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Abstract— We consider transmission of correlated sources
over multiuser channels where the receiver(s) have access to
correlated side information. Our goal is to characterize necessary
and sufficient conditions for lossless transmission and uncover
scenarios where separation of source and channel coding, either
in the traditional ‘informational’ sense (where both source and
channel encoders and decoders are designed independently) or
in the ‘operational’ sense (where the encoders are independent,
but the source and channel decoding is done jointly), is optimal.
We first study a multiple access channel where the source signals
are independent given the receiver side information. We prove an
informational source channel separation theorem for this commu-
nication system. We next investigate source and channel coding
for the compound multiple access and interference channels.
We give general sufficient conditions for lossless transmission
of each source for both channels, and then provide necessary
conditions that hold under certain assumptions on the nature of
the source and the receiver side information. For the interference
channel, the necessary conditions hinge on a strong source-
channel interference condition which depends not only on the
channel but on the source and side information correlations
as well. Our results suggest the optimality of informational or
operational separation depending on the correlation structure of
the side information and the amount of interference.

I. INTRODUCTION

One of the most fundamental results of information theory
is the optimality of source and channel separation for a point-
to-point channel. This significant result promises modularity
in communication system design without incurring any loss
in the performance. However, optimality of source-channel
separation breaks down for most multi-user scenarios with
correlated sources. We only have a limited number of non-
trivial scenarios where separation of source and channel coding
is optimal, and a limited understanding of the fundamental
relations.

One of the earliest papers showing the suboptimality of sep-
aration is [1] which considers transmitting correlated sources
over a multiple access channel (MAC). The sufficient condi-
tions for achievability of [1] are then shown not to be necessary
by Dueck [2]. The ‘correlation preserving mapping’ technique
of [1] used for achievability is later extended to source coding
with side information via multiple access channels in [3], to
broadcast channels with correlated sources in [4], and to inter-
ference channels in [5]. Optimality of separation for a network
with independent, non-interfering channels is proven in [6]. A
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more intriguing case is the asymmetric MAC considered in
[7] for which a source channel separation theorem holds for
lossless reconstruction with or without casual perfect feedback
at either or both of the transmitters. More recently, Tuncel
considers broadcasting a common source to receivers with
different correlated side information [8], and shows that, while
‘informational separation’, i.e., the classical source-channel
separation, fails to achieve optimality, ‘operational separation’,
in which source and channel encoders are separate, but de-
coding is done jointly, is optimal. Recently, [9] extends this
technique to transmitting correlated sources over a broadcast
network of non-interfering links.

In this paper, we first consider a multiple access channel
(MAC) with correlated side information where the receiver
has access to a correlated side information (see Fig. 1). We
generalize the sufficient conditions for lossless transmission
given in [1] to the receiver side information setup. Then,
assuming that the sources are independent given the receiver
side information, we show the optimality of informational
source-channel separation. Next, we consider lossless trans-
mission of correlated sources over a compound MAC (Fig.
2) and an interference channel (Fig. 3) with correlated side
information at each receiver. For the compound MAC un-
der certain assumptions on the side information, we show
either ‘informational separation’ in the classical sense, or
‘operational separation’. While the achievability results for
compound MAC are also valid for the interference channel,
we also prove converse results by introducing an extension
of the strong interference condition to joint source-channel
setting, and obtain informational and operational separation
theorems for some special cases under this ‘strong source-
channel interference’ condition.

In practical sensor network applications, the modularity
provided by source-channel separation would be invaluable
to reduce the complexity of the protocols used. However, in
most cases separation results in a performance loss which can
be critical for low power, bandwidth limited sensor networks.
The operational separation, on the other hand, would reduce
the complexity on the sensor side while allowing joint source-
channel decoding on the receiver side. Since it is mostly
the sensor side which has cost and complexity constraints,
optimality of operational separation might lead to modular
sensor network design without performance loss.
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II. MAC WITH CORRELATED SOURCES

We first consider a multiple access channel (MAC) with
memoryless correlated sources (S1,.52) and a correlated side
information W, jointly distributed according to Pg, s, over
the alphabet S; x So x W (see Fig. 1). Transmitter ¢ (i = 1, 2)
wishes to send a length-m source vector S} losslessly in the
Shannon sense to the receiver which also has a length-m vector
of correlated side information W". The underlying discrete
memoryless (DM) channel is characterized by Py |x, x, with
input alphabets A} and &5 and the output alphabet ).

