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Abstract

In this paper, we consider lossless transmission of arbitrarily correlated sources over a mul-
tiple access channel. Characterization of the achievable rates in the most general setting is
one of the longstanding open problems of information theory. We consider a special case
of this problem where the receiver has access to correlated side information given which the
sources are independent. We prove a source channel separation theorem for this system, that
18, we show that there is no loss in performance in first applying distributed source coding
where each encoder compresses its source conditioned on the side information at the receiver,
and then applying an optimal multiple access channel code with independent codebooks. We
also give necessary and sufficient conditions for source and channel separability in the above
problem if there is perfect two-sided feedback from the receiver to the transmitters. These two
communication scenarios constitute exzamples of few non-trivial multi-user scenarios for which
separation holds.

1. Introduction

We consider a wireless sensor network, where correlated sensor observations are transmitted
to an access point through a multiple access channel (MAC). We assume that sensors simul-
taneously observe some correlated phenomena, e.g. temperature, pressure, etc., and wish to
transmit their observations in a lossless fashion to an access point by sharing the same com-
munication channel. This model represents many dense sensor network applications where
physical proximity results in correlated observations. We assume that while sensor observa-
tions at each instant are correlated among each other, they are memoryless, i.e., observations
at different time instants are independent and identically distributed. We allow mismatch
among the source and channel code lengths, i.e., we assume that sensors transmit a block of
m observations in n uses of the channel, resulting in a bandwidth ratio of b = n/m.

The problem in this general setting is known to be hard problem and remains open despite
ongoing research efforts. Shannon’s source channel separation theorem [1] which states that,
there is no loss in applying optimal source compression followed by optimal channel coding
in the point-to-point communication scenario, fails to hold in the multiple access case. This
means that the optimal strategy requires a joint source-channel coding approach.

The first attempt to find sufficient conditions for transmission of correlated sources over
MAC’s was due to Cover et al. [2], where a counter example proving the invalidity of the
source-channel separation theorem for MAC was given. Authors also proposed a coding tech-
nique (achievability result) using the dependency structure of the correlated sources. This
result showed that instead of removing the correlation among the sources, we can utilize
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Figure 1. Discrete memoryless MAC for lossless transmission of arbitrarily correlated sources
(S1,52) to a receiver which has correlated side information Z.

the dependency to design correlated channel codes and in certain cases transmit the sources
reliably even though this would not be possible with distributed compression followed by in-
dependent channel coding. However, Dueck [3] later showed that the achievable rate region
of [2] does not necessarily give the full capacity region. Recently, [4] gave a finite letter outer
bound on the capacity of MAC with correlated sources.

One simplification to the original problem might be that the sensor observations are rare
events that do not occur simultaneously with high probability. This makes it possible to
successfully use random access schemes which would result in low collision probability, hence
perform very close to the optimal. Another simplifying assumption would be to have or-
thogonal channels from each sensor to the access point. This can be achieved by standard
time/frequency/code division algorithms (TDMA/ FDMA/ CDMA). This model is considered
in [5] and [6], where separation theorems are proven for lossless and lossy cases, respectively.
Although both simplifications (rare event and orthogonal channel assumptions) make it possi-
ble to obtain a full characterization of the achievable schemes, the insights they provide about
the general problem are limited as they orthogonalize the channel, which in many cases would
be suboptimal. Surprisingly, to our knowledge, there is only one source-channel separation for
non-trivial MAC in the literature, which is given in [7] for lossless transmission of correlated
sources over asymmetric MAC.

In this paper, we consider two scenarios under which separate source and channel coding is
optimal. We assume the receiver has access to a correlated side information with the source
observations, such that, given this side information the sources are independent. Since our
assumption does not necessarily lead to the independence of the sources, but only to condi-
tional independence given the remote side information, it is not immediately clear whether
the source-channel separation applies here. We argue that, unlike [2], using source correlation
for channel code design can not improve the performance, since, loosely speaking, the corre-
lated part of the sources is already available at the receiver in the form of side information.
Indeed, we prove a separation theorem which states that optimal Slepian-Wolf source coding
where each transmitter compresses its source conditioned on the remote side information at
the receiver, followed by a capacity achieving channel code for the MAC is optimal. We also
extend our separation theorem to the case where perfect feedback in the form of channel out-
put is available to the encoders. Although the single letter characterization of the capacity
region of discrete memoryless (DM) MAC with feedback is not known explicitly, we prove the
optimality of separate source and channel codes using directed information [11].

