Bivariate Polynomial Coding for Straggler
Exploitation with Heterogeneous Workers

Burak Hasircioglu*, Jests G6mez-Vilardeb6', and Deniz Giindiiz*
*Imperial College London, UK, {b.hasircioglul8, d.gunduz}@imperial.ac.uk
fCentre Tecnologic de Telecomunicacions de Catalunya (CTTC/CERCA), Barcelona, Spain, jesus.gomez@cttc.es

Abstract—Polynomial coding has been proposed as a solu-
tion to the straggler mitigation problem in distributed matrix
multiplication. Previous works employ univariate polynomials
to encode matrix partitions. Such schemes greatly improve the
speed of distributed computing systems by making the task
completion time to depend only on the fastest workers. However,
they completely ignore the work done by the slowest workers
resulting in inefficient use of computing resources. In order
to exploit the partial computations of the slower workers, we
further decompose the overall matrix multiplication task into
even smaller subtasks, and we propose bivariate polynomial
codes. We show that these codes are a more natural choice to
accommodate the additional decomposition of subtasks, and to
exploit the heterogeneous storage and computation resources at
workers. However, in contrast to univariate polynomial decoding,
guarantying decodability with multivariate interpolation is much
harder. We propose two bivariate polynomial coding schemes
and study their decodability conditions. Our numerical results
show that bivariate polynomial coding considerably reduces the
computation time of distributed matrix multiplication.

I. INTRODUCTION

Matrix multiplication is one of the most crucial building
blocks of many machine learning tasks. Availability of massive
datasets and large model sizes makes computation tasks for
machine learning applications so demanding that they cannot
be carried out on a single machine within a reasonable
time frame. Thus, to speed up learning, it is necessary to
distribute the most demanding computation tasks, e.g. matrix
multiplication, to multiple dedicated servers, called workers.
However, due to unpredictable delays in their service time,
some workers, called stragglers, may complete their assigned
tasks much slower than the others, leading to serious delays.
Mitigating the negative impact of stragglers on the completion
time of the distributed matrix multiplication has recently been
a very active research area [1]-[13].

One can reduce the effects of the stragglers in the com-
pletion time by employing redundant workers. It has been
shown in [1] that, rather than simply assigning each com-
putation task to multiple redundant workers, i.e., repetition
coding, one can treat stragglers as erasures, and improve the
completion time significantly by using ideas from channel
coding. In [2], polynomial codes are employed to speed up
matrix multiplication, i.e., A - B. They propose partitioning

This work received support from the European Research Council (ERC)
through Starting Grant BEACON (agreement 677854).

The work of J. Gémez-Vilardeb6 was supported in part by the Catalan Gov-
ernment under Grant SGR2017-1479, and in part by the Spanish Government
under Grant RT12018-099722-B-100 (ARISTIDES).

A row-wise and B column-wise and encoding them into two
separate polynomials of the same variable. Their design is
optimal in terms of download rate, which is the ratio of
the total number of bits needed to be downloaded from the
workers to the number of bits needed to represent the result
of the multiplication. In [3], the authors proposed MatDot
codes with an alternative partitioning of matrices, in which
A is split column-wise and B is split row-wise. They show
that compared to [2], their approach improves the recovery
threshold, which is defined in [3] as the minimum number of
workers’ responses needed to decode the result. However, in
[3], the computation load at workers and the communication
cost are higher than [2]. Also in [3], PolyDot codes are
proposed for square matrices as an interpolation between
polynomial codes in [2], and MatDot codes by trading off
recovery threshold and cost of communication and computa-
tion. In [4], the same problem is studied for arbitrary matrices,
and entangled polynomial codes are proposed improving the
recovery threshold in [3]. Generalized PolyDot codes [5] are
proposed for matrix-vector multiplication in the context of
neural network training achieving the recovery threshold in [4].
Recently, in [6], batch multiplication of matrices, i.e., A4;B;,
i € [L] where L > 1, is studied and CSA codes are proposed.
It is shown that, in the batch multiplication setting, CSA
codes improve the upload-download cost trade-off compared
to applying entangled polynomial codes separately for each
multiplication task in the batch.

Another important aspect of distributed computation is the
heterogeneity in workers’ computational capacities. If the
statistics about this heterogeneity are known to the code
designer, then it can be used to balance the computational load
of the workers. In [7] the authors assume that the computation
times of workers follow a shifted exponential distribution,
whose parameters differ across the workers. The authors also
assume that a worker’s responses are either used as a whole or
not used at all. Under this setting, the optimal load allocation
problem is solved in [7].

