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Abstract

Scheduling the transmission of status updates over an error-prone communication channel is studied in

order to minimize the long-term average age of information at the destination under a constraint on the average

number of transmissions at the source node. After each transmission, the source receives an instantaneous

ACK/NACK feedback, and decides on the next update without prior knowledge on the success of future

transmissions. The optimal scheduling policy is first studied under different feedback mechanisms when the

channel statistics are known; in particular, the standard automatic repeat request (ARQ) and hybrid ARQ

(HARQ) protocols are considered. Structural results are derived for the optimal policy under HARQ, while

the optimal policy is determined analytically for ARQ. For the case of unknown environments, an average-cost

reinforcement learning algorithm is proposed that learns the system parameters and the transmission policy

in real time. The effectiveness of the proposed methods is verified through numerical results.

Index Terms

Age of information, hybrid automatic repeat request (HARQ), constrained Markov decision process,

reinforcement learning

I. INTRODUCTION

Motivated by the growing interest in timely delivery of information in status update systems, the

age of information (AoI) has been introduced as a performance measure to quantify data staleness

at the receiver [2]–[4]. Consider a source node that samples an underlying time-varying process and

sends the sampled status of the process over an imperfect communication channel that introduces
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delays. The AoI characterizes the data staleness (or tardiness) at the destination node, and it is

defined as the time that has elapsed since the most recent status update available at the destination

was generated. Different from classical performance measures, such as the delay or throughput, AoI

jointly captures the latency in transmitting updates and the rate at which they are delivered.

Our goal in this paper is to minimize the average AoI at the destination taking into account

retransmissions due to errors over the noisy communication channel. Retransmissions are essential

for providing reliability of status updates over error-prone channels, particularly in wireless settings.

Here, we analyze the AoI for both the standard ARQ and hybrid ARQ (HARQ) protocols.

In the HARQ protocol, the receiver combines information from all previous transmission attempts

of the same packet in order to increase the success probability of decoding [5], [6], [7]. The

exact relationship between the probability of error and the number of retransmission attempts varies

depending on the channel conditions and the particular HARQ method employed [5], [6], [7]. In

general, the probability of successful decoding increases with each transmission, but the AoI of

the received packet also increases. Therefore, there is an inherent trade-off between retransmitting

previously failed status information with a lower error probability, or sending a fresh status update

with higher error probability. We address this trade-off between the success probability and the

freshness of the status update to be transmitted, and develop scheduling policies to minimize the

expected average AoI.

In the standard ARQ protocol, if a packet cannot be decoded, it is retransmitted until successful

reception. Note, however, that, when optimizing for the AoI, there is no point in retransmitting

the same packet, since a newer packet with more up-to-date information is available at the sender

at the time of retransmission. Thus, after the reception of a NACK feedback, the actual packet is

discarded, and the most recent status of the underlying process is transmitted (the exact timing of

the transmission may depend on the feedback, i.e., on the success history of previous transmissions).

A scheduling policy to decide whether to stay idle or transmit a status update should be designed

considering a resource constraint on the average number of transmissions.

We develop scheduling policies for both the HARQ and the standard ARQ protocols to minimize

the expected average AoI under a constraint on the average number of transmissions, which is

motivated by the fact that sensors sending status updates have usually limited energy supplies (e.g.,

are powered via energy harvesting [8]); and hence, they cannot afford to send an unlimited number

of updates, or increase the signal-to-noise-ratio in the transmission. First, we assume that the success

probability before each transmission attempt is known (which, in the case of HARQ, depends on

the number of previous unsuccessful transmission attempts); and therefore, the source node can
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judiciously decide when to retransmit and when to discard a failed packet and send a fresh update.

Then, we consider transmitting status updates over an unknown channel, in which case the success

probabilities of transmission attempts are not known a priori, and must be learned in an online

fashion. This latter scenario can model sensors embedded in unknown or time-varying environments.

We employ reinforcement learning (RL) algorithms to balance exploitation and exploration in an

unknown environment, so that the source node can quickly learn the environment based on the

ACK/NACK feedback signals, and can adapt its scheduling policy accordingly, exploiting its limited

resources in an efficient manner.

The main contributions of this paper are as follows:

• Average AoI is studied under a long-term average resource constraint imposed on the transmitter,

which limits the average number of transmissions.

• Both retransmissions and pre-emption following a failed transmission are considered, corre-

sponding, respectively, to the HARQ and ARQ protocols, and the structure of the optimal policy

is determined in general.

• The optimal preemptive transmission policy for the standard ARQ protocol is shown to be a

threshold-type randomized policy, and is derived in closed-form.

• An average-cost RL algorithm; in particular, average-cost SARSA with softmax, is proposed to

learn the optimal scheduling decisions when the transmission success probabilities are unknown.

• Extensive numerical simulations are conducted in order to show the effect of feedback, resource

constraint and ARQ or HARQ mechanisms on the freshness of the data.

A. Related Work

Most of the earlier work on AoI consider queue-based models, in which the status updates arrive

at the source node randomly following a memoryless Poisson process, and are stored in a buffer

before being transmitted to the destination over a noiseless channel [3], [4]. Instead, in the so-called

generate-at-will model, [2], [9]–[12], also adopted in this paper, the status of the underlying process

can be sampled at any time by the source node.

A constant packet failure probability for a status update system is investigated for the first time

in [13], where status updates arrive according to a Poisson process, while the transmission time for

each packet is exponentially distributed. Fast-come-first-served (FCFS) scheduling is analyzed and

it is shown that packet loss and large queuing delay due to old packets in the queue result in an

increase in the AoI. Different scheduling decisions at the source node are investigated; including

the last-come-first-served (LCFS) principle, which always transmits the most up-to-date packet, and
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retransmissions with preemptive priority, which preempts the current packet in service when a new

packet arrives.

Broadcasting of status updates to multiple receivers over an unreliable broadcast channel is con-

sidered in [10]. A low complexity sub-optimal scheduling policy is proposed when the AoI at each

receiver and the transmission error probabilities to all the receivers are known. However, only work-

conserving policies are considered in [10], which update the information at every time slot, since no

constraint is imposed on the number of updates. Optimizing the scheduling decisions with multiple

receivers over a perfect channel is investigated in [11], and it is shown that there is an optimal

scheduling algorithm that is of threshold-type. To our knowledge, the latter is the only prior work in

the literature which applies RL in the AoI framework. However, their goal is to learn the data arrival

statistics, and it does not consider either an unreliable communication link or HARQ. Moreover, we

employ an average-cost RL method, which has significant advantages over discounted-cost methods,

such as Q-learning [14].

The AoI in the presence of HARQ has been considered in [15], [16] and [17]. In [15] the affect

of design decisions, such as the length of the transmitted codewords, on the average AoI is analyzed.

The status update system is modeled as an M/G/1/1 queue in [16]; however, no resource constraint is

considered, and the status update arrivals are assumed to be memoryless and random, in contrast to our

work, which considers the generate-at-will model. Moreover, a specific coding scheme is assumed in

[16], namely MDS (maximum distance separable) coding, which results in a particular formula for the

successful decoding probabilities, whereas we allow general functions for these probabilities. From a

queuing-systems perspective, our model can be considered as a G/G/1/1 queue with optimization of

packet arrivals and pre-emption. In [17], HARQ is considered in a zero-wait system, where as soon

as an update is successfully transmitted to the destination, the source starts transmitting a new status

update, as no resource constraint or pre-emption is taken into account.

In [2] and [18], the receiver can choose to update its status information by downloading an update

over one of the two available channels, a free yet unreliable channel, modeling a Wi-Fi connection, and

a reliable channel with a cost, modeling a cellular connection. Although the Lagrangian formulation of

our constrained optimization problem for the standard ARQ protocol is similar to the one considered

in [2], our problem is more complicated due to several reasons: they have not considered the effect of

retransmissions or any algorithm that learns the unknown system parameters, and even without these

complications, we need to determine the Lagrange multiplier corresponding to the given constraints,

while it is given in [2].