The rest of the paper is organized as follows. In Section 2, we introduce the system model,
define the problem, and state our two separation theorems. Proof of the separation theorem
for the two user case without feedback is given in Section 3 and a proof of the separation
theorem for the perfect two-sided feedback case is provided in Section 4.
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Figure 2. Discrete memoryless MAC with perfect two-sided feedback. We want to transmit
arbitrarily correlated sources (S, S2) losslessly to the receiver which observes the correlated
side information Z.

2. System Model and The Main Results

2.1. Case I: No Feedback

We first concentrate on the two user case with no feedback, however, generalization to
more then two users follows easily based on the arguments here. Two correlated sources and
a correlated side information, {Six, Sak, Zi}32,, respectively, are generated i.i.d. according
to a joint pmf p(sy, so, 2z) over a finite alphabet S; x Sy x Z. The correlated source vectors
ST = (S11,..., 51 m) and S3* = (Sa1, ..., S2,,) are available at the two separate transmitters,
and the side information, Z™ = (Zy,...,Z,,), is available at the receiver. The transmitters
know the joint pmf, but do not have access either to each other’s samples or to the receiver side
information. The transmitters encode the corresponding source sequences into two channel
codewords X7" = (Xi1,...,Xq,) and XJ = (Xo,..., Xo,), respectively, and transmit these
codewords over a discrete memoryless (DM) multiple access channel to a receiver who observes
the output vector Y = (Yy,...,Y,). The input and output alphabets X;, Xy and ) are all
finite. The DM channel is characterized by the conditional distribution Py x, x,(y|71, Z2).

The receiver forms estimates of the source vectors ST and S5, denoted as 5”{", A;”, based
on its received signal Y™ and the side information Z™ (see Fig. 1). We assume that S; and
S, are independent given side information Z, i.e., the joint distribution has the form

p(s1, 52, 2) = p(s1|2)p(s2]2)p(2).

The transmitters are required to convey the corresponding information vectors S7* and S%*
to the decoder losslessly in the Shannon sense. Due to lossless transmission requirement, the
reconstruction alphabets are same as the source alphabets.

The capacity region of the DM multiple access channel with independent inputs is denoted
by Cyac. We define the interior of the capacity region, int(Cprac), as the largest open set
contained in Csac.

Theorem 2.1. (Theorem 14.5.3, [8]) The capacity region Carac, of a discrete memoryless
multiple access channel characterized by the probability transition matriz p(y|xi,z2) is given
by the closure of the set of all (Ry, Ry) pairs satisfying

Rl < I<X17Y|X2aQ)7
RQ < I(X27Y‘X17Q>7
R1+R2 < I<X17X2;Y7Q>7

for some joint distribution p(q)p(x1|q)p(z2|q)p(y|x1, z2) with |Q| < 4.



Following [10], we will call the bandwidth ratio, b = n/m, of the system as the rate of
the joint source-channel coding scheme. The rate of the code characterizes the channel uses
needed, on the average, to transmit each source sample.

Definition 2.1. We say that the rate b is achievable with no feedback if, there exist sequences
of encoders
fmm o smo_ xn - fori=1,2

7 K3

and decoders
gmm L Yn w Zm St x S,
with decoder outputs (S{”, 5”5”) = g™ (Y™, Z™) such that the probability of error
P = Pr{(S7, 55") # (57", 85")] = 0

as n,m — oo while n/m = b.

We first provide necessary and sufficient conditions for achieving rate b when S; and S, are
independent given side information Z, i.e., Sy — Z — S5 form a Markov chain. This condition
on the sources leads to the Markov relations: Z — S; — X; and Z — Sy — X,. We also have a
larger Markov chain

Z —(51,82) — (X1,Xs) =Y.

