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Abstract—Federated learning (FL) over wireless communica-
tion channels, specifically, over-the-air (OTA) model aggregation
framework is considered. In OTA wireless setups, the adverse
channel effects can be alleviated by increasing the number of
receive antennas at the parameter server (PS), which performs
model aggregation. However, the performance of OTA FL is
limited by the presence of mobile users (MUs) located far away
from the PS. In this paper, to mitigate this limitation, we propose
hierarchical over-the-air federated learning (HOTAFL), which
utilizes intermediary servers (IS) to form clusters near MUs.
We provide a convergence analysis for the proposed setup, and
demonstrate through theoretical and experimental results that
local aggregation in each cluster before global aggregation leads
to a better performance and faster convergence than OTA FL.

Index Terms—machine learning, over-the-air communication,
clustering, hierarchical federated learning.

I. INTRODUCTION

Extensive amounts of collected data from various sources
such as mobile phones and Internet-of-things (IoT) sensors
have enabled the accelerating rise of machine learning (ML)
algorithms, aiming to assemble all the data in a cloud server
to obtain representative datasets for model training. This,
however, brings out growing concerns regarding the privacy,
cost, and latency of traditional ML algorithms. Firstly, data
owners have become more sensitive about sharing their data;
secondly, the increasing quality of data results in higher
communication costs; and finally, solutions that work in real-
time are faced with latency issues [1]. To overcome these
problems, a decentralized approach called federated learning
(FL) has been introduced, where the transmission of data is
not required since models are trained locally instead of using
a centralized server for training [2].

In FL, several data owners called mobile users (MUs)
are selected based on some criteria such as their computing
capability, data quality, available power, and location [3].
Each MU in the federation trains a local model using its
own data and computing power in every iteration. After each
MU completes its local stochastic gradient descent (SGD)
computation, only the weight updates are sent to a parameter
server (PS) that performs model aggregation and sends back
the updated global model to MUs for the next iteration.

Despite its superiority over traditional ML, adverse channel
effects in wireless setups and increased communication costs
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have arisen some concerns about the feasibility of conventional
FL in practical scenarios. To address the communication cost
concerns, over-the-air (OTA) aggregation [4] has become a
popular method in wireless schemes thanks to its efficient
strategy that allocates all the users to the same bandwidth,
thereby handling the transmission and aggregation of the
gradient updates simultaneously (over the air). For this frame-
work, one approach to deal with the channel effects (particu-
larly when there is no transmit side channel state information)
is to increase the number of receive antennas at the PS [5].
Nevertheless, the disparity among the channel gains is still a
critical factor when some MUs are far away from the PS.

Recent developments on FL include device selection algo-
rithms [6], efficient communication schemes [4], [7]–[11], het-
erogeneity of data [12], and power and latency analysis [13],
[14]. Although Federated Averaging [2] is the most common
way to perform global aggregation in error-free setups, OTA
communication has been preferred for wireless FL [5], [12],
[15]. Furthermore, hierarchical federated learning (HFL) has
been gaining increasing attention, where the objective is to
utilize intermediate servers (IS) to form clusters to reduce
communication costs. There exist studies on HFL on latency
and power analysis [16], [17], resource allocation [18], [19],
and performance analysis for non-independent and identically
distributed (i.i.d.) data [20]. However, there is no work on
HFL with OTA taking into account practical wireless channel
models, which motivates this work.

In order to make distant MUs more resilient to the chan-
nel effects, we propose hierarchical over-the-air federated
learning (HOTAFL), where MUs communicate with their
corresponding ISs through wireless links. In this setup, each
MU shares its local training result with its corresponding IS
through OTA (cluster) aggregation. After several local itera-
tions with the MUs in their clusters, the ISs send the results to
the PS to complete the global aggregation, which constitutes
one global iteration. We examine the performance of HOTAFL
and compare the results with those of the conventional FL and
error-free HFL both through analytical results and numerical
experiments. The results show that the proposed framework
outperforms conventional OTA FL and leads to a better model
accuracy and faster convergence.