Definition 2.1: We say that rate (or bandwidth ratio) b is
achievable if, for every € > 0, there exist m,n for which we
have encoders

fe : Spt— &, for k=1,2
and a decoder
g:Y" x W™ — 8" x 8,

with decoder outputs (57, 55") = g(Y™, W™) such that the
probability of error

P. = Pr{(S7",55") # (5", 55")] < e
while n/m = b.

The following is a generalization of the achievability
scheme given in [1] to the above case with receiver side
information.

Theorem 2.1: For arbitrarily correlated sources (S7,S2)
over DM MAC with receiver side information W and b = 1,
i.e., when source and channel bandwidths match, lossless
representation of S; and Sy at the receiver is possible if,

H(51|SQ,W) < I(XI;Y|X27SQaW)7
H(52|51,W) < I(XZ;Y|X17517W)7
H(S1,%|W) < I(X1, XY |W),

for some joint distribution p(s1, S2,w,T1,T2,Y) =

p(s1, 82, w) p(w1|s1)p(walse)p(ylri, z2).

Note that, correlation among the sources and the side
information, both condenses the left hand side and enlarges the
right hand side compared to transmitting independent sources.
While the reduction in entropies on the left side is due to
Slepian-Wolf source coding, the increase on the right side is
mainly due to the possibility of generating correlated channel
codewords at the transmitters. Applying distributed source
coding followed by MAC channel coding would result in the
loss of this possible correlation among the channel codewords.

Multiple access channel with correlated sources and correlated side information at the receiver.

However, when S; — W — S5 form a Markov chain, that is, the
two sources are independent given the side information at the
receiver, the receiver already has access to the correlated part
of the sources and it is not clear whether additional channel
correlation would help. The following theorem suggests that
channel correlation is not necessary in this case and source-
channel separation is optimal for any b.

Theorem 2.2: For arbitrarily correlated sources (S7,S2)
over DM MAC with correlated side information W at the
receiver, for which the Markov relation S; — W — S5 holds,
rate b is achievable if and only if],

H(51|W) < b‘I(Xl;Y|X27Q)7
H(S|[W)+ H(S:|W) < b-I(X1, X2 Y|Q),

for some joint distribution p(q,z1,z2,y) = p(g)p(z1lq)
p(x2|Q)p(yly, z2), with [Q] < 4.

Proof: We can easily see that the achievability part
follows from Slepian-Wolf compression at each encoder con-
ditioned on the side information at the receiver while ignoring
the other source, and transmitting these compressed source
outcomes using an optimal MAC channel code with indepen-
dent codewords. Proof of the converse can be found in [10].

|

This is one of the few non-trivial separation theorems for

MAC. Following [8], we refer to the classical separation

achieved here as ‘informational separation’, where both the

encoder and the decoder can apply separate source and channel
coding.

III. CoMPOUND MAC WITH CORRELATED SOURCES

We next consider a compound multiple access channel
(MAC), where the two transmitters wish to transmit their
correlated sources losslessly to two receivers simultaneously.
We assume each receiver has its own side information W;,
t = 1,2, as in Fig. 2, correlated with the sources, with the joint
distribution Ps, s,w,w, over the alphabet S X Sa X Wy X Wha.
The underlying discrete memoryless compound MAC is char-
acterized by Py, v, |x, x, over the alphabet A7 X X5 X V1 X Vs.

Definition 3.1: We say that rate b is achievable for the given
DM compound MAC if, for every € > 0, there exist m, n for
which we have encoders

fo: St — &L, for k=1,2
and decoders

gk Vi x Wit — ST x 83,
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Fig. 2. Compound multiple access channel with correlated sources and correlated side information at the receivers.

with decoder outputs (S}, 57%) = gx (Y, W;™) such that the
probability of error at receiver k

Py = Pr((S7",S5") # (S5, Si)] < e
while n/m = b.

While the capacity region of compound MAC is given in
[14] for independent sources and no receiver side informa-
tion, source-channel matching conditions for correlated source
transmission are not known. We first extend our achievability
result for MAC in Theorem 2.1 to the compound MAC case.

Theorem 3.1: Lossless transmission of arbitrarily correlated
sources (S1,.52) over a DM compound MAC with side infor-
mation (W7, W5) is achievable if, for k = 1,2,

H(S1|S2, W) < I(Xy; Yi|Xa, S2, W),
H(S2|S1, W) < I(Xo;Yi|X1,S1, W),
H(S1,S82|Wy) < I(X1,Xo; Yi|Wh),

for some joint distribution of the form
p(51,52,w1,w2,x1,x2) = p(51,827w17w2)p($1|31)p(172\32).