To the best of our knowledge, this is the first work in the literature that addresses a status update
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Figure 1. System model of a status update system over an error-prone point-to-point link in the presence of ACK/NACK feedback

from the destination.

system with HARQ in the presence of resource constraints. In addition, no previous work has studied

the average AoI over a channel with unknown error probabilities, and employed an average-cost RL

algorithm.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a time-slotted status update system over an error-prone communication link (see

Figure 1). The source monitors an underlying time-varying process, and can generate a status update

at any time slot; known as the generate-at-will model [12]. The status updates are communicated

from the source node to the destination over a time-varying channel. Each transmission attempt of

a status update takes constant time, which is assumed to be equal to the duration of one time slot.

Throughout the paper, we will normalize all time durations by the duration of one time slot.

We assume that the channel changes randomly from one time slot to the next in an independent and

identically distributed fashion, and the channel state information is available only at the destination

node. We further assume the availability of an error- and delay-free single-bit feedback from the

destination to the source node for each transmission attempt. Successful receipt of a status update is

acknowledged by an ACK signal, while a NACK signal is sent in case of a failure. In the classical

ARQ protocol, a packet is retransmitted after each NACK feedback, until it is successfully decoded (or

a maximum number of allowed retransmissions is reached), and the received signal is discarded after

each failed transmission attempt. Therefore, the probability of error is the same for all retransmissions.

However, in the AoI framework there is no point in retransmitting a failed out-of-date status packet

if it has the same error probability as that of a fresh update. Hence, we assume that if the ARQ

protocol is adopted, the source always removes failed packets and transmits a fresh status update.

On the other hand, if the HARQ protocol is used, the received signals from all previous transmission
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Figure 2. Illustration of the AoI in a slotted status update system with HARQ. (δt, rt) represents the state of the system and the

action is chosen based on the state (δt, rt) and denoted by at. Packets with decoding errors (represented by red squares) are stored in

the receiver and combined to decode the information successfully (represented by green squares).

attempts for the same packet are combined for decoding. Therefore, the probability of error decreases

with every retransmission. In general, the error probability of each retransmission attempt depends

on the particular combination technique used by the decoder, as well as on the channel conditions

[5].

AoI measures the timeliness of the information at the receiver. It is defined as the number of time

slots elapsed since the generation of the most up-to-date packet successfully decoded at the receiver.

Formally, denoting the latter generation time for any time slot t by U(t), the AoI, denoted by δt, is

defined as

δt , t− U(t). (1)

We assume that a transmission decision is made at the beginning of each slot. The AoI increases by

one when the transmission fails, while it decreases to one in the case of ARQ, or to the number of

retransmissions plus one in the case of HARQ, when a status update is successfully decoded (the

minimum age is set to 1 to reflect that the transmission is one slot long).

The probability of error after r retransmissions, denoted by g(r), depends on r and the particular

HARQ scheme used for combining multiple transmission attempts (an empirical method to estimate
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g(r) is presented in [6]). As in any reasonable HARQ strategy, we assume that g(r) is non-increasing

in the number of retransmissions r; that is, g(r1) ≥ g(r2) for all r1 ≤ r2. For simplicity, we assume

that 0 < g(0) < 1, that is, the channel is noisy and there is a possibility that the first transmission

is successful (if g(0) = 0, the problem becomes trivial, while g(0) < 1 can be easily relaxed to the

condition that there exists an r such that g(r) < 1). Also, we will denote the maximum number of

retransmissions by rmax, which may take the value ∞, unless otherwise stated. However, if g(r) = 0

for some r (i.e., a packet is always correctly decoded after r retransmissions), we set rmax to be the

smallest such r. Finally note that standard HARQ methods only allow a finite maximum number of

retransmissions [19].

For any time slot t, let δt ∈ Z+ denote the AoI at the beginning of the time slot and rt ∈
{0, . . . , rmax} denote the number of previous transmission attempts of the same packet. Then the

state of the system can be described by st , (δt, rt). At each time slot, the source node takes one

of the three actions, denoted by a ∈ A, where A = {i, n, x}: (i) remain idle (a = i); (ii) transmit a

new status update (a = n); or (iii) retransmit the previously failed update (a = x). The evolution of

AoI for a slotted status update system is illustrated in Figure 2.

Note that if no resource constraint is imposed on the source, remaining idle is clearly suboptimal

since it does not contribute to decreasing the AoI. However, continuous transmission is typically not

possible in practice due to energy or interference constraints. Accordingly, we impose a constraint

on the average number of transmissions, and we require that the long-term average number of

transmission do not exceed Cmax ∈ (0, 1] (note that Cmax = 1 corresponds to the case in which

transmission is allowed in every slot).

This leads to the constrained Markov decision process (CMDP) formulation, defined by the 5-tuple(
S,A,P, c, d

)
[20]: The countable set of states (δ, r) ∈ S and the finite action set A = {i, n, x} have

already been defined. P refers to the transition function, where P(s′|s, a) = Pr(st+1 = s′ | st =

s, at = a) is the probability that action a in state s at time t will lead to state s′ at time t+ 1, which

will be explicitly defined in (4). The cost function c : S ×A → R, is the AoI at the destination, and

is defined as c((δ, r), a) = δ for any (δ, r) ∈ S, a ∈ A, independently of action a. The transmission

cost d : S × A → R is independent of the state and depends only on the action a, where d = 0 if

a = i, and d = 1 otherwise. Since our goal is to minimize the AoI subject to a constraint on the

average transmission cost, the corresponding problem is a CMDP.

A policy is a sequence of decision rules πt : (S × A)t → [0, 1], which maps the past states and

actions and the current state to a distribution over the actions; that is, after the state-action sequence

s1, a1, . . . , st−1, at−1, action a is selected in state st with probability πt(at|s1, a1, . . . , st−1, at−1, st).
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We use sπt = (δπt , r
π
t ) and aπt to denote the sequences of states and actions, respectively, induced

by policy π = {πt}. A policy π = {πt} is called stationary if the distribution of the next action is

independent of the past states and actions given the current state, and time invariant; that is, with

a slight abuse of notation, πt(at|s1, a1, . . . , st−1, at−1, st) = π(at|st) for all t and (si, ai) ∈ S × A,

i = 1, . . . , t. Finally, a policy is said to be deterministic if it chooses an action with probability one;

with a slight abuse of notation, we use π(s) to denote the action taken with probability one in state

s by a stationary deterministic policy.

Let Jπ(s0) and Cπ(s0) denote the infinite horizon average age and the average number of trans-

missions, respectively, when policy π is employed with initial state s0. Then the CMDP optimization

problem can be stated as follows:

Problem 1.

Minimize Jπ(s0) , lim sup
T→∞

1

T
E

[
T∑
t=1

δπt

∣∣∣s0

]
, (2)

subject to Cπ(s0) , lim sup
T→∞

1

T
E

[
T∑
t=1

1[aπt 6= i]
∣∣∣s0

]
≤ Cmax. (3)

A policy π that is a solution of the above minimization problem is called optimal, and we are

interested in finding optimal policies. Without loss of generality, we assume that the sender and the

receiver are synchronized at the beginning of the problem, that is, s0 = (1, 0); and we omit s0 from

the notation for simplicity.

Before formally defining the transition function P in our AoI problem, we present a simple

observation that simplifies P: Retransmitting a packet immediately after a failed attempt is better than

retransmitting it after waiting for some slots. This is true since waiting increases the age, without

increasing the success probability. The difference in the waiting time is illustrated in Figure 3 for

a simple scenario, where the first transmission of a status update results in a failure, while the

retransmission is successful.