The paper is organized as follows: in Sections II and III,
we introduce the HOTAFL framework as well as its com-
munication model. In Section IV, we provide a convergence
analysis of HOTAFL under convexity assumptions on the loss
functions. We present our numerical results in Section V, and
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Fig. 1: HOTAFL system model.

conclude the paper in Section VI.

II. SYSTEM MODEL

The objective of HOTAFL is to minimize a loss function
F (θ) with respect to the model weight vector θ ∈ R2N , where
2N is the model dimension. Our system consists of C clusters
each containing an IS and M MUs as depicted in Fig. 1. The
dataset of the m-th MU in the c-th cluster is denoted as Bm,c,
and we define B ,

∑C
c=1

∑M
m=1 |Bm,c|. We have

F (θ) =

C∑
c=1

M∑
m=1

|Bm,c|
B

Fm,c(θ), (1)

where Fm,c(θ) , 1
|Bm,c|

∑
u∈Bm,c

f(θ, u), with f(θ, u) de-
noting the corresponding loss of u-th data sample.

We consider a hierarchical and iterative approach to min-
imize (1) consisting of global, local, and user iterations. In
every cluster iteration, the MUs carry out τ user iterations on
their own, then send their model updates to their corresponding
ISs for local iteration. I local iterations are performed at the
IS in every cluster before all the local models are forwarded to
the PS for global aggregation. At the j-th user iteration of the
i-th local iteration, the weight update is performed employing
stochastic gradient descent (SGD) for the m-th user in the c-th
cluster as follows

θi,j+1
m,c (t) = θi,jm,c(t)− ηi,jm,c(t)∇Fm,c(θi,jm,c(t), ξi,jm,c(t)), (2)

where ηi,jm,c(t) is the learning rate, ∇Fm,c(θi,jm,c(t), ξi,jm,c(t))
denotes the stochastic gradient estimate for the weight vector
θi,jm,c(t) and a randomly sampled batch of data samples ξi,jm,c(t)
from the dataset of the m-th user in the c-th cluster at
the t-th global, i-th local and j-th user iteration. Initially,
θ1,1
m,c(t) = θiIS,c(t),∀i ∈ [I] where [I] , {1, 2, . . . , I}, and
θ1
IS,c(t) = θPS(t), where θPS(t) is the global model at the PS

at the t-th global iteration and θiIS,c(t) denotes the local model
of IS in the c-th cluster at the i-th local iteration. The purpose
of employing ISs is to accumulate the local model differences
within each cluster more frequently in smaller areas before
obtaining the global model θPS(t) for the next iteration.

Also, note that∇Fm,c(θi,jm,c(t), ξi,jm,c(t)) is an unbiased estima-
tor of ∇Fm,c(θi,jm,c(t)), i.e., Eξ

[
∇Fm,c(θi,jm,c(t), ξi,jm,c(t))

]
=

∇Fm,c(θi,jm,c(t)), where the expectation is over the random-
ness due to the SGD.

III. HIERARCHICAL OVER-THE-AIR FL (HOTAFL)
A. Ideal Communication

We refer to the case where all the communication among
all the units is error-free as the ideal communication scenario.
In this case, after performing SGD, each MU calculates its
model difference to be sent to its corresponding IS as

∆θim,c(t) = θi,τ+1
m,c (t)− θiIS,c(t). (3)

Then, the local aggregation at the c-th cluster is performed as

∆θiIS,c(t) =
1

M

M∑
m=1

∆θim,c(t), (4)

θi+1
IS,c(t) = θiIS,c(t) + ∆θiIS,c(t). (5)

After completing I local iterations in each cluster, ISs send
their model updates to the PS, which can be written as

∆θPS,c(t) = θI+1
IS,c(t)− θPS(t). (6)

The global update rule is ∆θPS(t) = 1
C

∑C
c=1 ∆θPS,c(t).

Using recursion, we can conclude that

∆θPS(t) =
1

MC

C∑
c=1

I∑
i=1

M∑
m=1

∆θim,c(t). (7)

After the global aggregation, the model at the PS is updated
as θPS(t+ 1) = θPS(t) + ∆θPS(t).

