
Source and Channel Coding for Quasi-Static Fading
Channels

Deniz Gunduz, Elza Erkip
Dept. of Electrical and Computer Engineering

Polytechnic University, Brooklyn, NY 11201, USA
dgundu01@utopia.poly.edu elza@poly.edu

Abstract— We consider transmission of a continuous ampli-
tude source over a quasi-static Rayleigh fading channel. We
analyze three different source and channel coding strategies in
terms of overall expected distortion (ED). Our goal is to maximize
the distortion exponent (4), which is the exponential decay rate
of ED with increasing SNR. In each case, by adjusting the system
parameters we find the best4 as a function of the bandwidth
expansion. We also find an upper bound for4 and illustrate how
this upper bound can be achieved for all bandwidth expansions
even with reasonably simple strategies. Although we focus on a
Gaussian source for brevity, we demonstrate that our results can
be extended to more general source distributions.

I. I NTRODUCTION

In this paper we consider transmission of continuous am-
plitude sources over quasi-static Rayleigh fading channels.
We impose stringent delay requirements and assume that the
instantaneous channel state information is only available at
the receiver. Thus any predetermined transmission rate might
result in an outage and the appropriate performance measure to
use is the overall expected source distortion at the destination.
For this scenario Shannon’s source-channel separation theorem
does not apply and a joint optimization of source and channel
coding strategies is necessary. Our objective is to minimize
the overall expected distortion which depends on the source
characteristics, the channel model, the distortion metric, the
power constraint of the transmitter, the joint compression,
channel coding and transmission techniques used.

We use compression strategies that meet the rate-distortion
bound and channel codes with Gaussian codebooks. We are
particularly interested in the highSNR behavior of the
expected distortion (ED). This is captured by the distortion
exponent,4 which is defined as [1]

4 = − lim
SNR→∞

log ED

log SNR
. (1)

A distortion exponent of4 means that the optimal expected
distortion achieved by the system decays asSNR−4 when
SNR is high.

During each transmission block, which corresponds toN
channel uses, a sequence ofK source samples are compressed
and sent over the channel. This corresponds to a bandwidth
expansion ratio of

b = N/K. (2)

1This work is partially supported by NSF Grant No. 0430885.

K is large enough to consider the source as ergodic, but slow
channel variations result in nonergodic channel. Throughout
the paper we allow for arbitrary bandwidth expansion ratiob.

We note that increasing source coding rate would result
in a decreased distortion; however this would also increase
the outage probability. This trade-off tells us that there is an
optimal operating rate in the average distortion sense for a
given SNR value [3]. Alternatively, instead of transmitting the
compressed signal at a single rate, we can compress the source
into multiple layers and transmit them at different rates. We
will show that this variable rate transmission enables us to
adapt to the channel variations without the need of channel
state information at the transmitter (CSIT) and improves the
expected distortion considerably.

We consider two strategies that utilize a layered source
coder. In the first one, called layered source with progressive
transmission (LS), each layer is successively transmitted in
time. The second strategy, called broadcast strategy with
layered source (BS), uses broadcast codes to superimpose each
source layer. In both cases we optimize the source and channel
coder parameters including the rates to maximize4. We
compare our performance results with uncoded transmission,
which is known to be optimal for the AWGN channel without
bandwidth expansion, and with an upper bound that we
calculate by assuming the availability of perfect channel state
information at the transmitter. Our results indicate the benefits
of layered source coding for slowly fading environments. In
fact, BS strategy with infinite layers is able to achieve optimum
∆ for all bandwidth expansionsb. In [3], the techniques used
in this paper for a single source-single destination pair are
applied to the relay channel in the user cooperation context
and shown to improve the end-to-end distortion.

We note here that in Sections II-VII we consider a mem-
oryless, complex Gaussian source, however in Section VIII
we prove that our results can also be extended to any com-
plex source with finite second moment and finite differential
entropy, and with squared-error distortion.

II. SYSTEM MODEL

We consider a continuous source that is to be transmitted
over a quasi-static flat Rayleigh fading channel. We first focus
on a memoryless, complex Gaussian source with independent
real and imaginary components each with variance1/2. We
then discuss extensions to other sources in Section VIII.



Fig. 1. Channel allocation for two-layered source coding strategy (LS).