All of these works treat straggler nodes that fail to com-
plete the assigned task as an erasure which implies ignoring
completely the work done by them. However, it has been
observed in practical implementations [8], [9] that, although
the workers are not homogeneous, their computation capa-
bilities are typically similar, and it is rare that a server is
completely inactive. In [10], to exploit all the work done at the
system, including stragglers, tasks of the workers are further

divided into smaller partial computations, to allow workers to
communicate their partial computations. Therefore, even if a
worker is slow, and cannot complete all of its assigned tasks on
time, some amount of the work done by this worker can still
be exploited. Product codes [11] are used as the underlying
coding scheme in [10], but polynomial codes can also be
used instead. All of the aforementioned polynomial coding
approaches use univariate polynomials for which the storage
of the workers is not efficiently utilized.

To exploit partial computations, uncoded computation with
scheduling is considered in [9]. In [12], a hybrid of uncoded
and coded computation is proposed for the same problem
in distributed gradient descent. In these works, it is shown
that uncoded computation may be more beneficial if workers
are relatively homogeneous, i.e., less diverse computation
statistics, which is ofter the case in web services like AWS,
Azure etc. However, in our work, we focus on heterogeneous
systems, such as in volunteer computing, peer-to-peer applica-
tions, or edge computing which typically exhibit much more
computational heterogeneity.

In [8], a hierarchical coding framework for straggler ex-
ploitation problem is proposed concerning decoding time,
which is the time spent to recover the main computation task
from partial computations, in addition to the computation time.
The work in [8] is extended to matrix-vector and matrix-matrix
multiplications in [13]. For both type of multiplications, they
numerically and experimentally show that, while gaining in
terms of the decoding time, the computation time of hierar-
chical coding is only slightly larger than [10] with univariate
polynomial coding. Thus, the benefits of hierarchical coding
are relevant mainly if the decoding time is comparable to the
computation time.

In this work, we focus on the computation time in dis-
tributed matrix-matrix multiplication with an emphasis on the
efficient use of storage capacities at workers. Similarly to [8]-
[10], [12], [13], our main goal is to exploit partial compu-
tations carried out by stragglers. If the partial computations
of workers are utilized and the workers are heterogeneous in
their computational power and storage, the best we can do is
to maximize the number of computations every worker can
provide. Thus, any solution to the partial work exploitation
problem is also applicable in the heterogeneous workers’ case,
which is also studied in [7]. We propose a novel bivariate
polynomial coding technique that allows us to use data storage
capacities of the workers more efficiently, and thus improves
the computation time. To the best of our knowledge, this is
the first time in the literature that multivariate polynomials are
used for distributed matrix-matrix multiplication. Similar to
[2], our focus is on the schemes with minimum download rate.
Choosing the partitioning as in [2] is convenient for us since,
as opposed to MatDot, PolyDot and entangled polynomial
codes [3], [4], there are no useless terms in the final product
and no need for interference alignment in polynomial codes,
which is difficult with multivariate polynomials.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In our setup, a central server (CS) is requested to multiply

two matrices A € R"*® and B € R**¢ for some integers
r, s, ¢, by offloading partial computations to N distributed
workers, with possibly heterogeneous data storage and compu-
tation capacities. In order to distribute the computation work,
matrices A and B are partitioned into K and L submatrices
respectively, such that A = [A] AL ... A[T{]T and
B = [B1 B Br], where A; € Rx** Vi €
[K] = {1,2,--- ,K} and B; € R®*Z, Vj € [L]. The CS
generates and sends to worker i € [N], ma; and mp; coded
matrices /L,k and B“ based on A and B, respectively, for
k € [may) and | € [mp,], where ma,; and mp,; € Z*
and /Lk € Rx*s, Bi,g € R**Z. Thus, worker i € [N] is
assumed to have a capacity to store a fraction My ; = m;é
of Aand Mp,; = mf 2 of B. How these coded matrices are
generated depends on the specific coding scheme employed. In
this work, coded matrices are obtained as linear combinations
of the original matrix partitions.