B. OTA Communication
We now consider the scheme referred as OTA communica-

tions, for which the links between the users and the ISs are
wireless with OTA aggregation, however, the links between
ISs and the PS is assumed to be error-free. Since a common
wireless medium is used in local aggregations, noisy versions
of the model updates ∆θIS,c(t) are received at the ISs. In our
setup, the ISs are equipped with K antennas, and we assume
perfect channel state information (CSI) at the receivers. For
the k-th antenna, the received signal at the c-th IS can be
written as1

yiIS,c,k(t) =

M∑
m=1

him,c,k(t) ◦ xim,c,k(t) + ziIS,c,k(t), (8)

where ◦ denotes the element-wise product, xim,c,k(t) ∈ CN ,
ziIS,c,k(t) ∈ CN with independent and identically distributed
(i.i.d.) entries zi,nIS,c,k(t) ∼ CN (0, σ2

z). The channel coeffi-
cients are modelled as him,c,k(t) =

√
βm,c g

i
m,c,k(t), where

gm,c,k(t) ∈ CN with entries gi,nm,c,k(t) ∼ CN (0, σ2
h) (i.e.,

Rayleigh fading), βm,c is the large-scale fading coefficient
modeled as βm,c = (dm,c)

−p, where p represents the path
loss exponent, and dm,c denotes the distance between the m-
th user in the c-th cluster and the IS in that cluster.

1Note that the setup here can be efficiently implemented in practice using
orthogonal frequency-division multiplexing (OFDM).



1) Local Aggregation: In OTA communication, in order
to increase the spectral efficiency, the model differences are
grouped to form a complex vector ∆θi,cxm,c ∈ CN with the
following real and imaginary parts

∆θi,rem,c(t) ,
[
∆θi,1m,c(t),∆θ

i,2
m,c(t), . . . ,∆θ

i,N
m,c(t)

]T
, (9a)

∆θi,imm,c (t),
[
∆θi,N+1

m,c (t),∆θi,N+2
m,c (t), . . . ,∆θi,2Nm,c (t)

]T
. (9b)

Under the assumption that there is no inter-cluster interference,
the received signal for the k-th antenna in the c-th cluster at
the i-th local iteration can be represented as

yiIS,c,k(t) = Pt

M∑
m=1

him,c,k(t) ◦∆θi,cxm,c(t) + ziIS,c,k(t), (10)

where Pt is the transmit power constant at the t-th global
iteration. Knowing the CSI perfectly, the c-th IS combines the
received signals as yiIS,c(t) = 1

K

∑K
k=1

(∑M
m=1 h

i
m,c,k(t)

)∗
◦

yiIS,c,k(t). For the n-th symbol, it can be written as

yi,nIS,c(t)=Pt

M∑
m=1

( 1

K

K∑
k=1

|hi,nm,c,k(t)|2
)
∆θi,n,cxm,c (t)︸ ︷︷ ︸

yi,n,sig
IS,c (t) (signal term)

+
Pt
K

M∑
m=1

M∑
m′=1
m′ 6=m

K∑
k=1

(hi,nm,c,k(t))∗hi,nm′,c,k(t)∆θi,n,cxm′,c (t)

︸ ︷︷ ︸
yi,n,itf
IS,c (t) (interference term)

+
1

K

M∑
m=1

K∑
k=1

(hi,nm,c,k(t))∗zi,nc,k(t)︸ ︷︷ ︸
yi,n,no
IS,c (t) (noise term)

. (11)

Aggregated model differences can be recovered by

∆θ̂i,nIS,c(t) =
1

PtMσ2
hβ̄c

Re{yi,nIS,c(t)}, (12a)

∆θ̂i,n+N
IS,c (t) =

1

PtMσ2
hβ̄c

Im{yi,nIS,c(t)}, (12b)

where β̄c =
∑M
m=1 βm,c. After estimating the model differ-

ence values, the cluster model update is written as

θi+1
IS,c(t) = θiIS,c(t) + ∆θ̂iIS,c(t), (13)

where ∆θ̂iIS,c(t) =
[
∆θ̂i,1IS,c(t) ∆θ̂i,2IS,c(t) · · · ∆θ̂i,2NIS,c (t)

]T
.