The quasi-static Rayleigh fading channel is assumed to
remain constant over a block ofN channel uses. The cor-
responding fading is circularly symmetric complex Gaussian
with variance1/2 in each dimension. Then the amplitude
square of the fading coefficient denoted asa, is exponentially
distributed. The additive noise is modelled as complex Gaus-
sian with varianceσ2. There is an average power constraint of
P , and thus the received averageSNR is SNR = P/σ2. The
fading coefficients are known to the destination, but not known
to, or not exploited by the source. Thus, any transmission rate
over the channel might result in an outage.

We consider expected distortion for all bandwidth expansion
ratios b defined in (2). Although we use the term bandwidth
expansion to abide by the general usage, we will consider the
cases whereb ≤ 1 as well.

We will consider three different compression and com-
munication strategies. The first one, which we call layered
source with progressive transmission (LS), is based on dividing
the transmission block into smaller portions in time and
transmitting at different rates during each portion. The second
one is the broadcast strategy with layered source (BS) where
different rate channel codes are superimposed to transmit
each source layer simultaneously. The third strategy is the
uncoded transmission strategy (UT) where no compression or
channel coding is used and the source samples are transmitted
by appropriately scaling according to the transmitter power
constraint,P .

III. L AYERED SOURCE WITH PROGRESSIVE

TRANSMISSION

We first introduce layered source with progressive trans-
mission (LS) with two layers. We compress the source into
two layers: Base and enhancement. We divide the whole
transmission block, orN channel uses, into two portions (Fig.
1). In the first portion which corresponds toαN channel uses
(0 ≤ α ≤ 1), we transmit the base layer at a channel rate ofR1

bits per channel use (bpcu). In the second portion, we transmit
the enhancement layer consisting of the successive refinement
bits [5] of the source at a rate ofR2 bpcu. Here we should note
that the reason that we prefer to send successive refinement
bits instead of sending another description of the same source
such as the one obtained by multiple description coding, is due
to the fact that the channel state remains constant for all of the
N channel uses, so the description that has higher transmission
rate would always be in outage when the other one is. This
means that this description would never be received on its
own.

For the transmission rates, we can impose the constraint
R1 ≤ R2 since the enhancement layer is useless by itself.
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Fig. 2. Expected distortion vs. varying rates for LS with 2 layers (SNR=30
dB andb = 1).

This constraint also guarantees successful reception of the
base layer when the enhancement layer is received. Upon
successful reception of both portions, destination achieves a
source description rateαbR1 + (1 − α)bR2 bits per source
sample. However, in case of an outage in the second portion
only, it getsαbR1 bits per source sample. Using the succes-
sive refinability property, these correspond to distortions of
D(αbR1 + (1 − α)bR2) and D(αbR1), respectively, where
D(.) is the distortion rate function of the given source. In
case of an outage at the base layer, the achieved distortion
is D(0). Let Pout(R,SNR) be the outage probability at rate
R and average received signal-to-noise ratioSNR, which we
will denote asPR

out. Then we can write the expected distortion
expression for 2-level LS as:

ED(R1, R2, SNR) = (1− PR2
out)D(αbR1 + (1− α)bR2)

+(PR2
out − PR1

out)D(αbR1) + PR1
out. (3)

LS with one layer corresponds to direct transmission, and
in [2] it is shown that in case of direct transmission there
is an optimal choice of an operating rate that results in
minimum expected distortion. Similarly, an optimal rate pair
exists for two-layered LS. Fig. 2 shows the expected distortion
for varying transmission ratesR1 and R2 and for received
SNR = 30 dB using optimal value ofα for each(R1, R2)
pair. As expected, we observe that there is an optimal(R1, R2)
pair that results in minimum expected distortion. For the case
shown here(4.50, 6.35) pair results in a minimum average
distortion of0.0543 at the destination.

As mentioned in Section I, we are interested in the expected
distortion for high SNR regime. Evident from theED
expression, in order to have the expected distortion decay to
zero with increasingSNR, we need to scale the channel rate
as r log SNR. Due to bandwidth expansion this results in a
source coding rate ofbr log SNR. We knowD(R) = 2−R for
complex Gaussian source with unit variance and the outage
probability for direct transmission is

Pout(R, SNR) = 1− e−(2R−1)/SNR, (4)

with high SNR approximation asPout ≈ (2R − 1)/SNR.
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Fig. 3. The relation between the distortion exponent and the bandwidth ex-
pansion for different transmission schemes. It can be seen that BS approaches
the upper bound even with moderate number of layers.