The first main result of this paper is summarized in the following theorem.

Theorem 2.2. For lossless transmission of correlated sources Sy and Sy over a DM MAC with
no feedback and with receiwer side information Z for which S1 — Z — Ss, rate b is achievable if

1 1 .
Conversely, if rate b is achievable, then
1 1
(EH(SHZ),EH(SﬂZ)) € Cuac- (2)

The proof will be provided in Section 3. The generalization of Thm. 2.2 to more than two
users simply follows along the same lines of the proof in Section 3, and is stated below.

Theorem 2.3. Consider lossless transmission of arbitrarily correlated M sources S; (i =
L,...,M) over a DM MAC with receiver side information Z such that the joint distribution
p(S1,- .-, 8m,2) is of the form

M

p(s1 - su. 2) = p(z) [ [ plsile).

=1

Without feedback, rate b is achievable if
1 1 .
<6H(SI|Z)7 e EH(SM|Z)) € Znt(CMAc).
Conwversely, if rate b is achievable, then

1 1
<5H(S1’Z)a---,gH(SM’Z)> € Cyac,

where Cyrac denotes the capacity region of the M-user MAC.



2.2. Case II: Perfect two-sided feedback

Next we consider the problem stated in 2.1 with two-sided perfect feedback. Now, the
channel output is available to both transmitters casually, as illustrated in Fig. 2. At each
time instant i, each transmitter can access the previous channel output symbols Y~ £
(Y1,...,Y;_1). Therefore, each encoder function fi(m’n) is composed n encoders |, fi(;n’n), for
1=1,2and j =1,...,n, such that,
f-(f"”’")(SZ”) = X, (3)

1

IS Y = Xy, for =2, n. @)

J

The definitions for error probability and achievability of rate b are similar to the case with
no feedback. Before we state our result, we briefly summarize the achievable rate region R
and then the capacity region Cpac for DM MAC with perfect two-sided feedback given in
[12]. These regions do not assume single letter characterization, instead they can be written in
terms of the directed information between the transmitter sequences and the output sequence.
The directed information flowing from a sequence X™ to a sequence Y" was introduced by
Massey [11] as

(X" —Y™) 2 i (XYY, (5)

The directed information flowing from X™ to Y™ when casually conditioned on Z" is defined
as

(X" —=Y"|2M) &> (X5 )Y 20, (6)
i=1
If we have casual conditioning followed by usual conditioning, we write
(X" =Y |z um) &£ I(XLY |yt z0om). (7)
i=1

Following is an achievable rate region for DM MAC with casual feedback given in [12].
Theorem 2.4. (Lemma 5.4, [12]) The closure Ry, of the rate pairs (Ry, Rs) satisfying

1
Ry < SI(XP = YHX1Q). (8)
1
Ry < ZI(XQLHYLIIXfIQ), (9)
1
Ri+ Ry < z](XlL,XQL—>YL), (10)

is contained within the capacity region CfMAC; where L 1s a positive integer and the joint
probability distribution p(xy;, vo;, szt~ 25 y* 1 q) factors as

plzilzth Y ) - p(@alas ™ v @) - plyilz, 22).
fori=1,... L.

Theorem 2.5. ([12]) Csarac = limy .o Ryr.



We can now state the second result of this paper, which is the source-channel separation
theorem in the case of casual, perfect two-sided feedback.

Theorem 2.6. Consider lossless transmission of correlated sources Sy and Sy over a DM MAC
with perfect two-sided feedback, where receiver has side information Z for which Sy — Z — Sy
form a Markov chain. Rate b is achievable if

(%H(51|Z),%H(52|Z)) € int(Crarac). (11)

Conversely, if rate b is achievable, then

(%H(SﬂZ), %H(SQ|Z)> € Cyarac (12)

3. Proof of Theorem 2.2

Proof. The direct part is straightforward. Consider rate pair (R;, Rs) satisfying

H(S,|Z) < Ry, (13)
H(S|Z) < Ry, (14)
and
Ry R
(7172) € Crrac- (15)

While (13-14) form sufficient conditions for lossless compression of the source pair (57, Ss)
with respect to the receiver side information Z using Slepian-Wolf source coding theorem [9],
when (15) is satisfied, the compressed rates can be reliably transmitted over the multiple
access channel, guaranteeing the achievability of rate b.