Proof: The encoding technique in Theorem 2.1 which
does not utilize the receiver side information also applies here.
Receiver k decodes using its own side information Wy, leading
to the above theorem. |

Now, we consider two special cases of source and side infor-
mation correlation. First suppose that (S7, Ws) is independent
of (S2,W7). This might model a scenario where receiver 1
(2) and transmitter 2 (1) are located close to each other, hence
they have correlated observations, while two transmitters are
far away.

Theorem 3.2: For lossless transmission of arbitrarily cor-
related sources (S7,S2) over a DM compound MAC with
side information (W5, W3), where (S1,Wa) is independent
of (S2,W7), rate b is achievable if and only if, for k = 1,2

H(S1|[Wh) <b-I(X1; Y3 X2,Q),
H(S2|Wi) <b-I(X2; Y| X1,Q),
H(S1|Wy) + H(S2[Wk) < b- I(X1, Xo; Yi|Q),

for some joint distribution p(q,z1,22,y) = p(q)p(z1]Q)
p(2lQ)p(yly, x2), with [Q] < 4.
Proof: Proof of the theorem can be found in [15]. [ |
Note that, even though the conditions in Theorem 3.2 resem-
ble intersection of two multiple access regions of Theorem 2.2,
unlike ordinary MAC, we do not have informational separation

for the compound MAC in general. However, it is possible
to prove ‘operational separation’ using the coding technique
of [8]. Here, the encoders simply match typical source out-
comes to typical channel codewords generated independently.
The decoders on the other hand, apply joint source-channel
decoding and find the index pairs that simultaneously result
in jointly typical source and side information sequences, as
well as jointly typical channel codewords and the received
signal. The details of the achievability scheme as well as a
converse can be found in [15]

We also consider the special case where W1 = Wy = W
and S; — W — S5 form a Markov chain. This corresponds to
the case where two receivers are close to each other, hence
have the same side information.

Theorem 3.3: In lossless transmission of correlated sources
S1 and S5 over a DM compound MAC with common receiver
side information W7 = Wy = W satisfying S; — W — S5, rate
b is achievable, if and only if, for k=1,2,

H(S1[W) < b-I(X1;Ye|X2,Q),
H(52|W) < bI(X27Yk‘X17Q)a
H(S{|W)+ H(S2[W) < b-I(X1, X2; Y2|Q),

for some joint distribution p(q,x1,z2,y)
p(2|q)p(ylay, x2), with [Q] < 4.

Proof: Similar to Theorem 2.2 achievability follows from
Slepian-Wolf source compression at each encoder conditioned
on the receiver side information, and transmitting the com-
pressed source outcomes using an optimal compound MAC
channel code. The converse on the other hand, follows similar
to the proof given in [10]. |

Note that, in the above case of equal side information, the
proof suggests that we can achieve optimality with informa-
tional separation.

p(q)p(z1lq)

IV. INTERFERENCE CHANNEL WITH CORRELATED
SOURCES

For the interference channel, even in the case of independent
messages at the transmitters, and no side information at the
receivers, the capacity region in general is not known. One
of the best known achievable schemes is given in [11]. Exact
capacity region can be characterized in the strong interference
case [12], [13], where the capacity region coincides with the
capacity region of the compound multiple access channel [14].
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In the interference channel scenario (see Fig. 3), we replace
the decoder functions with

g YE W — S 1)

where S = g{mm)

expressions with

(Y, W), and the probability of error

P = Pr{sy # 87}, ®)

for k£ = 1,2, while achievability definition for b remains the
same.

In the case of correlated sources and receiver side infor-
mation, sufficient conditions for lossless transmission over
compound MAC given in Theorem 2.1 serve as sufficient
conditions for the interference channel as well, since we can
constraint both receivers to obtain reconstructions of both
sources. However, to achieve necessary conditions for source-
channel matching for the interference channel, we need to
have further assumptions similar to the strong interference
conditions in [12], [13].

We first consider the setup of Theorem 3.2 where the two
source are independent while side information W is correlated
with source S,, and side information W5 is correlated with
source S;. We assume the following strong source-channel
interference conditions hold:

b-I(X1;Y1|Xo) < b-I(X1;Y2|Xo) + I(S1;Wa),  (3)
b-I(Xo;Y2|X1) < b-I(Xo; Y1|X1) + I(S2; W), (4

for all input distributions of the form p(x1,z2) = p(x1)p(x2).