Then assuming we scale bothR1 and R2 as R1 =
r1 log SNR, andR2 = r2 log SNR, we can rewrite Eqn. (3)
as:

ED(r1, r2, SNR) = SNR−(αbr1+(1−α)br2) +
SNRr2−1−αbr1 + SNRr1−1. (5)

We want to find the optimal distortion exponent,4 of this
expression which consists of the sum of three exponential
terms. This sum will be dominated by the slowest decay,
and thus the optimal4 is achieved when all three exponents
are equal. Using this we find4 = 1 − 1

(αb+1)(1+(1−α)b) .
Optimizing for α givesα = 1/2 and4 = 1− 1

(b/2+1)2 .
We can extend the above argument ton source coding layers

by dividing the transmission block inton portions. It can be
easily proven that, in general, forn layers of coding, the
optimal value of4 is

4 = 1− 1
(b/n + 1)n

. (6)

We see that4 increases with the increasing number of coding
layers. In the limit, we get

lim
n→∞

4 = 1− e−b . (7)

The relation between the optimal4 and the bandwidth ex-
pansion for infinite layers can be seen in Fig. 3.

We note that LS is a simple communication strategy as
the only requirement for transceivers is the rate adaptation,
and layered compression is already a part of image/video
compression. It can be observed from Fig. 4 and Table I that
even with moderate number of layers, improvements in both
the expected distortion and the distortion exponent compared
to direct transmission can be obtained.

IV. B ROADCAST STRATEGY WITH LAYERED SOURCE

Broadcast strategy for slow fading channels was first intro-
duced by Shamai in [4]. The main idea is for the transmitter to
view the fading channel as a degraded broadcast channel with
a continuum of receivers each experiencing a different received
signal-to-noise ratio corresponding to each fading level. It was

shown in [4] that BS provides improvement in the expected
channel rate that can be supported by the system.

We will combine the broadcast strategy with source coding
by utilizing layered source coding. Similar to LS, information
is sent in layers, where each layer consists of the successive
refinement information for the previous layers. However, in
this case the codes corresponding to different layers are super-
imposed, assigned different power levels and sent throughout
the whole transmission block. Compared to LS, power distri-
bution and interference among different layers are traded off
for increased multiplexing gain.

We first study 2-level superposition coding. We superimpose
a code at rateR2 for the enhancement layer on rateR1

code for the base layer. Similar to LS, we scale these rates
with increasingSNR as R1 = r1 log SNR, and R2 =
r2 log SNR. Power levels of these layers areP1 = β(SNR)P
andP2 = (1− β(SNR))P , whereP is the power constraint
of the transmitter andβ(SNR) is the power assignment rule
which is a function ofSNR that satisfies0 ≤ β(SNR) ≤ 1.
As a shorthand we will denote it byβ.

The destination first tries to decode the base layer by consid-
ering the second layer as noise. This results in a distortion of
D(0) in case of outage. If it can decode the base layer, but not
the enhancement layer after subtracting the decoded portion,
the achieved distortion isD(bR1). Successful decoding of
both layers results in an achieved distortion ofD(bR1+bR2).
The expected distortion, ED for BS can be written as follows.

ED(R1, R2, β, SNR) = (1− P 2
out)D(bR1 + bR2) +

(P 2
out − P 1

out)D(bR1) + P 1
out,

where P 1
out is the outage probability of the first layer and

P 2
out is the outage probability of the second layer when the

first layer is subtracted from the received signal. We have

P 1
out = Pr

(
log(1 +

βSNRa

1 + (1− β)SNRa
) < R1

)
, (8)

P 2
out = Pr (log(1 + (1− β)SNRa) < R2) . (9)

Here we also consider the fact that decoding the second layer
reduces distortion only if the first layer can be decoded as
well. Further analysis gives us

P 1
out = Pr

(
aSNR[β − (1− β)(2R1−1)] < 2R1−1

)
. (10)

For an outage probability less than 1, we need to have
[β − (1 − β)(2R1−1)] > 0. This is equivalent to1 − β <
2−R1 = SNR−r1 . This means that1 − β should decay
exponentially with increasingSNR. Thus the second layer is
assigned exponentially small powers for highSNR. Letting
1 − β = SNR−x where x > r1, we get the highSNR
approximation for ED as