We next prove the converse. We assume P™™ — 0 for a sequence of encoders fi(m’")
(i = 1,2) and decoders ¢g™™ as n,m — oo with a fixed rate b = n/m. We will use Fano’s
inequality, which states

H(ST, SmS™ S < 14 mP™Mlog|S; x Ssl,
2 me(pmm), (16)

where §(P{™™) is a non-negative function that goes to zero as P\™™ — 0. We also obtain
H(S?, S51S7, 857 = H(S[ST, 85), (17)
> H(S"[Y", 2™), (18)

for ¢ = 1,2, where the first inequality follows from the chain rule and the nonnegativity
of entropy for discrete sources, and the second inequality follows from the data processing
inequality. Then, for i = 1,2,

H(SPlY™, Z™) < m3(B™™). (19)



We have

CIXSYIXG, 27 2 ISP Y27 X, (20)
= [H(S]|Z", X3) ~ H(STIY", 2", X3)], (21)
= [H(STIZ™) ~ HSPIY", 27, X3)), (22)
> LH(ST|Z") ~ H(STIY", 2, (23)
> %H(SﬂZ)—%mé(Pe(m’”)), (24)

where (20) follows from the Markov relation S7* — X7 — Y™ given (X7, Z™); (22) from the
Markov relation X3 — Z™ — S7*; (23) from the fact that conditioning reduces entropy; (24)
from the memoryless source assumption and from (16) which uses Fano’s inequality.

Then we obtain

1
—I(XHYMXE) > o |H(S1|2) = s(Pmmy|
n

> T [H(5]Z) =], (25)

o

for any € > 0 and large enough m,n. On the other hand, we also have

I(XD Y™ XD, 2™ = HY™XP,Z™) — HY"|XP, XD, Z™), (26)
- H(Y"|Xg,zm)—iH(EIYi‘l,X{‘,XS,Z’”>, (27)

=1
= H(Yn|X;,Zm)—iH(Yi|X1i7X2i7Zm)a (28)

i=1
< iH(mX%Zm)—iH(mXU,X%Zm), (29)

=1 =1

= iI(Xli;Y%’Xzi,Zm)a (3())

i=1

where (27) follows from the chain rule; (28) from the memoryless channel assumption; and
(29) from the chain rule and the fact that conditioning reduces entropy.

Now, we follow the similar steps as in the converse proof of DM MAC in [8]. We introduce
a new time-sharing random variable @, where Q =4, i € {1,2,...,n} with probability 1/n.
Then we can write

1 n n n m 1 - m
1 < .
= ﬁ Z[(Xléa }/Q|X2(ja Zm7 Q = Z)? (32)
i=1
= I(X15;Y5|Xg, 2™, Q), (33)

= I(X1;Y]X5,Q), (34)



where X; £ Xig, Xo = Xo0, Y = Yy, and @ 2 (Z™, Q). Since ST and S¥', and therefore
X1; and Xy, are independent given Z™, for ¢ = (2™, 1) we have
Pri{Xi =21, Xo =2|Q=q} = Pr{Xy=u,Xoi=12|2" =2",Q =1}
PT{XU = 513'1|Zm = Zm, Q = Z}
Pri{Xy = x|2™ =2",Q =i}
= Pr{Xi|Q = ¢} - Pr{Xs|Q = q}.