Worker 7 computes the products of the coded submatrices
assigned to it, i.e., fli’kB“, k € [mal, 1 € [mp,;]. To exploit
the partial work done by the workers, the results of these
individual products are sent to the CS as soon as they are
finished. The maximum number of results that can be sent to
the CS from worker ¢, without updating the local storage is
denoted by 7;, such that n; < m 4 ;mp ;, which depends on the
coding scheme and is thus a measure of the memory efficiency
of the code. Finally, the CS collects all responses from the
workers to decode the product AB. We define the recovery
threshold R;; as the minimum number of responses the CS
must receive from the workers to decode the product AB. For
all the coding schemes discussed here, we have Ry, = K L.
The computational complexity of the partial product /L’j Bi,l
is a fraction Cpay = ﬁ of the computational complexity of
the full product AB. Hence, the maximum work done at the
worker i is a fraction Cry,; = 1;Cpart = WM 4,iMp;
of the work required to compute AB.

The metric Cyyy; captures how the maximum computation
capacity of a worker changes with the size of the partial
computations. Increase in the computation capacity of workers
means faster workers can provide more fraction of the overall
computation. Hence, high Cry ; implies less computation time.
Thus it is an important performance metric to show the
memory-efficiency of the proposed schemes. To better exploit
the partial work done by the stragglers, size of the partial
computations are decreased. While doing so, we do not want
to jeopardize Chy,;. In this sense, we are interested in high
storage efficiency 7; schemes with low partial computation
complexity Cpay to better exploit the partial work done at
stragglers.

III. UNIVARIATE POLYNOMIAL CODING

In this section, we review already existing coding schemes
based on univariate polynomial interpolation. Using univariate
polynomials for distributed matrix multiplication was first
suggested in [2]. Here, we combine [2] with the ideas in [10]
to exploit partial computations done at workers. By doing so,

we illustrate the limitations of univariate polynomial coding
to exploit the partial work done by the stragglers.

Scheme 1: The CS encodes the submatrices using the
following polynomials: A(z) = A;+Asz+- - -+ Ag a1 and
B(w) = Bi+BoxK 4 4 Bia- VK 4.4 B a(E-DE We
allow worker ¢ to store m; = m4 ; = mp,; coded partitions of
matrices A and B. That is M4 ; = m;/K and Mp,; = m;/L.
For worker i, the CS evaluates A(z) and B(z) at m; distinct
points {x; 1, - ,Z;m,} such that x;, # z;; if (i,k) #
(4,1),¥1i,j € [N] and Vk € [m;],Vl € [m;]. Worker i computes
A(z; ;)B(x;), consecutively, for j € [m;] and sends the
result to the CS after completion of every partial computation
to exploit stragglers. Observe that multiplications are only
allowed between A(z) and B(z) evaluated at the same points
x; i, and thus 7; = m; ,Vi € [IV]. The CS is able to interpolate
Clz) = A@)B(x) = L5, L5, ABjri 1 HKG=D of
degree KL — 1 as soon as it receives Ry, = KL responses
from the workers. Thus Cpyy = L = MailMsi 4n4

KL — m?
M, Mg
Crun,i = miCpa = —2:2—L-1. Observe that, for fixed storage

capacity at the workers, the maximum fraction of work done
at worker ¢, which is Cp;, is inversely proportional to
m,;. That means, for fixed memory allocated to each matrix,
i.e., constant M, and Mp, if we partition matrices into
more pieces to utilize partial computations better, and thus
increase K L, the maximum computation capacity of a worker
decreases. This results in inefficient use of storage since with
the same amount of memory, every worker can compute less.
Bivariate schemes presented in the next section addresses this
problem.

IV. BIVARIATE POLYNOMIAL CODING

Before presenting our schemes, we introduce some basic
concepts and definitions from polynomial interpolation theory.

Definition 1: Given a (multivariate) polynomial C(z), and
a set of points Z = {z1,--- , 25}, and the evaluations of the
polynomial at these points, i.e., C(z),z € Z, we can formulate
the interpolation problem as a linear system of equations. The
unknowns of these equations are the coefficients of the poly-
nomial. We define the interpolation matrix as the coefficient
matrix of this linear system. We denote interpolation matrix
and its determinant by M (Z) and D(Z), respectively. O

Definition 2: A set of evaluation points Z is called poised
if the interpolation matrix for these points is invertible. An
interpolation scheme, i.e., a specific set of rules between the
evaluation points, is called regular if every set of allowed
evaluation points is poised. An interpolation scheme is almost
regular if D(Z) # 0 for almost all sets of nodes, Z. This
means there is no special structure making D(Z) zero; and
thus, if we would draw the elements of Z uniformly random
from the space whose elements are in R and satisfies the set
of rules imposed by interpolation scheme, then the measure
of the event {D(Z) = 0} becomes zero.