Proposition 1. For any policy π there exists another policy π′ (not necessarily distinct from π) such

that Jπ
′
(s0) ≤ Jπ(s0), Cπ′(s0) ≤ Cπ(s0), and π′ takes a retransmission action only following a

failed transmission, that is, the probability Pr(aπ
′
t+1 = x|aπ′t = i) = 0.

The transition probabilities are given as follows (omitting the parenthesis from the state variables
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Figure 3. The difference of the AoI for policies without and with idle slots before retransmissions. The figure on the left shows the

evolution of age (height of the bars) when retransmission occurs immediately after an error in transmission whereas the figure on the

right represents the evolution of age when retransmission occurs after some idle slots.

(δ, r)):

P(δ + 1, 0|δ, r, i) = 1,

P(δ + 1, 1|δ, r, n) = g(0),

P(1, 0|δ, r, n) = 1− g(0),

P(δ + 1, r + 1|δ, r, x) = g(r),

P(r + 1, 0|δ, r, x) = 1− g(r),

(4)

and P(δ′, r′|δ, r, a) = 0 otherwise. Note that the above equations set the retransmission count to 0

after each successful transmission, and it is not allowed to take a retransmission action in states where

the transmission count is 0. Also, the property in Proposition 1 is enforced by the first equation in

(4), that is, P(δ + 1, 0|δ, r, i) = 1 (since retransmissions are not allowed in states (δ, 0)). Since the

starting state is (1, 0), it also follows that the state set of our CMDP can be described as

S = {(δ, r) : r < min{δ, rmax + 1}, δ, r ∈ N} . (5)

III. LAGRANGIAN RELAXATION AND THE STRUCTURE OF THE OPTIMAL POLICY

In this section, we derive the structure of the optimal policy for Problem 1 based on [21]. A

detailed treatment of finite state-finite action CMDPs is considered in [20], but here we need more

general results that apply to countable state spaces. These results require certain technical conditions;

roughly speaking, there must exist a deterministic policy that satisfies the transmission constraint while

maintaining a finite average AoI, and any “reasonable” policy must induce a positive recurrent Markov

chain. The precise formulation of the requirements is given in Appendix A, wherein Proposition 2
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shows that the conditions of [21] are satisfied for Problem 1. Given this result, we follow [21] to

characterize the optimal policy.

While there exists a stationary and deterministic optimal policy for countable-state finite-action

average-cost MDPs [22]–[24], this is not necessarily true for CMDPs [20], [21]. To solve the CMDP,

we start with rewriting the problem in its Lagrangian form. The average Lagrangian cost of a policy

π with Lagrange multiplier η ≥ 0 is defined as

Lπη = lim
T→∞

1

T

(
E

[
T∑
t=1

δπt

]
+ ηE

[
T∑
t=1

1[aπt 6= i]

])
, (6)

and, for any η, the optimal achievable cost L∗η is defined as L∗η , minπ L
π
η . If the constraint on the

transmission cost is less than one (i.e., Cmax < 1), then we have η > 0, which will be assumed

throughout the paper.1 This formulation is equivalent to an unconstrained countable-state average-

cost MDP in which the instantaneous overall cost is δt + η1[aπt 6= i]. A policy π is called η-optimal

if it achieves L∗η. Since the assumptions of Proposition 3.2 of [21] are satisfied by Proposition 2

in Appendix A, the former implies that there exists a function hη(δ, r), called the differential cost

function, satisfying

hη(δ, r) + L∗η = min
a∈{i,n,x}

(
δ + η · 1[a 6= i] + E [hη(δ

′, r′)]
)
, (7)

called the Bellman optimality equations, for all states (δ, r) ∈ S , where (δ′, r′) is the next state

obtained from (δ, r) after taking action a. Furthermore, Proposition 3.2 of [21] also implies that the

function hη satisfying (7) is unique up to an additive factor, and with selecting this additive factor

properly, the differential cost function also satisfies

hη(δ, r) = E

[
∞∑
t=0

(δt + η · 1[a 6= i]− L∗η)
∣∣δ0 = δ, r0 = r

]
.

We also introduce the state-action cost function defined as

Qη(δ, r, a) , δ + η · 1[a 6= i] + E [hη(δ
′, r′)] (8)

for all (δ, r) ∈ S, a ∈ A. Then, also implied by Proposition 3.2 of [21], the optimal deterministic

policy for the Lagrangian problem with a given η takes, for any (δ, r) ∈ S, the action achieving the

minimum in (23):

π∗η(δ, r) ∈ arg min
a∈{i,n,x}

Qη(δ, r, a) . (9)

1If Cmax = 1, a transmission (new update or retransmission) is allowed in every time slot, and instead of a CMDP we have an

infinite state-space MDP with unbounded cost. Then it follows directly from part (ii) of the Theorem of [22] (whose conditions can

be easily verified for our problem) that there exists an optimal stationary policy that satisfies the Bellman equations. In this paper we

concentrate on the more interesting constrained case, while the derivation of this result is relegated to Appendix E.
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Focusing on deterministic policies, it is possible to characterize optimal policies for our CMDP

problem: Based on Theorem 2.5 of [21], we can prove the the following result:

Theorem 1. There exists an optimal stationary policy for the CMDP in Problem 1 that is optimal for

the unconstrained problem considered in (6) for some η = η∗, and randomizes in at most one state.

This policy can be expressed as a mixture of two deterministic policies π∗η∗,1 and π∗η∗,2 that differ in

at most a single state s, and are both optimal for the Lagrangian problem (6) with η = η∗. More

precisely, there exists µ ∈ [0, 1] such that the mixture policy π∗η∗ , which selects, in state s, π∗η∗,1(s)

with probability µ and π∗η∗,2(s) with probability 1−µ, and otherwise follows these two policies (which

agree in all other states) is optimal for Problem 1, and the constraint in (3) is satisfied with equality.

Proof. By Proposition 2 in Appendix A, Theorem 2.5, Proposition 3.2, and Lemma 3.9 of [21] hold

for Problem 1. By Theorem 2.5 of [21], there exists an optimal stationary policy that is a mixture of

two deterministic policies, π∗η∗,1 and π∗η∗,2, which differ in at most one state and are η∗-optimal by

Proposition 3.2 of [21] satisfying (7) and (23). From Lemma 3.9 of [21], the mixture policy π∗µ, for

any µ ∈ [0, 1], also satisfies (7) and (23), and is optimal for the unconstrained problem in (6) with

η = η∗. From the proof of Theorem 2.5 of [21], there exists a µ ∈ [0, 1] such that π∗η∗ satisfies the

constraint in (3) with equality. This completes the proof of the theorem.

Some other results in [21] will be useful in determining π∗η∗ . For any η > 0, let Cη and Jη denote

the average number of transmissions and average AoI, respectively, for the optimal policy π∗η . Note

that these are multivalued functions since there might be more than one optimal policy for a given

η. Note also that, Cη and Jη can be computed directly by finding the stationary distribution of the

chain, or estimated empirically by running the MDP with policy π∗η . From Lemma 3.4 of [21], L∗η,

Cη and Jη are monotone functions of η: if η1 < η2, we have Cη1 ≥ Cη2 , Jη1 ≤ Jη2 and L∗η1
≤ L∗η2

.

This statement is also intuitive since η effectively represents the cost of a single transmission in (7)

and (23), as η increases, the average number of transmissions of the optimal policy cannot increase,

and as a result, the AoI cannot decrease.

