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Abstract—In cellular-based federated learning (FL), the base
station (BS) is only used to aggregate parameters, which incurs
a waste of computing resources at the BS. In this paper, a
novel semi-federated learning (SemiFL) framework is proposed
to break this bottleneck, where local devices simultaneously send
their gradient updates and training samples to the BS for global
model computation. To capture the performance of SemiFL over
wireless networks, a closed-form convergence upper bound of
SemiFL is derived. Then, a non-convex problem is formulated
to improve the convergence behavior of SemiFL, subject to
the transmit power, communication latency, and computation
distortion. To solve this intractable problem, a two-stage al-
gorithm is proposed by controlling the transmit power and
receive beamformers. Numerical experiments validate that the
proposed SemiFL framework can effectively improve accuracy
and accelerate convergence as compared to conventional FL.

Index Terms—Semi-federated learning, convergence analysis,
model aggregation, transceiver design.

I. INTRODUCTION

In future sixth generation (6G) wireless networks, edge

artificial intelligence (AI) provides an indispensable potential

to enable the concept of connected intelligence [1]. Federated

learning (FL), as a representative distributed learning paradigm

of edge AI, allows edge devices to collaboratively train a

shared model [2]. Although FL can effectively break the

bottleneck of transmission cost and address privacy concerns

to some extend, it still faces certain challenges. For instance,

the idleness of the base station (BS) during the local training

of FL inevitably leads to insufficient utilization of its com-

putation resources [3]. This prevents the potential possibility

of exploiting the substantial computation capability at the BS

for better learning performance of FL. In order to unleash this

potential, it is important to orchestrate FL over edge devices in

parallel to centralized learning (CL) at the BS by developing

a more general and efficient learning framework.

So far, only a few works have taken the effort to investigate

a fusion of FL and CL. The authors of [4] consider a semi-

supervised learning task, where the BS conducts supervised

CL while local devices perform unsupervised FL using un-

labeled data, and then the obtained models from CL and FL

are combined at each round. However, the impact of wireless
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channels during the model transmission is ignored in [4].

Considering the computation capabilities of local devices, the

authors of [3] propose a hybrid FL and CL framework, in

which the BS selects the devices with sufficient computing

resources to perform FL, while the rest transmit data to the BS

for CL. In [5], the devices upload data to the BS for CL during

the local training of FL, and a balance between loss function

and resource consumption is achieved by jointly designing

the communication and computing strategies. Nevertheless, the

orthogonal transmission scheme used in [5] is likely to reduce

spectrum utilization, and hence, can not support the massive

connectivity requirement in future 6G networks.

In this paper, we propose a hybrid FL and CL framework,

called semi-federated learning (SemiFL), in which all the

devices simultaneously upload local gradients and training

samples to the BS to achieve a better convergence behavior.

To improve spectrum efficiency, at the user side, training

samples and local gradients are transmitted over the same

time-frequency resources. At the BS side, training samples

are decoded for CL while the local gradients obtained through

FL are aggregated over the air [6]–[8]. The global model is

then updated by the gradients computed both locally and in a

distributed fashion. For scenarios with less privacy concerns,

our propose SemiFL can be well suitable. As far as we know,

the theoretical analysis and performance optimization of the

proposed hybrid learning performance have not been studied

in the literature. Our contributions are summarized as follows:

• We propose the SemiFL framework to combine FL over

devices and CL at the BS. To tackle the spectrum

scarcity problem, we propose a non-orthogonal transmis-

sion scheme to send both the gradient information and

the raw data from the devices to the BS over a multiple

access channel. Accordingly, we design signal decoding

and gradient aggregation methods for SemiFL.

• We derive a convergence upper bound to characterize the

impact of wireless factors on the performance of SemiFL.

Then, we formulate a non-convex transceiver design

problem to minimize the bound under the constraints of

transmit power, communication latency, and computation

distortion. Finally, we propose a two-stage algorithm to

solve this challenging problem by employing variable

substitution and successive convex approximation (SCA).

Numerical experiments results validate that: i) the designed

algorithm can converge within a limited number of iterations;

ii) the proposed SemiFL framework outperforms conventional

FL at the same cost of communication overhead.



II. SYSTEM MODEL

As depicted in Fig. 1, we consider a system with one Nr-

antenna BS and K single-antenna devices. The devices are

indexed by K = {1, 2, . . . ,K}. We consider T communication

rounds, where each round lasts a duration of Tc units of

time. Let Dk denote the dataset of the k-th device containing

Nk = |Dk| training samples. All devices collaboratively train

a shared global model by minimizing the global loss function

F (w) over the total dataset D = ∪kDk, given by

F (w) =
1

N

∑K

k=1

∑
n∈Dk

f(w;xk,n,yk,n), (1)

where w ∈ R
Q denotes the shared global model, xk,n and

yk,n are the feature and label vector of a training sample,

respectively, f(w;xk,n,yk,n) is the sample-wise loss function,

and N=
∑K

k=1Nk is the total number of training samples.