It is well known that univariate polynomial interpolation is
regular. It follows from the fact that, given a set of n distinct
points Z = {1, ..., x, }, the interpolation matrix for univariate
interpolation of degree n — 1 is always invertible if z;’s are

distinct. Instead, for bivariate interpolation there are very few
cases for which sufficient conditions for regularity are known.
Unfortunately, as we will illustrate in the next subsection,
these known cases do not perfectly fit to distributed computing
schemes. |
In univariate schemes, the reason behind storage inefficiency
is that workers are limited to use the same evaluation points
for A(z) and B(z) while computing A(x)B(x). However, as
we show next, in bivariate polynomial interpolation, we also
exploit cross-products such as A(z; ;) B(z; ;) when j # k. We
encode partitions of A with fl(x) = A1+ Asz+- - A1
and partitions of B with B(y) = By 4+ By + --- +
Bry“~!. Thus, the CS needs to interpolate the bivariate
polynomial C(z,y) = Zfil 27;:1 A;Bjz*~ly7=1 In this
case, the row of the interpolation matrix M (Z) associated
to the evaluation point Z; = (x;,y;), is [z, - ,xfﬁl,yi,

R Ty oy Ry

To see the potential benefits of bivariate interpolation based
strategies, suppose that the first K L evaluations returned from
workers are poised for interpolating C'(z,y). Then, Cpa =
= = % and Crui = ma,imB,iCpart = Ma Mp;.
Observe that, unlike univariate schemes, for a given storage
capacity M4 ,; and Mp;, the maximum amount of work
done at worker i, i.e., Cpu;, does not decrease with KL
anymore. Thus, we are now using available memory more
efficiently. This is the advantage of the bivariate coding over
the univariate coding. Unfortunately, to guarantee that the
resultant interpolation problem is regular, we will need to
add further constraints on M, ; and Mp ;. Thus based on
the fact that K'L does not change Cpy,; in bivariate schemes,
our performance metric reduces to 7;.

A. Regular bivariate interpolation on rectangular grids

It is well known that the bivariate interpolation problem is
regular for any rectangular grid of points {x1,z2, -+ , Tk} X
{y1,vy2,- - ,yr} satisfying ; # x; and y; # y;, Vi # j. The
scheme described next is based on this result. It can be seen as
the bivariate interpolation extension of the scheme proposed
in [10] based on product codes.

Scheme 2: Assume all workers can equally store m 4
partition of A and mp partition of B and N = nanp
such that K < manp and L < mpna. The CS gen-

erates np disjoint sets X; = {x;1,2j2, - ,ZTjm,} for
7 = 1,...,np with |Xj| = my distinct points and n4
disjoint sets Y; = {vs.1,Yi 2, -+, Yi,mp } fori =1,...,n4 with
’Yi’ = mp distinct points. To each worker, the CS assigns

one of the N = n np rectangular grids of points X; x Y;
for j = 1,...np, % =1,...,n4. We refer to this as worker
(j,i). Worker (j,i) stores A(z) Vo € X; and B(y) Yy € yi.
Consequently, worker (j,4) can compute any of the mamp
products C(z,y) = A(z)B(y) with x € X; and y € ;.
Observe that, all together, the set of evaluation points at
workers form a rectangular grid of size manp X mpn 4. Next,
notice that for a given ¢, C'(z,9) is a univariate polynomial
of degree K — 1 on z, and thus C(z,¢) can be determined
from K evaluations of C(xz,7). Similarly, for a given %,

Y32 [} []
Y3,1 [] [J
Y2,2 (] []
Y2,1 ol []
Y1,2 el

Yyiile @ eo|le o

T1,1%1,222,1 2,2 T3,1 L322

Fig. 1: An example set of responses at the CS for Scheme 2,
when N =9, K =L =4, my =mpg = 2.