To determine the optimal policy, one needs to find η∗, the policies π∗η∗,1 and π∗η∗,2, and the weight

µ. In fact, [21] shows that η∗ is defined as

η∗ , inf{η > 0 : Cη ≤ Cmax}, (10)

where the inequality Cη ≤ Cmax is satisfied if it is satisfied for at least one value of (multivalued)

Cη. By Lemma 3.12 of [21] and Proposition 2, η∗ is finite, and η∗ > 0 if Cmax < 1.
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If Cπ∗
η∗,i = Cmax for i = 1 or i = 2, then it is the optimal policy, that is, π∗µ = π∗η∗,i and

µ = 1 if i = 1 and 0 if i = 2. Otherwise one needs to select µ such that Cπ∗µ = Cmax: that is, if

Cπ∗
η∗,2 < Cmax < Cπ∗

η∗,1 , then

µ =
Cmax − Cπ∗

η∗,2

Cπ∗
η∗,1 − Cπ∗

η∗,2
, (11)

which results in an optimal policy.

In practice, finding both η∗ and the policies π∗η∗,1 and π∗η∗,2 is hard. However, given two monotone

sequences sequences ηn ↑ η∗ and η′n ↓ η∗, there is a subsequence of ηn (resp., η′n) such that the

corresponding subsequence of the ηn-optimal policies π∗ηn (η′n-optimal policies π∗η′n , resp.) satisfying

the Bellman equation (7) converge. Then the limit points π and π′2 are η∗-optimal by Lemma 3.7

(iii) of [21] and Cπ ≥ Cmax ≥ Cπ′ by the monotonicity of Cη and the same Lemma 3.7. Although

there is no guarantee that π and π′ only differ in a single point, we can combine them to get an

optimal randomized policy using µ defined in (11). In this case, Lemma 3.9 of [21] implies that

the policy that first randomly selects if it should use π or π′ (choosing π with probability µ) and

then uses the selected policy forever is η∗-optimal. However, since (1, 0) is a positive recurrent state

of both policies and they have a single recurrent class by Proposition 3.2 of [21], we can do the

random selection of between π and π′ independently every time the system gets into state (1, 0)

without changing the long-term average or expected AoI and transmission cost (note that one cannot

choose randomly between the two policies in, e.g., every step). Thus, the resulting randomized policy

is η∗-optimal, and since µ is selected in such a way that the total transmission cost is Cmax, it is

also an optimal solution of Problem 1 by Lemma 3.10 of [21]. Note that to derive two η∗-optimal

policies, which provably differ only in a single state, a much more elaborate construction is used

in [21]. However, in practice, π and π′ obtained above are often the same except for a single state.

Furthermore, we can approximate π1 and π2 by π∗ηn and π∗η′n for n large enough. This idea is explored

in the next section.

Theorem 1 and the succeeding discussion present the general structure of the optimal policy. In

Section IV, for practical implementation, a computationally efficient heuristic algorithm is proposed

based upon the discussion in this section.

2πn → π if for any state s, πn(s) = π(s) for n large enough.
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IV. AN ITERATIVE ALGORITHM TO MINIMIZE THE AOI UNDER AN AVERAGE COST

CONSTRAINT

While our state space is countably infinite, since the age can be arbitrarily large (rmax may also

be infinite), in practice we can approximate the countable state space with a large but finite space

by setting an upper bound on the age (which will be denoted by N ), and by selecting a finite rmax

(whenever the chain would leave this constrained state space, we truncate the value of the age and/or

the retransmission number to N and rmax, respectively); this gives a finite state space approximation

to the problem similarly to [2], [11]. Clearly, letting N and rmax go to infinity, the optimal policy

for the restricted state space will converge to that of the original problem.

When we consider the finite state space approximation of our problem, we can employ the relative

value iteration (RVI) [23] algorithm to solve (7) for any given η, and hence find (an approximation

of) the optimal policy π∗η . Note that the finite state space approximation is needed for the practical

implementation of the RVI algorithm since each iteration in RVI requires the computation of the

value function for each state-action pair (for the infinite state space we would need to use some sort

of parametric approximation of the states or the value functions, which is out of the scope of this

paper). The pseudocode of the RVI algorithm is given in Algorithm 1. To simplify the notation, the

dependence on η is suppressed in the algorithm for h, V and Q.

After presenting an algorithm that can compute the optimal deterministic policy π∗η for any given

η (more precisely, an arbitrarily close approximation thereof in the finite approximate MDP), we

need to find the particular Lagrange multiplier η∗ as defined by (10). As the simplest solution, we

would need to generate Cη for a reasonably large range of η values to determine η∗. This could be

approximated by computing Cη for a fine grid of η values, but this approach might be computationally

demanding (note that generating each point requires running an instance of RVI).

Instead, we can use the following heuristic: With the aim of finding a single η value with Cη ≈
Cmax, we start with an initial parameter η0, and run an iterative algorithm updating η as ηm+1 =

ηm + αm(Cηm − Cmax) for a step size parameter αm3 (note that for each step we need to run RVI

to be able to determine Cηm). We continue this iteration until |Cηm − Cmax| becomes smaller than

a given threshold, and denote the resulting value by η∗. We can increase or decrease the η∗ value

until η∗ and its modification satisfy the conditions (note that with a finite state space, which is an

approximation always used when computing an optimal policy numerically, πη, and consequently Cη

3αm is a positive decreasing sequence and satisfies the following conditions:
∑
m αm = ∞ and

∑
m α

2
m <∞ from the theory of

stochastic approximation [25].
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Algorithm 1: Relative value iteration (RVI) algorithm for a given η.
Input : Lagrange parameter η, error probability g(r)

1 (δref , rref ) /* choose an arbitrary but fixed reference state */

2 n← 0 /* iteration counter */

3 hN×rmax0 ← 0 /* initialization */

4 while 1 /* until convergence */

5 do

6 for state s = (δ, r) ∈ [1, . . . , N ]× [1, . . . , rmax] do

7 for action a ∈ A do

8 Qn+1(δ, r, a)← δ + η · 1[aπ 6= i] + E [hn(δ
′, r′)]

9 end

10 Vn+1(δ, r)← mina(Qn+1(δ, r, a))

11 hn+1(δ, r)← Vn+1(δ, r)− Vn+1(δ
ref , rref )

12 end

13 if |hn+1 − hn| ≤ ε then

/* compute the optimal policy */

14 for (δ, r) ∈ [1, . . . , N ]× [1, . . . , rmax] do

15 π∗η(δ, r)← argmina(Q(δ, r, a))

16 end

17 return π∗

18 else

19 increase the iteration counter: n← n+ 1

20 end

21 end

and Jη, are piecewise constant functions of η, thus the step size must be chosen sufficiently large to

change the average transmission cost).

In order to obtain two deterministic policies and the corresponding mixing coefficient, based on

the discussion at the end of Section III, we want to find optimal policies for η values slightly smaller

and larger than η∗, and so we compute the optimal policies (by RVI) for η∗ ± ξ where ξ is a small

perturbation and obtain a mixture coefficient according to (11) as

µ =
Cmax − Cη∗+ξ
Cη∗−ξ − Cη∗+ξ

. (12)

If the optimal policies differ only in a single state, we can randomize in that state (by Theorem 1),

while, if they are more different, we can randomly select between the policies (with probabilities µ
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and 1 − µ) every time after a successful transmission (i.e., when the system is in state (1, 0)), as

discussed at the end of Section III.

Numerical results obtained by implementing the above heuristics in order to minimize the average

AoI with HARQ will be presented in Section VII. In the next section, we focus on the simpler

scenario with the classical ARQ protocol.

V. AOI WITH CLASSICAL ARQ PROTOCOL UNDER AN AVERAGE COST CONSTRAINT

In the classical ARQ protocol, failed transmissions are discarded at the destination and the receiver

tries to decode each retransmission as a new message. In the context of AoI, there is no point in

retransmitting an undecoded packet since the probability of a successful transmission is the same

for a retransmission and for the transmission of a new update. Hence, the state space reduces to

δ ∈ {1, 2, . . .} as rt = 0 for all t, and the action space reduces to A ∈ {n, i}, and the probability of

error p , g(0) is fixed for every transmission attempt.4 State transitions in (4), Bellman optimality

equations [23], [24] for the countable-state MDP in (7), and the RVI algorithm with the finite state

approximation can all be simplified accordingly. We define

Qη(δ, i) , δ + hη(δ + 1), (13)

Qη(δ, n) , δ + η + phη(δ + 1) + (1− p)hη(1), (14)

where hη(δ) is the optimal differential value function satisfying the Bellman optimality equation

hη(δ) + L∗η , min {Qη(δ, i), Qη(δ, n)}, ∀δ ∈ {1, 2, . . .}. (15)

Thanks to these simplifications, we are able to provide a closed-form solution to the corresponding

Bellman equations in (13), (14) and (15).