During the t-th round, the k-th device calculates the local

gradient gf
t,k ∈ R

Q with training samples Df,k, given by

gf
t,k =

1

Nf,k

∑
n∈Df,k

gt,k,n, ∀k ∈ K, (2)

where gt,k,n is the gradient corresponding to one training

sample, and Nf,k = |Df,k|. Considering scenarios with less

privacy concerns, the k-th device also transmits Nc,k untrained

samples, denoted by Dc,k, to the BS for CL. Note that

Nf,k + Nc,k � Nk due to the limited computation and

communication resources. To improve the spectrum efficiency,

the local gradients and training samples are transmitted in the

same time-frequency resources, and the pre-processing of the

transmit signal is two-fold.

On the one hand, the local gradient gf
t,k needs to be

normalized. The normalization procedure is summarized as

follows. First, the k-th device transmits 1
Q

∑Q
q=1 g

f
t,k,q and

1
Q

∑Q
q=1 (g

f
t,k,q)

2 to the BS, where gft,k,q is the q-th entry

of local gradient gf
t,k. Then, the BS calculates the global

mean ḡt = 1
K

∑K
k=1 (

1
Q

∑Q
q=1 g

f
t,k,q) and variance σ2

t =
1
K

∑K
k=1[

1
Q

∑Q
q=1 (g

f
t,k,q)

2]− ḡ2t . Next, the BS broadcasts ḡt
and σ2

t to the devices. The local gradients are normalized by

g̃ft,k,q =
gft,k,q − ḡt

σt
, q = 1, 2, . . . , Q, ∀k ∈ K, (3)

where g̃ft,k,q is the q-th entry of the normalized gradient g̃f
t,k,

whose entries have zero mean and unit variance. The k-th

device constructs the signal vector for the local gradient as

st,k =
Nf,k

Nf
g̃f
t,k, where Nf =

∑K
k=1 Nf,k.

On the other hand, each training sample in Dc,k has m bits.

The k-th device modulate and normalize the Nc,k training

samples to a signal vector dt,k ∈ R
Q by appropriate mod-

ulation schemes, such as the adaptive quadrature amplitude

modulation [9]. An arbitrary entry of dt,k has zero mean and

unit variance. We further assume that the entries of st,k and

dt,k are independent of each other, i.e., E[st,k,qdt,k,q] = 0, q =
1, 2, . . . , Q, ∀k ∈ K. Each communication round is equally

split into Q slots. In the q-th slot, the devices transmit st,k,q
and dt,k,q to the BS using the same time-frequency resources.
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Fig. 1. A demonstration of the proposed SemiFL system.

At the BS side, the received superposition signal in the q-th

slot of the t-th round is

yt,q=
∑K

k=1
pt,f,kht,kst,k,q︸ ︷︷ ︸

local gradients

+
∑K

k=1
pt,c,kht,kdt,k,q︸ ︷︷ ︸

training samples

+nt,q︸︷︷︸
noise

, (4)

where pt,f,k ∈ C and pt,c,k ∈ C denote the transmit power

allocation of the local gradients and the training samples,

respectively, while nt,q ∈ C
Nr is the additive white Gaussian

noise with distribution CN (0, σ2INr
), and ht,k ∈ C

Nr denotes

the Rician channel gain from the k-th device to the BS.

We consider a block-fading channel, where ht,k remains

unchanged in a round, but varies independently over rounds.

We assume the devices have perfect channel state information.

The post-processing of the received superposition signal is

divided into two steps. First, the BS decodes the uploaded

training samples from the superposition signal, and utilizes

them to calculate the CL gradient. The BS dedicates each

device a beamformer, {ft,k}, to decode the training samples in

parallel. As a result, for the k-th device, the signal for decoding

in the q-th slot of the t-th round is given by

d̂t,k,q=pt,c,kf
H
t,kht,kdt,k,q+

∑K

k′=1,k′ �=k
pt,c,k′fHt,kht,k′dt,k′,q︸ ︷︷ ︸

interference of other training samples

+
∑K

k′=1
pt,f,k′fHt,kht,k′st,k′,q︸ ︷︷ ︸

interference of local gradients

+fHt,knt,q︸ ︷︷ ︸
noise

, ∀k∈K. (5)

The signal-to-interference-plus-noise ratio (SINR) of the k-

th device, γt,k, is given by (6) at the top of the next page,

where ‖ · ‖ denotes the vector 2-norm. The decoded training

samples are accumulated over Q slots to reconstruct datasets

{Dc,k}, and utilized to calculate the gradient of CL, gc
t ∈ R

Q.

