid LS (HLS). Recently,
[8] analyzed the distortion exponent for hybrid digital-analog
space-time codes with one layer digital transmission, i.e.,
without layered source coding.

For b ≥ 1/M∗, we reserveK/M∗ channel uses for analog
transmission as explained below. We divide the rest of the
N − K/M∗ channel uses to transmit digital source layers
progressively as in the LS scheme. As before we assume that
we can use optimal channel codes that operate on the MIMO
diversity-multiplexing tradeoff curve.

Let s̄ ∈ CK be the reconstruction of the sources upon
successful reception of all the layers. We denote the recon-
struction error ase ∈ CK where e = s − s̄. We map this
error to the transmit antennas where each component of the
error vector is transmitted without coding in an analog fashion.
Since rank(H) ≤ M∗, degrees of freedom of the channel
is at mostM∗ at each channel use. Hence, at each channel
use we utilizeM∗ of the Mt transmit antennas and inK/M∗
channel uses we transmit allK components of the error vector
e. Receiver first tries to decode all the digitally transmitted
layers, and in case of successful reception of all the layers, it
forms the estimatês = s̄ + ẽ, where ẽ is the linear MMSE
estimate ofe based on the received signal during theK/M∗
channel uses reserved for analog transmission. This analog
portion is neglected unless all digitally transmitted layers can
be decoded at the destination.

As an example we consider HLS with 2 source coding layers
at ratesR1 ≤ R2. The expected distortion is similar to Eqn. (4)
except that we haveD((b − 1

M∗
)R1/2) instead ofD(bR1/2)

term andD(b(R1 + R2)/2) is replaced by

D

(
1
2
(b − 1

M∗
)(R1 + R2)

)
1

M∗

M∗∑

i=1

1
1 + SNR

M∗
λi

.

λi is the i-th eigenvalue ofHH†, whereH is the channel
matrix of the constrainedM∗ ×Mr system. The second part
of the above expression is due to the analog transmission. The
high SNR approximation for this expression in case of equal
channel allocation among layers is

SNR−1− 1
2 (b− 1

M∗ )(r1+r2).

Note that in general forn layers, the effect of the analog
portion to the distortion exponent analysis done in Eqn. (6-8)
is to change the slopes of the curves frombn to (b − 1

M∗
) 1

n ,
and replace the first equation with

1 +
1
n

(b− 1
M∗

)rn = d∗(rn). (12)

If we apply this analysis to the2×2 MIMO system, we achieve
the following distortion exponent forb ≥ 1/2

∆ = 1 + 3 ·
[
1− e−

1
3 (b− 1

2 )
]
, (13)

in the limit of infinite layers. Forb < 1/M∗ case, we apply the
hybrid scheme proposed in [8] which superimposes a single
source coding layer on uncoded transmission ofM∗N source
samples. Although [8] claims that this scheme is optimal for
all MIMO systems in the specified bandwidth ratio range, we
find that it achieves the upper bound only when the system



is limited to one degree of freedom,M∗ = 1. In general, we
find the corresponding distortion exponent as

∆ = b/[1− (M∗ − 1)b].

Distortion exponent vs. bandwidth ratio relation of HLS
is also included in Fig. 3 and Fig. 4 for2 × 2 and 4 × 1
MIMO, respectively. Note that forb > 1/M∗ the gain due
to the analog portion, i.e., gain of HLS compared to LS, is
more significant for small number of layers and decreases as
the number of layers increases. Furthermore, for fixedn this
gain decays to zero with increasing bandwidth ratio as well.
When the degrees of freedom of the MIMO system is more
than one, LS scheme performs better than the hybrid scheme
for very small bandwidth ratios. We conclude that in MIMO
systems with high bandwidth ratio, the main improvement in
the distortion exponent performance is due to layered source
coding.

In SISO systems, pure analog transmission achieves the
optimal distortion exponent of∆ = 1 for b ≥ 1 [3],
however, in MIMO systems with any number of antennas, it
is possible to show that analog transmission is still limited
to ∆ = 1. Hence analog transmission cannot utilize the
increase in diversity either provided by multiple antennas, or
by cooperation [2].

V. BROADCAST STRATEGY WITH LAYERED SOURCE

Broadcast strategy for slowly fading channels is proposed
and analyzed in [6] from the perspective of average throughput
of the system. It is based on the idea that the transmitter
views the fading channel as a degraded broadcast channel
with a continuum of receivers each experiencing a different
received signal-to-noise ratio corresponding to each fading
level. In [3], [2] we combined the broadcast strategy with
source compression by utilizing layered source coding and
called it broadcast strategy with layered source (BS). Similar to
LS, information is sent in layers, where each layer consists of
the successive refinement information for the previous layers.
However, in this case the different channel codes to which
each layer of the source is mapped are superimposed, assigned
different powers while still satisfying the total power constraint
and sent throughout the whole transmission block. Power and
rate allocation among the layers is optimized to minimize the
average distortion. However, as it is mentioned in [6], in the
general MIMO setting, channel ranking is not straightforward
and only suboptimal strategies can be found. In this work we
will only consider MISO and SIMO systems. Even for these
cases, the problem of optimal rate and power allocation for
minimum average distortion for a specific SNR level cannot
be solved using the tools of [6] due to the nonlinear nature
of the distortion function. However we will be able to obtain
asymptotic results for the high SNR regime.

We start with MISO results, SIMO results follow similarly.
We leth denote the channel gain vector whereh ∈ C1×Mt for
the MISO model andh ∈ CMr×1 for the SIMO model.