Lemma 1. The policy that satisfies the Bellman optimality equations for the standard ARQ protocol

is deterministic and has a threshold structure:

π∗(δ) =

n if δ ≥ ∆η,

i if δ < ∆η.

for some integer ∆η that depends on η.

Proof. The proof is given in Appendix B.

4This simplified model with classical ARQ protocol and Lagrangian relaxation is equivalent to the work in [2] when η is considered

to be the cost of a single transmission and the assumption of a perfect transmission channel in [2] is ignored.



16

The next lemma characterizes the possible values of the threshold defined in Lemma 1.

Lemma 2. Under the standard ARQ protocol, the η-optimal value of the threshold ∆η can be found

in closed-form:

∆∗η ∈

{⌊√
2η(1− p) + p− p

1− p

⌋
,

⌈√
2η(1− p) + p− p

1− p

⌉}
.

Proof. The proof is given in Appendix C.

The main result of this section, given below, shows that the optimal policy for Problem 1 is a

randomized threshold policy which randomizes over the above two thresholds for the optimal value

of η∗. Let ∆Cmax , 1/Cmax−p
1−p , ∆1 , b∆Cmaxc and ∆2 , d∆Cmaxe, and consider the mixture of the

threshold policies with thresholds ∆1 and ∆2, respectively, and mixture coefficient µ ∈ [0, 1]. The

resulting policy π∗Cmax,µ can be written in closed form: if ∆Cmax is an integer then π∗Cmax,µ(δ) = n

if δ ≥ ∆Cmax and i otherwise. If ∆Cmax is not an integer, then π∗Cmax,µ(δ) = n if δ ≥ d∆Cmaxe,
π∗Cmax,µ(δ) = i if δ < b∆Cmaxc, while π∗Cmax,µ(n|δ) = µ and π∗Cmax,µ(i|δ) = 1 − µ for δ = b∆Cmaxc.
The mixture coefficient µ is selected so that Cπ∗Cmax,µ = Cmax: From the proof of Lemma 2 one

can easily deduce that the transmission cost (per time slot) of the threshold policy for any integer

threshold ∆ is given by

C∆ =
1

∆(1− p) + p
. (16)

Hence, selecting µ∗ = Cmax−C∆2

C∆1−C∆2
, as described in (11), ensures Cπ∗

Cmax,µ∗ = Cmax. Denoting π∗Cmax =

π∗Cmax,µ∗ , we obtain the following theorem (the proof is given in Appendix D).

Theorem 2. For any Cmax ∈ (0, 1], the stationary policy π∗Cmax,µ∗ defined above is an optimal policy

(i.e., a solution of Problem 1) under the ARQ protocol.

Numerical results obtained for the above algorithm will be presented and compared with those

from the HARQ protocol in Section VII.

VI. LEARNING TO MINIMIZE AOI IN AN UNKNOWN ENVIRONMENT

In the CMDP formulation presented in Sections IV and V, we have assumed that the channel error

probabilities for all retransmissions are known in advance. However, in most practical scenarios,

these error probabilities may not be known at the time of deployment, or may change over time.

Therefore, in this section, we assume that the source node does not have a priori information about
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Algorithm 2: Average-cost SARSA with softmax

Input : Lagrange parameter η /* error probability g(r) is unknown */

1 n← 0 /* time iteration */

2 τ ← 1 /* softmax temperature parameter */

3 QN×M×3η ← 0 /* initialization of Q */

4 Lη ← 0 /* initialization of the gain */

5 for n do

6 OBSERVE the current state sn

7 for a ∈ A do

/* since it is a minimization problem, use minus Q function in softmax

*/

8 π(a|sn) =
exp(−Qη(sn, a)/τ)∑

a′∈A
exp(−Qη(sn, a′)/τ)

9 end

10 SAMPLE an from π(a|Sn)

11 OBSERVE the next state sn+1 and cost cn = δn + η1{an=1,2}

12 for a ∈ A do

/* softmax is also used for the next state sn+1, so that it is on-policy

*/

13 π(a|sn+1) =
exp(−Qη(sn+1, an+1)/τ)∑

a′n+1∈A

exp(−Qη(sn+1, a
′
n+1)/τ)

14 end

15 SAMPLE an+1 from π(an+1|sn+1)

16 UPDATE

17 αn ← 1/
√
n /* update parameter */

18 Qη(sn, an)← Qη(sn, an) + αn[δ + η · 1[an 6= i]− Jη +Qη(sn+1, an+1)−Qη(sn, an)]

19 Lη ← Lη + 1/n[δ + η · 1[an 6= i]− Jη] /* update Jη at every step */

20 n← n+ 1 /* increase the iteration */

21 end

the decoding error probabilities, and has to learn them. We employ an online learning algorithm to

learn g(r) over time without degrading the performance significantly.

The literature for average-cost RL is quite limited compared to discounted cost problems [14], [26].

SARSA [26] is a well-known RL algorithm, originally proposed for discounted MDPs, that learns

the optimal policy for an MDP based on the action performed by the current policy in a recursive
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manner. For average AoI minimization in Problem 1, an average cost version of the SARSA algorithm

is employed with Boltzmann (softmax) exploration. The resulting algorithm is called average-cost

SARSA with softmax.

As indicated by (7) and (23) in Section III, Qη(sn, an) of the current state-action pair can be

represented in terms of the immediate cost of the current state-action pair and the differential state-

value function hη(sn+1) of the next state. Notice that, one can select the optimal actions by only

knowing Qη(s, a) and choosing the action that will give the minimum expected cost as in (9). Thus, by

only knowing Qη(s, a), one can find the optimal policy π∗ without knowing the transition probabilities

P characterized by g(r) in (4).

Similarly to SARSA, average-cost SARSA with softmax starts with an initial estimation of Qη(s, a)

and finds the optimal policy by estimating state-action values in a recursive manner. In the nth time

iteration, after taking action an, the source observes the next state sn+1, and the instantaneous cost

value cn. Based on this, the estimate of Qη(s, a) is updated by weighing the previous estimate and

the estimated expected value of the current policy in the next state sn+1. Also note that, in general,

cn is not necessarily known before taking action an because it does not know the next state sn+1 in

advance. In our problem, the instantaneous cost cn is the sum of AoI at the destination and the cost

of transmission, i.e. δn + η · 1[an 6= i]; hence, it is readily known at the source node.

In each time slot, the learning algorithm

• observes the current state sn ∈ S,

• selects and performs an action an ∈ A,

• observes the next state sn+1 ∈ S and the instantaneous cost cn,

• updates its estimate of Qη(sn, an) using the current estimate of η by

Qη(sn, an)← Qη(sn, an) + αn[δ + η · 1[an 6= i]− Lη +Qη(sn+1, an+1)−Qη(sn, an)], (17)

where αn is the update parameter (learning rate) in the nth iteration.

• updates its estimate of Lη based on empirical average.

The details of the algorithm are given in Algorithm 2. We update the gain Lη at every time slot

based on the empirical average, instead of updating it at non-explored time slots.