The regular strong interference conditions given in [13]
correspond to the case, where, for all input distributions at
transmitter 1, the rate of information flow to receiver 2 is
higher than the information flow to the intended receiver 1. A
similar condition holds for transmitter 2 as well. This leads to
the observation that, no performance is lost if both receivers
decode the messages of both transmitters. Consequently, un-
der strong interference condition, the capacity region of the
interference channel is equivalent to the capacity region of
compound MAC. However, in the joint source-channel coding
scenario, the receivers have access to correlated side infor-
mation. Thus while calculating the total rate of information
flow to a particular receiver, we should not only consider the
information flow through the channel, but also the mutual
information that already exists between the source and the

T

Wo

Interference channel with correlated sources and correlated side information at the receivers.

receiver side information. This idea is reflected in conditions
(3)-(4). Using strong source-channel interference conditions,
we obtain the following theorems.

Theorem 4.1: Consider lossless transmission of indepen-
dent sources S7 and S5 over a DM interference channel with
side information W7 and Ws, where (S7, Wa) is independent
of (S, W7). Under strong source-channel interference condi-
tions in Eqn. (3)-(4), rate b is achievable if and only if, for
k=1,2,

H(S1|Wy) < bI(X1; Y| X2, Q),
H(S2|Wy) < bI(Xo;Yi| X1, Q),
H(S1|Wy) + H(S2|Wy,) < bI(X1, X2; Y3|Q),

for some |Q| < 4 and some input distribution of the form
p(a, 21, 22) = p(a)p(z1]a)p(z2|9).

Proof: While achievability follows from Theorem 3.2,
converse proof also uses the strong source-channel interference
conditions and is given in [15]. [ |

The theorem proves the optimality of ‘operational sep-
aration’ for the interference channel when strong source-
channel interference conditions hold. As in Section III it is
possible to see that informational separation would achieve a
strictly smaller rate. We further note that, for the considered
setup, conditions in (3)-(4) are weaker than the usual strong
interference conditions. That is, even if the channel interfer-
ence is not strong, it may still be optimal for receivers to
decode both messages. This enlarges the set of interference
channels for which source-channel matching conditions can
be characterized.

Next, we consider the second case in Section III, where
the two receivers have access to the same side information
W given which the sources are independent. In this case,
while we still have correlation between the sources and the
common receiver side information, the amount of information
arising from this correlation is equivalent at both receivers
since W7 = Ws. This means that the usual strong interference
channel conditions suffice to obtain the converse result. We
have the following theorem for this case.

Theorem 4.2: Consider lossless transmission of correlated
sources S7 and S, over DM interference channel with common
receiver side information W satisfying S; — W — Ss. Under
strong interference conditions, i.e., for all product distributions



on X; x X5, we have
I(X1; Y1) Xo) < I(X1; Y32 | X>), )
I(X2; Yo |X1) < I(Xo;Y1|X1), (6)

rate b is achievable if and only if, for £k = 1,2,
H(5|W) <
H(S|W) <

bI(XhYk‘X27Q)7
b- I(XQva‘XbQ)a
b . I(Xl,XQ;Yk|Q),

for some input distribution of
p(@)p(z1|g)p(z2lq).

Proof: Achievability follows from informational sepa-
ration as in Theorem 3.3. The converse follows similar to
Theorem 4.1. ]

the form p(q,x1,22) =

V. CONCLUSION

We consider lossless transmission of correlated sources
over discrete memoryless multiple access, compound multiple
access and interference channels, where the receivers also have
correlated side information. The problem of characterizing the
necessary and sufficient conditions is open in the most general
setting, however, we concentrate on certain scenarios where
we can explicitly formulate the source-channel matching con-
ditions for reliable transmission. Particularly, for the scenarios
we investigate, we show that the optimal performance can be
achieved by source-channel separation at both the encoder and
the decoder, or at the encoder only. Beyond obtaining source-
channel matching conditions for some interesting multi-user
network scenarios, our results together with [8] and [9], are
significant in pointing at a new paradigm in joint source-
channel coding, where source-channel separation should be
analyzed at the encoders and decoders separately. Optimality
of separation at the encoders would lead us to the design of
modular transmitters without performance loss while perform-
ing complex joint decoding at the receiver.
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