ED(r1, r2, x, SNR) = SNR−b(r1+r2) +
SNRr2−1+xSNR−br1 + SNRr1−1. (11)

Similar analysis of this exponential form as in the LS case,
results in an optimal value of4 = 1− 1

b2+b+1 . Furthermore,



generalization of the result to strategies withn layers of
broadcast coding will give us the relation

4 = 1− 1
1 + b + b2 + ... + bn

. (12)

Comparing Eqn. (6) and Eqn. (12) we conclude that the
distortion exponent achieved by BS with the same number
of layers is greater than LS. It is also seen that, in the limit of
n →∞, BS achieves4 = 1 for b ≥ 1 and4 = b for b < 1.
This dependence can be seen in Fig. 3. In [6] it is argued that
most of the performance improvement that is provided by the
broadcast strategy in the expected rate sense can be obtained
with two layers. However, our results show that it is possible
to improve the expected distortion by using more than two
layers, especially for bandwidth expansions close to1.

V. UNCODED TRANSMISSION

It is known that for an additive white Gaussian channel
and a source with squared-error distortion metric withb = 1,
uncoded transmission (UT) is optimal [7]. Motivated by this,
here we find the distortion exponent of an uncoded system for
the quasi-static fading scenario, and compare its performance
to LS and BS for different bandwidth expansions.

For b ≥ 1, we transmit each uncoded source sample in one
use of the channel. Note that forb > 1, this results inN −K
channel uses for which the transmitter is silent. Hence for
b > 1, we allow the transmitter to scale its power tobP when
it is transmitting. Forb < 1, only the firstN source samples
are transmitted, and the remainingK −N are assumed to be
received with maximum distortion. Using an MMSE estimator
at the destination for optimal detection, we find:

ED =





Ea

[
1

1+bSNRa

]
if b ≥ 1;

Ea

[
1− b + b

1+SNRa

]
if b < 1,

(13)

where Ea[.] corresponds to expectation over channel states.
Using [8], we can argue that the uncoded transmission scheme
explained above in fact results in an optimal linear encoding of
the source. The corresponding distortion can not be improved
by any other linear transformation of the source vector.

We use the exponential integral approximation to find4
[11]. For b ≥ 1 we have:

ED = Ea[
1

1 + bSNRa
],

≈ e1/bSNR

bSNR
E1(

1
bSNR

), (14)

whereE1(z) = −γ − ln z −∑∞
n=1

(−z)n

n.n! , andγ is the Euler
constant. Then in the highSNR regime expected distortion
can be expressed asED ≈ SNR−1+

log(log SNR)
log SNR . Obviously

4 converges to1 as SNR increases, however the rate of
convergence is slower due to the second term.

For theb < 1 case,4 = 0 since there is a constant term in
the ED expression, which means that for UT when the source
bandwidth is higher than the channel bandwidth, distortion
does not approach0 with increasingSNR.
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Fig. 4. Expected distortion vs. SNR plots forb = 2. The topmost curve LS,
BS (1 layer) corresponds to direct transmission without layering.

VI. U PPERBOUND

To find an upper bound for the distortion exponent, we
assume the availability of the perfect channel state informa-
tion (CSI) at the transmitter. However, we impose that this
information is only used for rate adaptation, and not utilized
for power adaptation. Since power adaptation is not possible
without CSI, this is still an idealization, and gives us an upper
bound for4.

When the channel state for a given transmission block is
known at both the transmitter and the receiver, each trans-
mission block can be seen as an additive white Gaussian
noise channel, and thus the source-channel separation theorem
applies. The minimum distortion,D achieved at the destination
for a given channel state is

D = 2−b log(1+aSNR) =
1

(1 + aSNR)b
. (15)

Then the minimum expected distortion is

ED = Ea

[
1

(1 + aSNR)b

]
,

=
e1/SNR

SNR

∫ ∞

1

e−t/SNR

tb
dt. (16)

For integer values ofb = 1, 2, ... using the exponential integral
approximation for highSNR [11], this can be simplified to

ED ≈ e1/SNR

SNR
[
(−SNR)1−b

(b − 1)!
(ln SNR + ψ(b))

−
∞∑

m=0,m6=b−1

(−SNR)−m

(m− b + 1)m!
], (17)

whereψ(n) = −γ +
∑n−1

m=1
1
n , and γ is the Euler constant.