C(&,y) is a univariate polynomial of degree L — 1 on y.
Observe that for any point £ € X there are a total of ny4
workers (j,4) for i = 1,...,n4 and each of them can compute
mp distinct evaluations of the univariate polynomial C(Z,y).
Once the first L of these evaluations are received from any
worker, the univariate polynomial C(Z, y) can be reconstructed
everywhere. The same also applies to C'(z, §). Moreover, once
we have the evaluations of C'(z,y) for any rectangular grid of
size K x L, either directly received from the workers or via
univariate interpolation, bivariate interpolation problem can be
solved. However, any computation received at the CS which
was already interpolated from previous results is redundant.
Figure 1 shows an example set of responses from the workers.
Green areas show the decoded rows and columns.Although
we need K - L = 16 responses and there are 18 received,
they are not enough to constitute a 4 x 4 rectangular grid.
Thus, they are not poised. In [10], different heuristics for
organizing the computations at workers in order to minimize
redundant computations were discussed. Nevertheless, any of
these heuristics cannot ensure that the first X L results arriving
at the CS are poised. Next, we address this problem.
B. Almost regular bivariate interpolation schemes

In Theorem 1, we show the almost regularity of certain
interpolation sets. Then, based on these sets, by introducing
a specific computation order at the workers and choosing
non-overlapping evaluation points at the workers as opposed
to Scheme 2, we propose our storage-efficient interpolation
schemes.

Theorem I: For the interpolation problem of polynomial

C(z,y) = A(z)B(y), let
,ﬂﬂi,K} X {yi,layi,% T 7yi,L}

For any set Z C U with |Z] = KL, if at least one of the
conditions a or b is satisfied, then det(M(Z)) # 0 for almost
all choices of sets Z and U.

a) If (x;k,9i1) € Z then (T m,Yin) € Z Vm,n such that
1<m<k 1<n<ULand (z;k Yim) €Z Ym such that
1<m<lL.

b) If (2 k,yi1) € Z then (. m,Yin) € Z ¥Ym,n such that
1<m<K,1<n<1and (% m,yi;) € Z Vm such that
1<m<k O
Due to space restrictions, we give the proof of this result in
the extended version [14]. It is based on the Taylor series
expansion of the determinant of M (Z) [15].

Scheme 3: In this case, we require the computations at
workers to be done in a vertical order, i.e., without completing

U= Uien{zi1, zi2, -

e @& o O
0|0 0 O
OO0 0 O
® O 0 O
OO0 0 O
OO0 0 O

® ® O O
O/0|0 O
[eRNeRNeNNe]
® ® O O
® ® O O
® ® O O

Yi/@| O | O nafo O | O
h:3le | @ O N30 0|0
h2]e | @| O Nn2le | @O
1le | @ O nile e | @
11 T12 T13 T2 L2 T23 T30 T32 133 11 T12 T13 T2 Tap T23 T30 T32 L33
(@) (b)

Fig. 2: Example sets of decodable responses at the CS for
Scheme 3 (a) and Scheme 4 (b), when N =3, my = K = 3,
mp = L=4.

L computations sharing common x coordinate, computations
from the other columns are not allowed. We choose the
evaluation points to satisfy condition a of Theorem 1. This
is possible in two ways:

1) Store a single partition of A, and any number of partitions

of B,ie,my; =1and mp; <L, or
2) Store full matrix B, and any number of partitions of A,
ie, ma; > 1and mp; = L.
As usual, the CS sends to worker 4, m,4,; evaluations of
fl(a:) at points {1,232, " ,Zim,,} and mp,; evaluations
of B(y) at points {¥;.1,%i2, " ,Yi,mgp., }- In the computation
phase, the worker i computes cross-products A(z; ;) B(y;.1)
with increasing order of (j, k). The increasing order is defined
as (j,k) < (k) if [< 5)V (j = jAk < k). Such
computation order guarantees condition a of Theorem 1 is
satisfied.

Scheme 4: In this case, the computations in the workers
must be done in a horizontal order, i.e., without completing
K computations sharing common y coordinate, computations
from the other rows are not allowed. We choose the evaluation
points to satisfy condition b of Theorem 1. This is possible in
two ways:

1) Store a single partition of B, and any number of partitions

of A,ie., ma; <K and mp; =1, or
2) Store full matrix A, and any number of partitions of B,
ie, my; =K and mp; > 1
Similar to Scheme 3, the CS sends to worker ¢, m 4 ; evalua-
tions of A(x) and mp; evaluations of B(y). In the computa-
tion phase, worker i computes cross-products A(z; ;) B(y;)
with increasing order of (j,k). In this case, the increasing
order is defined as (j, k) < (7, k) if [(k < k)V(k = kAj < J)].
Such computation order guarantees condition b of Theorem 1
is satisfied. An example set of responses from the workers can
be seen in Figure 2a and Figure 2b for Scheme 3 and Scheme 4
respectively. Note that bold 3 x4 rectangles represents workers.