The BS calculates a full-batch gradient based on the entire

datasets {Dc,k}, which is given by

gc
t =

1

Nc

∑K

k=1

∑
n∈Dc,k

gt,k,n, (7)

where Nc =
∑K

k=1 Nc,k is the number of CL training samples.

Then, by removing the signal of the training samples, the BS



γt,k =
|pt,c,kfHt,kht,k|2∑K

k′=1,k′ �=k |pt,c,k′fHt,kht,k′ |2 +∑K
k′=1 |pt,f,k′fHt,kht,k′ |2 + σ2‖ft,k‖2

, ∀k ∈ K. (6)

employs another beamformer bt to aggregate local gradients

over the air, which is given by

ŝt,q =
∑K

k=1
pt,f,kb

H
t ht,kst,k,q︸ ︷︷ ︸

aggregated gradient

+bH
t nt,q︸ ︷︷ ︸
noise

. (8)

We measure the signal distortion by the mean square error

(MSE) between st,q =
∑K

k=1 st,k,q and ŝt,q , i.e.,

MSEt =
∑K

k=1

∣∣pt,f,kbH
t ht,k−1

∣∣2+‖bt‖2σ2, (9)

After aggregation, the BS de-normalizes ŝt,q to estimate the

q-th entry of the aggregated gradient as

ĝft,q= σtŝt,q + ḡt, q = 1, . . . , Q. (10)

The aggregated gradient at the t-th round is reconstructed by

ĝf
t = [ĝft,1, · · · , ĝft,Q]T.

Finally, the global model for the next round, wt+1, is

updated as follows:

wt+1 = wt − ηĝt, (11)

where η is the learning rate, and the global gradient ĝt is

calculated by

ĝt =
Nf

Nf +Nc
ĝf
t +

Nc

Nf +Nc
gc
t . (12)

III. CONVERGENCE AND PROBLEM FORMULATION

A. Convergence Analysis

To investigate the convergence of SemiFL, we introduce

some assumptions [10]–[12].

Assumption 1 (μ-strongly convex). The global loss function
F (w) is μ-strongly convex. For any w, w′ ∈ R

Q and μ > 0,
we have

F (w) ≥ F (w′) + (w −w′)T ∇F (w′) +
μ

2
‖w −w′‖2, (13)

where ∇F (w) is the gradient of F (w) regrading w.

Assumption 2 (L-smooth). The global loss function F (w) is
L-smooth. For any w, w′ ∈ R

Q and L > 0, we have

F (w) ≤ F (w′) + (w −w′)T ∇F (w′) +
L

2
‖w −w′‖2. (14)

Assumption 3 (Bounded gradients). The expected squared 2-
norm of any local gradient and the the gradient of any training
sample are bounded at {wt}. For constants ξ1 ≥ 0, ξ2 > 0
and G2 ≥ 0, we have

E

[
‖gf

t,k‖2
]
≤ G2, ∀k ∈ K, (15)

‖gt,k,n‖2 ≤ ξ1 + ξ2‖∇F (wt)‖2, ∀k ∈ K, ∀n ∈ D. (16)

Based on the above assumptions, we derive the convergence

upper bound of SemiFL in the following theorem.

Theorem 1 (Convergence upper bound of SemiFL). Given
Assumptions 1-4 and learning rate η = 1

L , while letting w∗

denote the optimal model, the convergence upper bound of
SemiFL after T rounds is given by:

E[F (wT+1)−F (w∗)] ≤ ρT1 E [F (w1)−F (w∗)]+ρ2
1− ρT1
1− ρ1

+
∑T

t=1
ρT−t
1 ϕt ({pf,k},b), (17)

where

ϕt({pf,k},b)=
G2(4K

K∑
k=1

N2
f,k

∣∣1−pt,f,kb
H
t ht,k

∣∣2+N2
fσ

2‖bt‖2)
L(Nf+Nc)2

,

(18)

ρ1=1− μ

L
+ 4μξ2

Nf (N −Nf ) +Nc(N −Nc)

L(Nf +Nc)2
, (19)

ρ2=2ξ1
Nf (N −Nf ) +Nc(N −Nc)

L(Nf +Nc)2
. (20)

Proof: Please refer to Appendix A.