As we discussed earlier, with the accurate estimate of Qη(s, a) at hand the transmitter can decide

for the optimal actions for a given η as in (9). However, until the state-action cost function is

accurately estimated, the transmitter action selection method should balance the exploration of new

actions with the exploitation of actions known to perform well. In particular, the Boltzmann action
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selection method, which chooses each action probabilistically relative to expected costs, is used in

this paper. The source assigns a probability to each action for a given state sn, denoted by π(a|sn):

π(a|sn) ,
exp(−Qη(sn, a)/τ)∑

a′∈A

exp(−Qη(sn, a
′)/τ)

, (18)

where τ is called the temperature parameter such that high τ corresponds to more uniform action

selection (exploration) whereas low τ is biased toward the best action (exploitation).

In addition, the constrained structure of the average AoI problem requires additional modifications

to the algorithm, which is achieved in this paper by updating the Lagrange multiplier according

to the empirical resource consumption. In each time slot, we keep track of a value η resulting

in a transmission cost close to Cmax, and then find and apply a policy that is optimal (given the

observations so far) for the MDP with Lagrangian cost as in Algorithm 2.

The performance of average-cost SARSA with softmax, and its comparison with the RVI algorithm

will be presented in the next section.

VII. NUMERICAL RESULTS

In this section, we provide numerical results for all the proposed algorithms, and compare the

achieved average performances. For the simulations employing HARQ, motivated by previous re-

search on HARQ [5], [6], [7], we assume that decoding error reduces exponentially with the number

of retransmission, that is, g(r) , p0λ
r for some λ ∈ (0, 1), where p0 denotes the error probability of

the first transmission, and r is the retransmission count (set to 0 for the first transmission). The exact

value of the rate λ depends on the particular HARQ protocol and the channel model. Note that ARQ

corresponds to the case with λ = 1 and rmax = 0. Following the IEEE 802.16 standard [19], the

maximum number of retransmissions is set to rmax = 3; however, we will present results for other

rmax values as well. We note that we have also run simulations for HARQ with relatively higher rmax

values and rmax =∞, and the improvement on the performance is not observable beyond rmax = 3.

Numerical results for different p0, λ and Cmax values, corresponding to different channel conditions

and HARQ schemes, will also be provided.

Figure 4 illustrates the deterministic policies obtained by RVI and the search for η∗ for given Cmax

and p0 values, while λ is set to 0.5. The final policies are generated by randomizing between π∗η∗−ξ
and π∗η∗+ξ; the approximate η∗ values found for the settings in Figures 4(a) and 4(b) are 5 and 19,

respectively, and ξ is set to 0.2. As it can be seen from the figures, the resulting policy transmits

less as the average cost constraint becomes more limiting, i.e., as η increases. We also note that,
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although the policies π∗η∗−ξ and π∗η∗+ξ are obtained for similar η∗ values, and hence, have similar

average number of transmissions, they may act quite differently especially for large Cmax values.

Figure 5 illustrates the performance of the proposed randomized HARQ policy with respect to

Cmax for different p0 values when λ is set to 0.5. We also include the performance of the optimal

deterministic and randomized threshold policies with ARQ, derived in Section V, for p0 = 0.5. For

baseline, we use a simple no-feedback policy that periodically transmits a fresh status update with a

period of d1/Cmaxe, ensuring that the constraint on the average number of transmissions holds. The

effect of feedback on the performance can be seen immediately: a single-bit ACK/NACK feedback,

even with the ARQ protocol, decreases the average AoI considerably, although receiving feedback

might be costly for some status update systems. The two curves for the ARQ policies demonstrate

the effect of randomization: the curve corresponding to the randomized policy is the lower convex

hull of the piecewise constant AoI curve for deterministic policies. For the same p0 = 0.5, HARQ

with λ = 0.5 improves only slightly over ARQ. Smaller p0 results in a decrease in the average AoI

as expected, and the gap between the AoIs for different p0 values is almost constant for different

Cmax values.

More significant gains can be achieved from HARQ when the error probability decreases faster

with retransmissions (i.e., small λ), or more retransmissions are allowed. This is shown in Figure 6.

On the other hand, the effect of retransmissions on the average AoI (with respect to ARQ) is more

pronounced when p0 is high and λ is low.

Figure 7 shows the average AoI achieved by the HARQ protocol with respect to different p0

and λ values for rmax = 3. Similarly to Figure 5, the gap between the average AoI values is

higher for unreliable environments with higher error probability, and the performance gap due to

different λ values are not observable for relatively reliable environments, for example, when p0 = 0.3.

The performance difference for different λ values (with a fixed p0) is more pronounced when the

average number of transmissions, Cmax, is low, since then less resources are available to correct an

unsuccessful transmission.

Figure 8 shows the evolution of the average AoI over time when the average-cost SARSA learning

algorithm is employed. It can be observed that the average AoI achieved by Algorithm 2, denoted by

RL in the figure, converges to the one obtained from the RVI algorithm which has a priori knowledge

of g(r). We can observe from Figure 8 that the performance of SARSA achieves that of RVI in about

10000 iterations. Figure 9 shows the performance of the two algorithms (with again 10000 iterations

in SARSA) as a function of Cmax in two different setups. We can see that SARSA performs very

close to RVI with a gap that is more or less constant for the whole range of Cmax values. We can also
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diamonds represent actions πη(δ, r) = i, n and x, respectively.)
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Figure 5. Expected average AoI as a function of Cmax for ARQ and HARQ protocols for different p0 values. Time horizon is set

to T = 10000, and the results are averaged over 1000 runs.

observe that the variance of the average AoI achieved by SARSA is much larger when the number

of transmissions is limited, which also limits the algorithm’s learning capability.

VIII. CONCLUSIONS

We have considered a communication system transmitting time-sensitive data over an imperfect

channel with the average AoI as the performance measure, which quantifies the timeliness of the data

available at the receiver. Considering both the classical ARQ and the HARQ protocols, preemptive

scheduling policies have been proposed by taking into account retransmissions under a resource

constraint. In addition to identifying a randomized threshold structure for the optimal policy when

the error probabilities are known, an efficient RL algorithm is also presented for practical applications

when the system characteristics may not be known in advance. The effects of feedback and the HARQ

structure on the average AoI are demonstrated through numerical simulations. The algorithms adopted

in this paper are also relevant to different systems concerning the timeliness of information, and the
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Figure 6. Expected average AoI with respect to Cmax for ARQ and HARQ protocols for different p0 and rmax values. Time horizon

is set to T = 10000, and the results are averaged over 1000 runs.

proposed methodology can be used in other CMDP problems. As future work, the problem will be

extended to time-correlated channel statistics in a multi-user setting.

APPENDIX

A. Verifying the assumptions of [21]

In this section, we show that the assumptions for the main results of [21] are satisfied for Problem 1.

We start with a few standard definitions about Markov chains: In a Markov chain with a countable

state space S, a state s ∈ S is called positive recurrent if the expected number of transitions needed

to return to state s given that the chain started in state s is finite. A communication class Z ⊂ S
is defined as a subset of the state space S such that all states within it communicate; that is, for

any s, s′ ∈ Z, starting from state s the chain reaches state s′ with some positive probability. A

communication class is positive recurrent if and only if all states in a communication class are

positive recurrent. [27]
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r values corresponding to

different p0 and λ values with rmax = 3. The time horizon is set to T = 10000, and the results are averaged over 1000 runs.

We continue with Definition 2.3 of [21]: Let G ⊂ S be a nonempty set of states of a CMDP. Given

a state s ∈ S, let R(s,G) be the class of policies such that P π(st ∈ G for some t ≥ 1 |s0 = s) = 1

and the expected time ms,G(π) of the first passage from s to G under π is finite. Let R∗(s,G) be

the class of policies π ∈ R(s,G) such that, in addition, the expected average AoI cs,G(π) and the

expected transmission cost ds,G(π) of a first passage from s to G are finite.

Proposition 2. The following hold for Problem 1:

(i) For all b > 0, the set G(b) , {s| there exists an action a such that c(s, a) + d(s, a) ≤ b} is

finite (Assumption 1 of [21]).