2) Global Aggregation: This part is similar to the case of
ideal communication. The only difference is that the aggre-
gated signals are estimates of the actual model differences.
Letting xPS,c(t) be the transmitted signal from the c-th IS, its
n-th symbol can be written as

xnPS,c(t) = ∆θnPS,c(t) + j∆θn+N
PS,c (t). (14)

Then, using (6), (11), (14) and recursion, the received signal
for 1≤n≤N (similarly for N+1≤n≤2N ) can be written as

ynPS(t) =

C∑
c=1

xnPS,c(t) (15)

=

C∑
c=1

I∑
i=1

Re
{
yi,n,sigIS,c (t)

}
PtMσ2

h︸ ︷︷ ︸
ynPS,1(t)

+

C∑
c=1

I∑
i=1

Re
{
yi,n,itfIS,c (t)

}
PtMσ2

h︸ ︷︷ ︸
ynPS,2(t)

+

C∑
c=1

I∑
i=1

Re
{
yi,n,noIS,c (t)

}
PtMσ2

h︸ ︷︷ ︸
ynPS,3(t)

. (16)

The received signal at the PS is then recovered as ∆θ̂nPS(t) =
1
C Re{ynPS(t)}, ∆θ̂n+N

PS (t) = 1
C Im{ynPS(t)}. Finally, the

global aggregation is performed as

θPS(t+ 1) = θPS(t) + ∆θ̂PS(t), (17)

where ∆θ̂PS(t) =
[
∆θ̂1

PS(t) ∆θ̂2
PS(t) · · · ∆θ̂2N

PS(t)
]T

.

IV. CONVERGENCE ANALYSIS

In this section, we present a convergence analysis of the
proposed HOTAFL algorithm. Define the optimal solution as
θ∗ , arg minθ F (θ), the minimum values of the total and the
local loss functions as F ∗ = F (θ∗) and F ∗m,c, respectively, and
the bias in the dataset as Γ , F ∗−

∑C
c=1

∑M
m=1

Bm,c

B F ∗m,c ≥
0. In addition, assume that the learning rate of the overall
system does not change in local iterations, i.e., ηi,jm,c(t) = η(t).
Therefore, we can write the global update rule as

θi,j+1
m,c (t) = θi,jm,c(t)− η(t)∇Fm,c(θi,jm,c(t), ξi,jm,c(t)), (18)

which can also be written as

θi,j+1
m,c (t)−θi,1m,c(t) = −η(t)

j∑
l=1

∇Fm,c(θi,lm,c, ξi,lm,c(t)). (19)

Assumption 1. All the loss functions are L-smooth and µ-
strongly convex; i.e., ∀v,w ∈ R2N , ∀m ∈ [M ],∀c ∈ [C],

Fm,c(v)−Fm,c(w)≤〈v−w,∇Fm,c(w)〉+L

2
‖v −w‖22, (20)

Fm,c(v)−Fm,c(w)≥〈v−w,∇Fm,c(w)〉+µ

2
‖v −w‖22. (21)

Assumption 2. The expected value of the squared l2 norm of
the stochastic gradients are bounded; i.e., ∀j ∈ [τ ], i ∈ [I],

Eξ
[ ∥∥∇Fm,c(θi,jm,c(t), ξi,jm,c(t))∥∥2

2

]
≤ G2, (22)

which translates to ∀n∈ [2N ], Eξ
[
∇Fm,c(θi,j,nm,c , ξ

i,j,n
m,c (t))

]
≤G.

Theorem 1. In HOTAFL, for 0 ≤ η(t) ≤ min{1, 1
µτI }, the

global loss function can be upper bounded as

E
[
‖θPS(t)− θ∗‖22

]
≤
( t−1∏
a=1

X(a)

)
‖θPS(0)−θ∗‖22+

t−1∑
b=1

Y (b)

t−1∏
a=b+1

X(a), (23)

where X(a) = (1− µη(a)I (τ − η(a)(τ − 1))) and



Y (a)=
η2(a)τ2G2I

M2C2

M∑
m1=1

C∑
c1=1

(β2
m1,c1

Kβ̄2
c1

+
( M∑
m2=1

C∑
c2=1

A1I
))