Note that Scheme 3 and Scheme 4 are mutually exclusive.
For a matrix multiplication task, we need to choose one of
them and use it in all workers. Using Scheme 3 in some
workers, and using Scheme 4 in other ones does not guarantee
that any of the conditions of Theorem 1 will be satisfied.

How to choose between them depends on the dimensions
of the matrix partitions. Given a fixed sum storage capacity
rsMa; + scMp;,Vi € N, if choosing m 4 ; and mp; such
that (ma,; = 1,mp; < L) or (ma,; >1,mp,; = L) is satis-
fied produces a larger m 4 ;mp ; than choosing m 4 ; and mp ;
such that (ma,; < K,mp; = 1) or (ma,; = K,mp,; > 1)
is satisfied, then we choose Scheme 3, otherwise Scheme 4
should be used. Observe that when the partitions of B are
smaller than those of A, reducing m,4; by 1 will increase
mp,; at least by 1. Similarly, when partitions of A are smaller
than those of B, reducing mp ; by 1 will increase m 4 ; at least
by 1. Hence, if s > sc, then satisfying (ma; = 1,mp; < L)
or (ma,; > 1,mp,; = L) is easier and Scheme 3 should be
used, otherwise Scheme 4 should be preferred.

Note that unlike, Scheme 2, in Scheme 3 and 4, the storage
capacities of the workers do not need to be the same. This
makes the proposed coding scheme more useful for the cases
with heterogeneous worker storage capacities.

V. NUMERICAL RESULTS

In this section, by running Monte Carlo simulations, we
compare the introduced schemes in terms of average compu-
tation time, which is defined as the time passed until workers
cumulatively complete enough number of computations to
decode the result, under different memory availability. Since
the order of the polynomial to be interpolated is common
for all schemes, in the comparison, encoding and decoding
times are discarded. Moreover, we assume the communication
time is negligable compared to the computation time. We use
shifted exponential model for finishing times of computations,
which is typically used in coded computation problems [1]. In
this model, the probability that a worker finishes at least p
computations by time ¢ is F(p,t) =1 — e MG f ¢ > puv,
and O otherwise. Thus, the probability of completing exactly p
computations by time ¢ is given by P(p,t) = F(p,t)— F(p+
1,t) assuming F'(0,t) = 1, and F(pmas + 1,t) = 0, where
DPmaz 18 the maximum number of computations a worker can
complete. In F'(p,t), v is the minimum duration a worker can
complete a unit computation. The smaller scale A means more
variance, and thus more heterogeneous computation speeds
among the workers. To cover more heterogeneous cases per
experiment, we choose » = (0.01 and A = 0.1.

We assume that the size of partitions A and B are equal and
ma,; = ma and mp,; = mp Vi € N for a fair comparison
since this is required by Scheme 2. Thus n; = 7, Vi € [N]
We take K = L = 10 and N = 15. For each memory value,
we run 10% experiments. The results are given in Figure 3. We
plot the expected computation times starting from m4+mp =
6 for Scheme 2, from my4 + mp = 8 for Scheme 3 and
4 and from my4 + mp = 14 for Scheme 1 since for N =
15 workers, these values are the minimum memory values
that can complete KL = 100 computations. We observe that
especially for very small memory values, Scheme 2 is the
fastest scheme. That is because, in Scheme 2, since there is no
restriction on the allocation of m 4 and mpg other than m 4 +
mp is constant, m4 and mp can be chosen equal or close
to each other meaning larger n and thus more efficient use of

60 |- —

Expected computation time (s)

% o —6— Scheme 3 and 4
w0l v ~ % - Scheme 1 B
RN Scheme 2

- % oo
\\‘)(~‘;
. N i e = :

0 20 40 60 80 100 120 140 160 180 200

20

Memory(ma + mpg)

Fig. 3: Average computation times of univariate and bivariate
polynomial codes

the memory. However, starting from the intermediate memory
values, Scheme 3 and 4 start beating all other schemes. This is
because the number of maximum computations, 7, of Scheme
3 and 4 becomes comparable with that of Scheme 2, and there
are no useless computations in Scheme 3 and 4. Moreover, if
ma + mp > 20, Scheme 2, 3 and 4 do not improve further
since then both A and B can be stored in one worker, reaching
the maximum 7 possible per worker. For Scheme 1, this limit
is 200, and until then, Scheme 3 and 4 beat Scheme 1. After
that point, their performances are the same.
VI. CONCLUSION

In this work, we studied the memory-efficient exploitation
of stragglers in distributed matrix multiplication with work-
ers allowed to have heterogeneous computation and storage
capacity. We proposed bivariate polynomial coding schemes
allowing efficient use of workers’ memories.