Based on Theorem 1, one can find that the convergence

upper bound of SemiFL is affected by some wireless-related

factors, such as the transmit power {pt,f,k} and receive

beamformer bt. In order to accelerate the convergence rate of

SemiFL, we aim to minimize the convergence upper bound by

conducting meticulous transceiver design, while guaranteeing

the communication latency requirements of training samples.

B. Problem Formulation

To minimize the optimality gap between the actual loss and

the optimal loss, we formulate a transceiver design problem

to improve the convergence behavior of SemiFL. Though

the convergence upper bound of SemiFL is affected by the

wireless-related factors over the T rounds, the factors are

independent of each other between the rounds. Therefore, it is

equivalent to solving T independent simple-round problems.

For any arbitrary round, the optimization problem is formu-

lated as follows, where subscript t is omitted for brevity.

min
{pf,k},{pc,k},

b,{fk}

ϕ ({pf,k},b) (21a)

s.t. |pf,k|2 + |pc,k|2 ≤ Pmax, ∀k ∈ K, (21b)

mNc,k

Wb1log2(1 +
γk

b2
)
≤ Tc, ∀k ∈ K, (21c)

MSE ≤ ε, (21d)

where Pmax denotes the maximum transmit power at the

devices, W denotes the transmission bandwidth, 0 < b1 < 1
and b2 > 1 characterize channel capacity loss, and ε denotes

the maximum tolerable MSE. Constraint (21c) guarantees the

communication latency of training samples. Problem (21) is

non-convex due to the non-convexity of the objective function

and constraints (21c) and (21d). In the following, we propose

an efficient two-stage algorithm to solve problem (21).



IV. PROPOSED ALGORITHM

A. Receive Beamformer for Aggregation

Given {pf,k}, {pc,k} and {fk}, the subproblem regarding b
is reduced to

min
b

bHA0b−2Re

{
bH

∑K

k=1

4KN2
f,kpf,k

(Nf +Nc)2
hk

}
(22a)

s.t. bHA1b−2Re

{
bH

∑K

k=1
pf,khk

}
+K−ε≤0, (22b)

where A0 and A1 are given by

A0 =
∑K

k=1

4KN2
f,k|pf,k|2

(Nf +Nc)2
hkh

H
k +

N2
fσ

2

(Nf +Nc)2
INr , (23)

A1 =
∑K

k=1
|pf,k|2hkh

H
k +σ2INr

. (24)

Since problem (22) is convex with respect to (w.r.t.) b, it can

be solved by standard toolbox like CVX [13].

B. Transmit Power Allocation

Given b and {fk}, the subproblem w.r.t. {pf,k} and {pc,k}
is rewritten as

min
{pf,k},
{pc,k}

4K
∑K

k=1

N2
f,k

(Nf +Nc)2
∣∣1− pf,kb

Hhk

∣∣2 (25)

s.t. (21b) − (21d),

which is non-convex because of the indefinite Hessian matrices

in constraint (21c).

Since problem (25) is independent of the angles of {pc,k},

and pf,kb
Hhk ≤ |pf,k||bHhk|, we determine the angles of

{pf,k} and {pc,k} by ∠pf,k = −∠(bHhk) and ∠pc,k =
0, ∀k ∈ K. Based on the angles, we perform variable sub-

stitution by letting αk = |pf,k| and βk = |pc,k|2, ∀k ∈ K. As

a result, problem (25) is convexified as

min
{αk≥0},
{βk≥0}

4K
∑K

k=1

N2
f,k

(Nf +Nc)2
(
1− αk|bHhk|

)2
(26a)

s.t. α2
k + βk − Pmax ≤ 0, ∀k ∈ K, (26b)

−βk

∣∣fHk hk

∣∣2+γmin,k(
∑K

k′=1,k′ �=k
βk′ |fHk hk′ |2

+σ2‖fk‖2+
∑K

k′=1
α2
k′ |fHk hk′ |2)≤0, ∀k ∈ K,(26c)∑K

k=1
(1− αk|bHhk|)2 + ‖b‖2σ2 − ε ≤ 0, (26d)

where γmin,k = b2(2
mNc,k
b1WTc −1), ∀k ∈ K. Due to the convexity,

problem (26) can be solved by CVX.

C. Receive Beamformers for Decoding

Given b, {pf,k} and {pc,k}, problem (21) is reduced

to a feasibility subproblem regarding {fk}. Considering the

independence between the devices, the subproblem is decom-

posed into K feasibility problems. For the k-th device, the

subproblem is rewritten as

find fk (27a)

s.t. fHk A2,kfk ≤ 0, (27b)

Algorithm 1: The Proposed Two-Stage Algorithm

1: Initialize {pf,k},{pc,k},b,{fk}, maximum iterations N ,

accuracy ε, n=0, and n′=0.