+

M∑
m=1

M∑
m′=1
m′ 6=m

C∑
c=1

η2(a)τ2G2Iβm,cβm′,c

M2C2Kβ̄2
c

+
σ2
zIN

P 2
aM

2C2Kσ2
h

M∑
m=1

C∑
c=1

βm,c
β̄2
c

+ (1 + µ(1− η(a)) η2(a)IG2 τ(τ − 1)(2τ − 1)

6
+ η2(a)I(τ2 + τ − 1)G2 + 2η(a)I(τ − 1)Γ, (24)

with A1 = 1− βm1,c1

β̄c1

− βm2,c2

β̄c2

+
βm1,c1βm2,c2

β̄c1 β̄c2

.

Proof: Let us define auxiliary variable v(t + 1) =
θPS(t) + ∆θPS(t). Then, we have

‖θPS(t+1)−θ∗‖22 =‖θPS(t+1)−v(t+1) + v(t+1)−θ∗‖22
= ‖θPS(t+ 1)− v(t+ 1)‖22 + ‖v(t+ 1)− θ∗‖22

+ 2〈θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗〉. (25)

Next, we provide upper bounds on the three terms of (25).

Lemma 1. We have

E
[∥∥θPS(t+ 1)− v(t+ 1)

∥∥2

2

]
≤ η2(t)τ2G2I

M2C2

M∑
m1=1

C∑
c1=1

(β2
m1,c1

Kβ̄2
c1

+
( M∑
m2=1

C∑
c2=1

A1I
))

+

M∑
m=1

M∑
m′=1
m′ 6=m

C∑
c=1

η2(t)τ2G2Iβm,cβm′,c

M2C2Kβ̄2
c

+
σ2
zIN

P 2
tM

2C2Kσ2
h

M∑
m=1

C∑
c=1

βm,c
β̄2
c

. (26)

Proof: See Appendix A.

Lemma 2. We have

E
[∥∥v(t+1)−θ∗

∥∥2

2

]
≤(1−µη(t)I(τ−η(t)(τ−1)))E

[∥∥θPS(t)−θ∗
∥∥2

2

]
+ (1 + µ(1− η(t)) η2(t)IG2 τ(τ − 1)(2τ − 1)

6
+ η2(t)I(τ2 + τ − 1)G2 + 2η(t)I(τ − 1)Γ. (27)

Proof: The proof is similar to that of Lemma 2 in [5].

Lemma 3. E [〈θPS(t+ 1)− v(t+ 1),v(t+ 1)− θ∗〉] = 0.

Proof: We have E[〈θPS(t+1)−v(t+1),v(t+1)−θ∗〉]=
E
[
〈∆θ̂PS(t)−∆θPS(t),θPS(t)+∆θPS(t)−θ∗〉

]
. Then, know-

ing that channel realizations are independent of the user
and cluster updates at the same global iteration t, we have
E
[
〈∆θ̂PS(t)−∆θPS(t),θPS(t)+∆θPS(t)−θ∗〉

]
=0.

Recursively iterating through the results of Lemmas 1, 2,
and 3 concludes the theorem.

Corollary 1. Assuming L-smoothness, after T global itera-
tions, the loss function can be upper bounded as

E [F (θPS(T ))− F ∗] ≤ L

2
E
[
‖θPS(T )− θ∗‖22

]
≤ L

2

( T−1∏
n=1

X(n)

)
‖θPS(0)−θ∗‖22+

L

2

T−1∑
p=1

Y (p)

T−1∏
n=p+1

X(n). (28)

Remark. Since the third term in Y (a) is independent of η(a),
even for lim

t→∞ η(t) = 0, we have lim
t→∞ E[F (θPS(t))]− F ∗ 6= 0.

This term is also inversely proportional to M , C, and K.