Non-integer values can be dealt similarly with the correspond-
ing Euler expansion [11]. HighSNR analysis yields4 = 1
for b ≥ 1.

For 0 < b < 1, we will use the gamma functionΓ(z) =
kz

∫∞
0

tz−1e−ktdt for z > 0 andk > 0 and the Euler function



Γ(z) = limn→∞ n!nz

z(z+1)...(z+n) to find4.

ED =
e1/SNR

SNR

∫ ∞

1

e−t/SNR

tb
dt, (18)

≤ e1/SNR

SNR
SNR1−bΓ(1− b). (19)

High SNR analysis results in4 ≤ b.

VII. D ISCUSSION OFTHE RESULTS

The results for the distortion exponent are summarized in
Fig. 3 and Table I. We observe that BS with infinite layers
is optimal with respect to the distortion exponent as it meets
the upper bound. We also see that BS with the same number
of layers outperforms LS for given bandwidth expansion.
However, the encoder-decoder pair required for LS is simpler
than the ones required for BS, because BS requires SNR-
dependent power allocation among layers, superimposition of
codewords and sequential decoding.

Uncoded transmission forb ≥ 1 is optimal in terms of
distortion exponent. However, as it is shown in [3] this per-
formance improvement can not be extended to more complex
networks, and thus the applicability is doubtful.

In order to illustrate how the suggested source-channel
coding techniques perform for arbitrarySNR values, we
have plotted expected distortion vs.SNR for the usual direct
transmission (LS, BS with 1 layer), LS and BS with2 layers,
UT and upper bound in Fig. 4 forb = 2. The results are
obtained from an exhaustive search over all possible rate,
channel and power allocations. The figure illustrates that the
theoretical performance results that were found as a result of
the highSNR analysis hold, in general, even for moderate
SNR values. However we should note that the slopes for UT
and the upper bound shown in the figure are smaller than the
calculated4 values. This is due to the slow convergence rate
of ED as argued in Section V.

VIII. G ENERALIZATION TO OTHER SOURCES

Throughout this paper, we have used the Gaussian source
assumption. This made it possible to use the known distortion-
rate function for complex Gaussian source and also to uti-
lize the successive refinable nature of this specific source.
However, our results hold for any memoryless source with
finite differential entropy and finite second moment. Recall
that the distortion of a Gaussian source at a given rate is
a tight upper bound for other sources with squared error
distortion in the high resolution regime, that is whenR is large
[9]. Furthermore, although most sources are not successively
refinable, it was proven in [10] that all sources are nearly
successively refinable. Due to Corollary 1 in [10], for any
0 < DM < ... < D2 < D1, (M ≥ 2) and squared error
distortion, there exists an achievable M-tuple withLk ≤ 1/2,
k ∈ {1, ..., M}, whereLk = Rk − R(Dk) is the rate loss at
stepk. This means that to achieve the distortion levels we used
in our analysis, we need to compress the source at a rate that
is at most1/2 bits/sample greater than the rates required for
Gaussian source. Then the transmission rate over the channel

TABLE I

DISTORTION EXPONENT(4) IN TERMS OF BANDWIDTH EXPANSION(b)

AND THE NUMBER OF LAYERS (n).

Strategy Distortion Exponent

Layered Source with Progressive Transmission 1− 1/( b
n

+ 1)n

Broadcast Strategy with Layered Source 1− 1/(1 + b + ... + bn)

Uncoded Transmission





0 if b < 1;

1 if b ≥ 1

Upper Bound





b if b < 1;

1 if b ≥ 1

for non-Gaussian source,R′ satisfiesR′ ≤ R + 1
2b , whereR

is the rate used for the Gaussian source. However, since we
scale the operating rate with increasingSNR as r log SNR,
the high SNR behavior of the outage probability does not
change by relaxing the Gaussian assumption.

IX. CONCLUSION

We consider the expected distortion (ED) of a system which
transmits a continuous amplitude source over a quasi-static
fading channel. Due to non-ergodic nature of the channel,
the optimal performance can be achieved by joint source-
channel optimization. We use distortion exponent (4) as the
performance metric, which is the exponential decay rate of
ED, and show how the optimal performance can be approached
by joint source and channel coding strategies with optimized
parameters. We are currently extending our results to a MIMO
system with block fading and possible application to the
cooperation scenario, where a third terminal is available for
relaying the source information can be found in [2], [3].
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