The bivariate polynomial coding poses the problem of
invertibility of the interpolation matrix. We first proposed a
coding scheme based on the fact that the interpolation matrix
of bivariate interpolation is always invertible if the evaluation
points form a rectangular grid. However, in this scheme, some
computations received by the central server may not be useful
since the information they provide is already obtained from
previous responses. In order to tackle this problem, then, we
showed that as long as workers follow a specific computation
order, for almost every choice of the interpolation points, the
interpolation matrix is invertible. Based on this, we proposed
Scheme 3 and 4 solving the problem of redundant computa-
tions. The proof of the almost regularity in these schemes is
itself a theoretically interesting one, and it may guide proofs
of other multivariate interpolation schemes for distributed
matrix multiplication in more general situations. Our work is
built on polynomial codes [2] and it can be extended to the
cases of arbitrary matrix partitioning schemes, e.g. PolyDot
codes, entangled polynomial codes. This extension may be an
interesting future work. Extending the scheme to private matrix
multiplication would be also an interesting line of work.

[1]

[2]

[3]

[5]

[6]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans-
actions on Information Theory, vol. 64, no. 3, pp. 1514-1529, 2018.
Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: an
optimal design for high-dimensional coded matrix multiplication,” in
Advances in Neural Information Processing Systems, 2017, pp. 4403—
4413.

S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe,
and P. Grover, “On the optimal recovery threshold of coded matrix
multiplication,” arXiv:1801.10292 [cs, math], 2018. [Online]. Available:
http://arxiv.org/abs/1801.10292

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation
in distributed matrix multiplication: Fundamental limits and optimal
coding,” in 2018 IEEE International Symposium on Information Theory
(ISIT). 1EEE, 2018, pp. 2022-2026.

S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A unified coded
deep neural network training strategy based on generalized PolyDot
codes,” in 2018 IEEE International Symposium on Information Theory
(ISIT), 2018, pp. 1585-1589.

Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded
distributed batch computation,” arXiv:1909.13873 [cs, math], 2019.
[Online]. Available: http://arxiv.org/abs/1909.13873

A. Reisizadeh, S. Prakash, R. Pedarsani, and A. S. Avestimehr, “Coded
computation over heterogeneous clusters,” IEEE Transactions on Infor-
mation Theory, vol. 65, no. 7, pp. 4227-4242, 2019.

N. Ferdinand and S. Draper, “Hierarchical coded computation,”
arXiv:1806.10250 [cs, math], 2018. [Online]. Available: http://arxiv.
org/abs/1806.10250

M. M. Amiri and D. Giindiiz, “Computation scheduling for distributed
machine learning with straggling workers,” in ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2019, pp. 8177-8181.

S. Kiani, N. Ferdinand, and S. C. Draper, “Exploitation of stragglers
in coded computation,” in 2018 IEEE International Symposium on
Information Theory (ISIT), 2018, pp. 1988-1992.

K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix
multiplication,” in 2017 IEEE International Symposium on Information
Theory (ISIT), 2018, pp. 2418-2422.

E. Ozfatura, S. Ulukus, and D. Giindiiz, “Distributed gradient descent
with coded partial gradient computations,” in /ICASSP 2019-2019 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 1EEE, 2019, pp. 3492-3496.

S. Kiani, N. Ferdinand, and S. C. Draper, “Hierarchical coded
matrix multiplication,” arXiv:1907.08818 [cs, math], 2019. [Online].
Available: http://arxiv.org/abs/1907.08818

B. Hasircioglu, J. Gomez-Vilardebo, and D. Gunduz, “Bivariate
polynomial coding for exploiting stragglers in heterogeneous coded
computing systems,” arXiv preprint arXiv:2001.07227, 2020. [Online].
Available: https://arxiv.org/abs/2001.07227

R. A. Lorentz, Multivariate Birkhoff Interpolation. ~Springer, 1992.