Hence, the probability distribution is of the form in Theorem 2.1.
Combining these two chains of inequalities we can obtain

1

H[H(5112) = €] < I(X1;Y|X2, Q), (35)
Similarly, we can also get
SH(S:12) — ] < T(Xa Y 1X,,Q), (36)
For the joint mutual information we can write the following set of inequalities.
LIXL XY > I(ST S5 Y2, (37)
- %[H(S{”, S Z™Y — H(S™, Sy Y™, Z™)], (38)
= %[H(ST’IZ”) +H(S3"|2™) — H(ST", 53" Y™, Z2™)], - (39)
> L[H(ST|Z") + H(SP|Z") — H(SP, 718755, (40)
> 2 H(S)12) + H($1|2) - 6P (41)

where (37) follows from the Markov relation (S7*, ST*) — (X7, X¥') — Y™ given Z™; (39) from
the Markov relation S5 — Z™ — S7"; (40) from the fact that (S7", S5*) — (Y™, Z™) — (87" and
S7) form a Markov chain; (41) from the memoryless source assumption and from (16) which
uses Fano’s inequality.

Then we can get

%I(X{%Xé‘; yrzm) > %[H(SAZ) + H(S1|Z) — s(Pm™)],
> % (H(S:|Z) + H(S:|2) — €], (42)
for any € > 0 and large enough m,n. Similar to the previous case, we can also show that
I X Y2 < 3 (X Xa V), (43
i=1
which finally leads to
% [H(S1|Z) + H(S2Z) — 6 < [(Xy, X2:Y|Q). (44)

Altogether, taking the limit as m,n — oo and letting ¢ — 0 we can obtain the following
converse result:

LH(S1|7) < 1(X05 Y12, Q) (45)



H(S17) < I(X0;Y|X0,Q), (46)
% (H(S:|2Z) + H(S:|2)] < I(Xy, Xa: Y|Q), (47)

for some joint probability density p(q, z1, x2,y) = p(q)p(x1|q)p(x2|q)p(y|x1, 22). Although the
cardinality of random variable () is larger than the cardinality of ) in Theorem 2.1, we know
that this would not enlarge the region due to Carathéodory theorem [8].

O

4. Proof of Theorem 2.6

Achievability is straightforward and follows from the lines of the proof of Theorem 2.2. To
prove the converse, we have

(X7 = Y"|Xp|1Zm™) = Y I(X: Y[y X3, 2m), (48)
i=1

S IS YT XS, Zm), (49)

=1

IV

= D I(ST YL X 27 YT — (ST X5 27 YY), (50)

i=1

= ) ISy i, X5z YY), (51)
=1

> ) ISP Y2 YT, (52)
=1

= I(S{hY"|Z™), (53)

= H(S7'|Z™) — H(S{"[Y™, Z2™), (54)

where (48) follows from the definition given in (7); (49) from the fact that S7* — Xy, —Y; form
a Markov chain given (Y1 X! Z™); (50) from the chain rule; (51) follows from the Markov
relation ST —(Z™, Y1) — XI: (52) and (53) follow from the chain rule and the non-negativity
of the mutual information.

Finally, using the same steps following (23) of the no-feedback case, we can write
1 1
LI - YXSIZ) 2 H(S)Z)

for any € > 0 and large enough m,n. Similar steps follow for the other transmitter and the
joint directed information and we can obtain the following set of inequalities.

1 1
gH(SﬂZ) < EI(X{L — Y"||X3[Z™),
1 1

CH(S,17) < J1(X} — V" X7|2")

3

%[H(SJZ) +H(S,|2)] <

where the joint probability distribution factorizes as

S|

I(XT, X5 = Y™),

p(a1s, mos yil L ah Ly T 2™ = playlaT Ly 2™ p(walah Ly 2™ - p(yil s, wa).
Now, note that, from Theorem 2.4, the right hand side is achievable for any n and Z™,
hence the conditions of the theorem are necessary as well.



5. Conclusion

In this work, we consider lossless transmission of arbitrarily correlated sources over a discrete
memoryless multiple access channel (MAC) with and without perfect two sided feedback.
Assuming that the receiver has access to a correlated side information given which the sources
are independent, we prove a source-channel separation theorem for both cases, that is, we show
that, there is no loss in first applying Slepian-Wolf source coding where each user compresses
its source conditioned on the remote side information at the receiver, and then transmitting
the compressed source signals over the underlying MAC using channel codes operating on the
boundary of the MAC capacity region. This result may be particularly valuable for sensor
network applications where the modularity brought by source-channel separation would make
simpler design architectures possible without rendering any performance loss.
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