(ii) There exists a deterministic policy π that induces a Markov chain with the following properties:

the state space Sπ consists of a single (nonempty) positive recurrent class R and a set U of

transient states such that π ∈ R∗(s, R), for any s ∈ U , and both the average AoI Jπ and the

average transmission cost Cπ on R are finite (Assumption 2 of [21]).

(iii) Given any two states s, s′ ∈ S, there exists a policy π (a function of s and s′) such that
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1000 runs (both the mean and the variance are shown).

π ∈ R∗(s, {s′}) (Assumption 3 of [21]).

(iv) If a deterministic policy has at least one positive recurrent state, then it has a single positive

recurrent class, and this class contains the state (1, 0) (Assumption 4 of [21]).

(v) There exists a policy π such that Jπ <∞ and Cπ < Cmax (Assumption 5 of [21]).

Proof. Note that (i)-(iv) are independent from the constraint (3), and the policies required in the

proposition need not be deterministic unless specifically required.

First note that (i) holds trivially, since for any b, if state (δ, r) ∈ G(b) then r < δ ≤ b by (5).

To prove (ii), consider the policy π(δ, r) = n for all (δ, r) ∈ S. Since 0 < g(0) < 1, R =

{(1, 0)} ∪ {(δ, 1) : δ = 1, 2, . . . , } is a recurrent class since from any state (δ, r) ∈ R, the next

state is either (1, 0) or (δ + 1, 1), both belonging to R. Furthermore, the set of states U = S \ R is

clearly transient: starting from any s ∈ U , the probability of not getting to state (1, 0) (and hence

to R) in at most k steps is g(0)k. The latter also implies that π ∈ R∗(s, R). Finally, Cπ = 1, and

Jπ = 1/(1− g(0)), proving (ii).
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Figure 9. Performance of the proposed RL algorithm (average-cost SARSA) and its comparison with the RVI algorithm for n = 10000

iterations, and values are averaged over 1000 runs for different p0 and rmax values when λ = 0.5 (both the mean and the variance

are shown).

To prove (iii), let s = (δ, r) and s′ = (δ′, r′). For any s, s′, we construct the required policy. First

note that from (1, 0), we can govern the state with positive probability to any valid state (δ′, r′) by

being idle in states (δ′′, 0) for δ′′ < δ′−r′, sending a new packet in state (δ′−r′, 0), and retransmitting

in states (δ′ − r′ + k, k) for k = 1, . . . , r′ − 1. Sending a new packet in any other state (δ′′, r′′) will

send the chain to state (1, 0) as quickly as possible, with the number of steps being exponentially

distributed with parameter g(0). It is trivial to see that the proposed policy belongs to R∗(s, {s′}).

To see (iv), notice that the only way the AoI does not increase in one step is if there is a successful

transmission, after which the chain returns to state (1, 0). Thus, any (positive) recurrent class must

contain the state (1, 0); and hence, there can only be a single positive recurrent class.

Finally, it is easy to see that the policy π defined as π(δ, r) = n if δ−1 is a multiple of 2d1/Cmaxe,
and π(δ, r) = i otherwise, satisfies the requirements of (v): Cπ = 1/(2d1/Cmaxe) ≤ Cmax/2 < Cmax,

and Jπ < ∞ since P π(δ > 2kd1/Cmaxe) = g(0)k for any k ≥ 0. This completes the proof of the

proposition.
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B. Proof of Lemma 1

We are going to show that the decision to transmit (a = n) is monotone with respect to the age δ,

that is if a∗(δ1) = n, then a∗(δ2) = n for all δ2 ≥ δ1. By (9), this holds if Qη(δ, a) has a sub-modular

structure [28]: that is, when the difference between the Q functions is monotone with respect to the

state-action pair (δ, a). We have

Qη(δ
1, n)−Qη(δ

1, i) ≥ Qη(δ
2, n)−Qη(δ

2, i), (19)

for any δ2 ≥ δ1. From (13) and (14), for any δ > 0, we have

Qη(δ, n)−Qη(δ, i) = η + (1− p)hη(1)− (1− p)hη(δ + 1). (20)

We can see that (19) holds if and only if hη(δ) is a non-decreasing function of the age.

We compare the costs incurred by the systems starting in states δ1 and δ2 via coupling the stochastic

processes governing the behavior of the system; that is, we assume that the realization of the channel

behavior is the same for both systems over the time horizon (this is valid since channel states/errors

are independent of the ages and the actions). Assume a sequence of actions {a2
t}∞t=1 corresponds to the

optimal policy starting from age δ2 for a particular realization of channel errors, and let {δit} denote

the sequence of states obtained after following actions {a2
t} starting from state δ1 = δi, i = 1, 2.

Then, if δ1 ≤ δ2, clearly δ1
t ≤ δt2 for all t. Furthermore, by the Bellman optimality equation (7),

hη(δ
1) ≤ δ1

1 + η · 1[a2
1 6= i]− L∗η + E

[
hη(δ

1
2)
]

≤ δ1
1 + η · 1[a2

1 6= i]− L∗η + E
[
δ1

2 + η · 1[a2
2 6= i]− L∗η + E

[
hη(δ

1
3)
]]

...

≤ E

[
∞∑
t=1

(δ1
t + η · 1[a2

t 6= i]− L∗η)
∣∣∣∣δ1

1 = δ1

]

≤ E

[
∞∑
t=1

(δ2
t + η · 1[a2

t 6= i]− L∗η)
∣∣∣∣δ1

1 = δ2

]
= hη(δ

2) .

This completes the proof of the lemma.
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C. Proof of Lemma 2

First we compute the steady state probabilities pδ of the age δ for a given integer threshold ∆, for

all δ = 1, 2, . . . , N . We have

pδ =

p1 if 1 ≤ δ ≤ ∆

pδ−1p = p1p
δ−∆ if δ ≥ ∆ + 1 .

Since
∑∞

δ=1 pδ = 1, we can compute the pδ in closed form when N goes to infinity:

pδ =


1

∆+ p
1−p

if δ ≤ ∆;

pδ−∆

∆+ p
1−p

otherwise.
(21)

Then, the closed form of the expected Lagrangian cost function can be computed as:

L∆
η =

∞∑
δ=1

pδ(δ + η1[δ ≥ ∆]) = p1

(
∆−1∑
δ=1

δ +
∞∑
δ=∆

pδ−∆(δ + η)

)

= p1

(
(∆− 1)∆

2
+
η + ∆

1− p
+

p

(1− p)2

)
. (22)

Substituting p1 from (21) and minimizing over ∆ (by setting the derivative ∂L∆
η /∂∆ to zero) yields

that the optimal non-integer value of ∆ is given by

∆̂η =

√
2η(1− p) + p− p

1− p
.

Using that L∆
η is a convex function of ∆ by (22), the optimal integer threshold ∆∗η is either⌊√

2η(1− p) + p− p
1− p

⌋
or

⌈√
2η(1− p) + p− p

1− p

⌉
.

Computing just the cost term from (22), we obtain the formula for C∆ for any integer threshold

∆.

D. Proof of Theorem 2

Let πη∗ denote the deterministic solution of the Bellman equation (7). If Cπη∗ = Cmax then πη∗

is the optimal solution to Problem 1 (by Proposition 3.2 and Lemma 3.10 of [21]), and since it is

a threshold policy by Lemma 1 with threshold ∆Cmax = ∆1 = ∆2 (as can be obtained by inverting

equation (16)), the theorem holds.

For Cπη∗ 6= Cmax, we first show that the optimal policy is a mixture of two threshold policies

that differ in at most a single state, based on the construction used to prove Theorem 2.5 of [21].