V. SIMULATION RESULTS

We consider a hierarchical system with one PS and C = 4
non-overlapping clusters, each containing one IS with K =
5MC receive antennas and M = 5 MUs. Users are randomly
placed in the clusters in such a way that their distance to the
PS is between 0.5 and 3, while having a distance between
0.5 and 1 with their corresponding IS. We also define α =∑M

m=1

∑C
c=1 dm,c∑D

d=1 dd
as a measure of relative closeness of the MUs

to their corresponding IS compared to the PS, where dm,c is
the distance between m-th user in c-th cluster to the c-th IS and
dd is the distance between the d-th user and the PS. α is set
to 0.4 in the simulations. We use MNIST [21] and CIFAR-10
[22] datasets with Adam optimizer [23], and considered both
i.i.d. and non-i.i.d. data distributions. In the i.i.d. case, data
samples are randomly distributed among MUs, while in the
non-i.i.d. case, the training data is divided into 5MC groups
each consisting of data with only one label. Then, 5 groups
are assigned to each user randomly. For CIFAR10, we use the
neural network given in [5] with 2N = 307498 whereas for
MNIST, we employ a one-layer neural network with 784 input
and 10 output neurons with 2N = 7850.

Three scenarios are considered: baseline with error-free
transmissions, FL with OTA aggregation over a wireless
medium, and HOTAFL. We set the total number of global
iterations T to 200, the mini-batch size to |ξim,c(t)| = 500,
σ2
h = 1 and the path loss exponent p to 4. The noise variance

is σ2
z = 10 for the MNIST, σ2

z = 1 for the CIFAR-10 training.
Also, the power multiplier is set to Pt = 1 + 10−2t for
HOTAFL, Pt = 1.5 + 10−2t for conventional FL, t ∈ [T ].

Accuracy plots are presented in Figs. 2-4, where P̄ is
the average transmit power. The results show that bringing
the servers closer to the users enhances learning accuracy
significantly. One reason for the improved performance is
that the cluster structure enables the MUs share their model
differences with a local server closer than the PS, reducing
the adverse effects of the large-scale wireless channel effects.
Another reason is that MUs receive updated models even
without communicating with the PS due to local aggregations.
We also observe that although more initial power is given
to FL, the user updates do not reflect on the global model
as much as HOTAFL does due to the effects of the wireless
channel. More local iterations enables faster convergence but
uses more transmit power due to the accumulating nature of
IS. Even though the noise variance is high when compared to
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Fig. 2: Test accuracy for i.i.d. MNIST data with τ = 1.
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Fig. 3: Test accuracy for non-i.i.d. MNIST data with τ = 3.
the transmit power, deploying 5MC = 100 receive antennas
almost mitigates the noise and the interference terms [5].
Increasing τ compensates the accuracy under more complex
data structure. In Fig. 5, we compare the convergence rates
of conventional FL and HOTAFL using the upper bound in
(28), with 2N = 7850, L = 10, µ = 1, G2 = 1,Γ = 1, η(t) =
5·10−2−2 · 10−5t, Pt = 1 + 10−2t, β = 3, ‖θPS(0)− θ∗‖22 =
103. It can be seen that the convergence rate of HOTAFL is
very close to that of the ideal case, and it becomes almost the
same when the number of local iterations is increased.

VI. CONCLUSIONS

In this work, we have proposed HOTAFL where ISs are
employed to create clusters to bring the server-side closer to
the areas where MUs are more densely located. Our framework
includes OTA cluster aggregations, where the MUs send their
model updates to the ISs through a wireless channel with
path loss and fading. We have examined the performance and
convergence rate of HOTAFL through theoretical limits as
well as model training where MNIST and CIFAR-10 datasets
are used with both i.i.d. and non-i.i.d. data distributions. The
results show that employing a cluster-based hierarchical model
outperforms the conventional FL.

APPENDIX A

For the n-th symbol, we have ∆θ̂nPS(t) =
∑3
l=1 ∆θ̂nPS,l(t),

so using the independence of channel coefficients, we have

E
[
||θPS(t+1)−v(t+1)||22

]
= E

[∥∥∆θ̂PS(t)−∆θPS(t)
∥∥2

2

]
=

2N∑
n=1

(E
[(
∆θ̂nPS,1(t)−∆θnPS(t)

)2]
+

3∑
l=2

E
[(
∆θ̂nPS,l(t)

)2]
. (29)

In the following lemmas, we will bound each of these terms.
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Fig. 4: Test accuracy for i.i.d. CIFAR-10 data with τ = 5.
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Lemma 4. We have