Consider 2-level superposition coding. We superimpose
enhancement layer signalX2 on the base layer signalX1,

where each layer uses a Gaussian codebook. Let the rates
of the base and enhancement layersR1 and R2 scale as
R1 = r1 log SNR, and R2 = r2 log SNR, respectively,
and the corresponding average SNR at each receive antenna
be SNR1 and SNR2, respectively. Then we can write the
received signal as

Y =
√

SNR1

Mt
hX1 +

√
SNR2

Mt
hX2 + Z, (14)

where we haveSNR1 + SNR2 = SNR.
The destination first tries to decode the base layer consider-

ing the enhancement layer as noise. This results in distortion
D(0) in case of outage. If it can decode the base layer, but not
the enhancement layer after subtracting the decoded portion,
the distortion isD(bR1). Successful decoding of both layers
results in a distortion ofD(bR1 +bR2). Here we consider the
fact that decoding the second layer reduces distortion if and
only if the first layer can be decoded as well. The expected
distortion, ED for BS can be written as follows.

ED(R1, R2, SNR) .= (1− P̄ 2
out)D(bR1 + bR2) +

(P̄ 2
out − P 1

out)D(bR1) + P 1
out,

whereP 1
out is the outage probability of the first layer,P 2

out

is the probability of the outage event of decoding the second
layer after decoding and subtracting the first layer, andP̄ 2

out =
max(P 1

out, P
2
out). Now let the power assignment beSNR1 =

SNR− SNR1−(r1+ε), ε > 0. We have

P 1
out = Pr

{
log

(
1 +

||h||2SNR(1− SNR−(r1+ε))
1 + ||h||2SNR1−r1−ε

)

< r1 log SNR}
= Pr

{
||h||2

(
SNR(1− SNR−(r1+ε))−

SNR1−r1−ε(SNRr1 − 1)
)

< SNRr1 − 1
}

(15)

.= Pr
{
||h||2 <

SNRr1 − 1
SNR− SNR(1−ε)

}
(16)

.= SNR−d∗(r1). (17)

and

P 2
out = Pr{log(1 + ||h||2SNR1−r1−ε) < r2 log SNR}

.= Pr{||h||2 < SNRr2+r1−1+ε} (18)

.= SNR−d∗(r1+r2), (19)

where d∗(r) is the diversity gain of the MISO system at
multiplexing gainr. We let ε → 0 to get (17) and (19). We
haveP̄ 2

out
.= P 2

out in the high SNR regime.
Using the MISO diversity-multiplexing tradeoff curve, the

high SNR approximation for ED can be found as

ED(r1, r2)
.= SNR−b(r1+r2)+
SNR−br1+Mt(r2+r1+ε−1) + SNRMt(r1−1).

The distortion exponent will be characterized by the dominat-
ing term in the high SNR regime. By equating the three terms,
we obtain a distortion exponent of

∆ = Mt

(
1− M2

t

b2 + bMt + M2
t

)
.
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Fig. 3. Distortion exponent vs. bandwidth ratio for the 2x2 MIMO system.
From top to bottom on the right hand side of the figure, the curves correspond
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with 1 layer, respectively.

Furthermore, generalization of the result to strategies withn
layers of broadcast coding will give us the relation

∆ = Mt

(
1− 1− b/Mt

1− (b/Mt)n+1

)
. (20)

Comparing Eqn. (10) and Eqn. (20) we see that as in the SISO
case [3], the distortion exponent achieved by BS with the same
number of layers is greater than that is achieved by LS. It is
also seen that, in the limit of infinite layers we get

∆ =
{

Mt if b ≥ Mt,

b if b < Mt.
(21)

This relation is included in Fig. 4 for4× 1 MISO. Note that,
since the diversity-multiplexing gain tradeoff curve is identical
for SIMO and MISO systems with the same set of antennas,
above result applies to the SIMO system as well. Comparison
of this result with the upper bound which will be derived in
the next section reveals that broadcast strategy achieves the
MISO/SIMO upper bound in the limit of infinite layers.

VI. U PPERBOUND

To find an upper bound for the distortion ratio of the MIMO
system, we follow [3], where we assume that the transmitter
has access to the perfect channel state information. Then
during each channel block separation theorem holds. However,
we restrict the transmitted signal vector at each channel use,
i.e., each column ofX in Eqn. (1), to have a covariance matrix
of MtI, which means that the channel state information is
not utilized for power adaptation in time, across antennas or
for beamforming. Then the instantaneous capacity,C(H) at
channel stateH is log det(I + SNRHH†). Corresponding
minimum distortion can be found as

D(H) = 2−bC(H) = [det(I + SNRHH†)]−b. (22)

We take the expectation over all channel realizations and
analyze the high SNR exponent of this expectation to find
the following distortion exponent which we state without
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proof due to space limitations. The proof is a straightforward
extension of the outage probability analysis of [1].

∆ =
M∗∑

k=1

min{b, 2i− 1 + |Mt −Mr|}. (23)

VII. D ISCUSSION ANDCONCLUSION

We analyzed the high SNR behavior of end-to-end distortion
in a MIMO system where a continuous amplitude source
is transmitted over a quasi-static Rayleigh fading channel.
We characterized the distortion exponent for various strate-
gies depending on the bandwidth ratio. We observed that
layering in source coding brings a remarkable gain in the
performance. Further improvement is possible by adding an
analog transmitted portion, while this improvement is limited
for increased number of layers. We show that the optimal
distortion exponent is achievable for MISO/SIMO systems
by using broadcast strategy with layered source. Although
application of this strategy to the general MIMO system is not
straightforward due to the lack of degradedness in the received
signals, we are currently working on suboptimal strategies
which would potentially increase the performance.
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