Assume without loss of generality that Cπη∗ > Cmax, and consider a sequence of Lagrange multipliers
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ηn ↓ η∗ such that the corresponding deterministic solutions π∗ηn of (7) (which are also ηn-optimal

by Proposition 3.2 of [21]) converge to a policy π∗.5 By Lemma 2, these are all threshold policies,

and so πη∗ and π∗ are both threshold policies. By Lemma 3.7 (iii) of [21], π∗ is η∗-optimal, and

Cπ∗ ≤ Cmax by Lemma 3.4 of [21]. If Cπ∗ = Cmax then the proof can be completed as in the

case of Cπη∗ = Cmax. Thus, we are left with the case of Cπ∗ < Cmax. Denoting by (µ, πη∗ , π
∗) the

randomized policy that selects πη∗ with probability µ = Cmax−Cπ
∗

C
πη∗−Cπ∗ and π∗ with probability 1 − µ

before the system starts and then uses the selected policy forever, it follows that (µ, πη∗ , π
∗) has

average transmission cost Cmax, while it is also η∗-optimal by Lemma 3.9 of [21]. Therefore, by

Lemma 3.10 of [21], (µ, πη∗ , π
∗) is an optimal solution to Problem 1.

Next we show that the thresholds of the two policies are ∆1 and ∆2. From the proof of Lemma 2,

one can easily deduce that the average AoI of a threshold policy for any integer threshold ∆ is given

by

J∆ =
(∆(1− p) + p)2 + p

2(1− p)(∆(1− p) + p)
+

1

2
.

Expressing J∆ as a function of C∆ (given in (16)), and extending the definition of C∆ and J∆ to

positive real values of ∆, one can see that

J∆ =
1

2(1− p)C∆
+

1

2
+

pC∆

2(1− p)

is a convex function of C∆. Denoting the threshold of πη∗ and π∗ by ∆η∗ and ∆∗, respectively,

we obviously have that the expected average AoI of (µ, πη∗ , π
∗) is µJ∆η∗ + (1 − µ)Jπ

∗ , while the

expected average transmission cost is Cmax. By the convexity of J∆, and since C∆∗ = Cπ∗ <

Cmax < Cπη∗ = C∆η∗ it follows that the integer threshold values minimizing the AoI must be the

closest integers (from above and below) to ∆Cmax , the minimizer of J∆ over the reals. That is,

∆η∗ = ∆1 = b∆Cmaxc and ∆∗ = ∆2 = d∆Cmaxe (recall that the transmission cost C∆ is a decreasing

function of the threshold ∆). Note that this also implies that µ = µ∗ (recall that µ∗ is specified in

the statement of the theorem).

To complete the proof, define (πη∗ , π
∗) − µ to be the policy that randomly selects between πη∗

and π∗ every time state (1, 0) is reached (independently, and with probability µ and 1−µ, resp.) and

follows the chosen policy until state (1, 0) is reached again. Since (1, 0) is a positive recurrent state

of both π∗ and πη∗ , the policy (πη∗ , π
∗) − µ has the same expected AoI and transmission cost as

(µ, πη∗ , π
∗), which randomizes once at the beginning. Therefore, (πη∗ , π

∗)− µ is optimal. Moreover,

since π∗ and πη∗ only differ in state δ = ∆2, the randomization can be performed only in that state.

5If Cπη∗ > Cmax, ηn should be increasing to η∗, and the rest of the proof follows the same lines as for the case of Cπη∗ < Cmax.
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Thus, since µ = µ∗, the policy (πη∗ , π
∗)− µ is identical to π∗Cmax,µ∗ , defined in the theorem, proving

that π∗Cmax,µ∗ is optimal.

E. Unconstrained case (Cmax = 1)

Here we analyze the problem without a transmission constraint, that is, when Cmax = 1. We show

that the conditions of part (ii) of the Theorem in [22] hold, implying that there exists a deterministic

optimal policy satisfying the Bellman equation (7) with η = 0 and a restricted to {n, x}, namely

h(δ, r) + L∗ = min
a∈{n,x}

(
δ + E [h(δ′, r′)]

)
(23)

for some function h(δ, r) and constant L∗.

For any α ∈ (0, 1), policy π (here a policy is an arbitrary, possibly randomized decision strategy

that may depend on the whole history) and initial state s0, let

Jπα(s0) , E

[
∞∑
t=0

αtδπt

∣∣∣s0

]
,

and Jα(s0) = infπ J
π
α(s0).

Consider policy πn, which transmits a new update in every step. One can verify (e.g., by induction)

that the stationary distribution of the Markov chain induced by this policy is a geometric distribution

over states (δ, 0) with parameter 1−p, where p = g(0): that is, the probability of being in state (δ, 0)

is (1− p)pδ−1.

Next, we verify Assumption 1 of [22], which requires that for any α and state s = (δ0, r), Jα(s)

is finite. Note that given the first state is (δ0, r), we have δt ≤ δ0 + t. Therefore,

Jα((δ0, r)) ≤ Jπn
α ((δ0, r)) ≤

∞∑
t=0

αt(δ0 + t) <∞,

which is what we wanted to prove.

Let hα(s) = Jα(s)− Jα(s0), where s0 = (1, 0). In what follows, we give upper and lower bounds

on hα. Consider an arbitrary policy π starting from state s = (δ, r). Since in every time step a

transmission is successful with probability at least 1−p (since the success probability cannot decrease

with retransmissions), and if two successive transmissions are successful, the second must be a new

update, in two steps the process returns to state s0 with probability at least (1 − p)2. Thus, if the

MDP is started from s and s0, with probability at least q = (1−p)4, they synchronize after two steps,

after which the terms in the summations defining Jπα(s) and Jπα(s0) become identical: denoting the

AoI at time t by δt(s) and δt(s0) for the processes started in state s and s0, respectively, and by T

the first time step they simultaneously reach the same state, we have δt(s)− δt(s0) ≤ δ + t− 1 for
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t < T (before the synchronization happens) and δt(s) = δt(s0) for t ≥ T (after synchronization). By

our argument above, for any k, Pr(T ≥ 2k) ≤ (1− q)k, and so

E [Jπα(s)− Jπα(s0)] = E

[
∞∑
t=0

αt(δt(s)− δt(s0))

]

=
∞∑
t=0

E
[
α2t(δ2t(s)− δ2t(s0)) + α2t+1(δ2t+1(s)− δ2t+1(s0))

∣∣∣2t+ 1 < T
]

Pr(2t+ 1 < T )

≤
∞∑
t=0

(
α2t(δ + 2t− 1) + α2t+1(δ + 2t)

)
(1− q)t+1

< 2δ
∞∑
t=0

(1− q)t+1 + 4
∞∑
t=0

t(1− q)t+1

=
2(1− q)

q
δ +

4(1− q)2

q2

Therefore, we have

hα(s) ≤ sup
π

E [Jπα(s)− Jπα(s0)] <
2(1− q)

q
δ +

4(1− q)2

q2
,Mδ.

Similarly, since δt(s0) − δt(s) ≤ t, we can prove that E [Jα(s0)− Jα(s)] < 4(1−q)
q2 , which implies

−4(1−q)
q2 ≤ hα(s). The latter directly proves Assumption 2 of [22], which requires hα(s) to be

uniformly bounded from below by a nonpositive constant for all α ∈ (0, 1) and state s.

Finally, for any starting state s = (δ, r) let s′ = (δ′, r′) denote the next state following action a.

Assumptions 3 and 3∗ of [22] are satisfied if E [Mδ′|s, a] < ∞ holds for all s, s′ and a. Since for

any s and a there can be only two states s′ with non-zero probability and all Mδ′ are finite, this is

trivially satisfied.

Therefore, Assumptions 1–3∗ of Sennott [22] are satisfied, and hence part (ii) of her Theorem

implies that there exists a deterministic, optimal policy satisfying the Bellman equation (23) (equiv-

alently, equation (7) with η = 0 and a restricted to {n, x}).
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