2N∑
n=1

E
[(

∆θ̂nPS,1(t)−∆θnPS(t)
)2]

=
1

M2C2

M∑
m1=1

C∑
c1=1

I∑
i1=1

(β2
m1,c1

Kβ̄2
c1

E
[∥∥∆θi1m1,c1(t)

∥∥2

2

]
+
( M∑
m2=1

C∑
c2=1

I∑
i2=1

2N∑
n=1

A1E
[
∆θi1,nm1,c1(t)∆θi2,nm2,c2(t)

]))
, (30)

where A1 = 1− βm1,c1

β̄c1

− βm2,c2

β̄c2

+
βm1,c1

βm2,c2

β̄c1 β̄c2

Proof: Using (7) and (12), we have

E
[(

∆θ̂nPS,1(t)−∆θnPS(t)
)2]

= E
[ 1

M2C2

M∑
m1=1

M∑
m2=1

C∑
c1=1

C∑
c2=1

I∑
i1=1

I∑
i2=1

∆θi1,nm1,c1(t)

×∆θi2,nm2,c2(t)
(

1− 1

Kσ2
hβ̄c1

K∑
k1=1

|hi1,nm1,c1,k1
(t)|2

− 1

Kσ2
hβ̄c2

K∑
k2=1

|hi2,nm2,c2,k2
(t)|2

+
1

K2σ4
hβ̄

2
c1

K∑
k1=1

K∑
k2=1

|hi1,nm1,c1,k1
(t)|2|hi2,nm2,c2,k2

(t)|2
)]
. (31)

Summing over all the symbols and using the independence of
channel coefficients result in (30).



Lemma 5. We have
2N∑
n=1

E
[(

∆θ̂nPS,2(t)
)2]

=

M∑
m=1

M∑
m′=1
m′ 6=m

C∑
c=1

I∑
i=1

βm,cβm′,c

M2C2Kβ̄2
c

E
[ ∥∥∆θim′,c(t)

∥∥2

2

]
. (32)

Proof: For 1 ≤ n ≤ N , using the independence of
channel coefficients, we have

E
[(

∆θ̂nPS,2(t)
)2]

= E
[( M∑

m=1

M∑
m′=1
m′ 6=m

C∑
c=1

I∑
i=1

1

MCKσ2
hβ̄c

×
K∑
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Re
{(
hi,nm,c,k(t)

)∗
hi,nm′,c,k(t)∆θi,nm′,c(t)

})2]
= E

[ M∑
m=1

M∑
m′=1
m′ 6=m

C∑
c=1
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i=1

βm,cβm′,c

2M2C2Kβ̄2
c

×
((

∆θi,nm′,c(t)
)2

+
(
∆θi,n+N

m′,c (t)
)2

+ ∆θi,nm,c(t)∆θ
i,n
m′,c(t)

−∆θi,n+N
m,c (t)∆θi,n+N

m′,c (t)
) ]

(33)

Obtaining the expressions for N + 1 ≤ n ≤ 2N in a similar
manner and combining the two, results in (32).

Lemma 6.
2N∑
n=1

E
[(

∆θ̂nPS,3(t)
)2]

=
σ2
zIN

P 2
tM

2C2Kσ2
h

M∑
m=1

C∑
c=1

βm,c
β̄2
c

. (34)

Proof: Using the independence of channel coefficients,
for 1 ≤ n ≤ N , we have

E
[(

∆θ̂nPS,3(t)
)2]

= E
[( M∑

m=1

C∑
c=1

I∑
i=1
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k=1

1

PtMCKσ2
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× Re
{(
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m=1
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c=1

I∑
i=1

K∑
k=1

1

P 2
tM

2C2K2σ4
hβ̄

2
c

×
(

Re
{(
hi,nm,c,k(t)

)∗
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σ2
zI

2P 2
tM

2C2Kσ2
h
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C∑
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βm,c
β̄2
c

. (35)

The same result holds for N + 1 ≤ n ≤ 2N . Combining the
two results concludes the lemma.

Combining the results in Lemmas 4, 5, and 6 and applying
Assumption 2 with (19) completes the proof of Lemma 1.
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