2: repeat
3: Update n ← n+ 1.

4: Obtain b by solving (22).

5: Calculate ∠pf,k = −∠(bHhk), ∀k ∈ K and

∠pc,k = 0, ∀k ∈ K.

6: Obtain {αk} and {βk} by solving (26).

7: until n ≥ N or
|obj(n)−obj(n−1)|

|obj(n)| ≤ ε.

8: repeat
9: Update n′ ← n′ + 1.

10: Obtain f
(n′)
k and ν

(n′)
k by solving (31).

11: until n′ ≥ N or
|νk

(n′)−νk
(n′−1)|

|νk
(n′)| ≤ ε, ∀k∈K.

12: Output the solution {pf,k}, {pc,k}, b, {fk}.

where A2,k is defined as

A2,k =−|pc,k|2hkh
H
k +γmin,k(

∑K

k′=1,k′ �=k
|pc,k′ |2hk′hH

k′

+
∑K

k′=1
|pf,k′ |2hk′hH

k′+σ2INr ). (28)

Similarly to [14], we introduce an auxiliary variable νk ≤ 0
to transform problem (27) to the following form, which aims

to increase the data rate of the k-th device.

min
fk,νk≤0

νk (29a)

s.t. fHk A2,kfk − νk ≤ 0. (29b)

However, problem (29) is non-convex due to the indefinite

matrix A2,k.

To tackle the non-convexity, we employ SCA to solve

it, where the second-order Taylor surrogate function for

fHk A2,kfk is constructed as [15]

g(fk|f (n)k ) =fHk Mkfk + 2Re{fHk (A2,k −Mk)f
(n)
k }

+ (f
(n)
k )H(Mk −A2,k)f

(n)
k . (30)

Here, f
(n)
k is the obtained value at the n-th SCA iteration. By

placing the first term on the left hand side of (29b) with (30),

we can use CVX to solve the following convex problem:

min
fk,νk≤0

νk (31a)

s.t. g(fk|f (n)k )− νk ≤ 0. (31b)

The proposed two-stage algorithm for minimizing the con-

vergence upper bound of SemiFL is summarized in Algo-

rithm 1. The fist stage is formed by lines 2-7, and the second

stage is formed by lines 8-11. We use CVX, which invokes

the standard interior-point method to solve the subproblems.

The worst-case complexity for solving problems (22) and (26)

are O(N1N
3
r ) and O(8N2K

3), respectively. The worst-case

complexity for executing SCA is O(N3N
3
r ) [16]. Here, N1,

N2 and N3 are the maximum iterations of the interior-point

method. Therefore, the worst-case complexity of Algorithm 1

is O(NN1N
3
r + 8NN2K

3 +KNN3N
3
r ).



Fig. 2. Convergence behavior of Algorithm 1.

V. NUMERICAL RESULTS

We evaluate our proposed SemiFL framework by letting

K = 10 devices train a shared multilayer perceptron (MLP)

based on the MNIST dataset. The MLP has one hidden layer

consisting of 50 neurons, and the loss function is the MSE

function. The batch size for FL is Nf,k = 16, ∀k ∈ K, while

the number of CL training samples are Nc,k = 8, ∀k ∈ K.

We set each entry of a training sample has 16 bits. Since each

training sample comprises a 28 × 28 grey-scale image and a

10-dimension label vector, we set m = 16× (28×28+10) =
12704 bits. The path loss factor is τ = 2.2 with reference path

loss C0 = −30 dB, and the Rician factor is κ = 2 [17]. The

transmission bandwidth is W = 5 MHz. The noise power is

σ2 = −80 dBm. The maximum transmit power is Pmax = 0
dB. Unless extra specification, other simulation parameters are

set as: η = 0.01, Nr = 16, Tc = 500 ms, ε= 0.5, ε= 0.01,

b1=0.905 and b2 = 1.34 [18].

Fig. 2 plots the convergence behavior of the proposed

Algorithm 1. We consider two benchmarks: i) the receive

beamformer b is configured by the minimum MSE (MMSE)

criterion; ii) the transmit power allocation {pf,k} adopts the

uniform-forcing (UF) method [19]. With the same number of

receive antennas, we see that Algorithm 1 converges to the

lowest value compared with the benchmarks, which confirms

the convergence advantage. Moreover, Algorithm 1 converges

to a lower objective value when more antennas are deployed at

the BS. This can be attributed to the increasing array gain [12].

Fig. 3 and Fig. 4 plot the accuracy and loss with the

increasing number of communications rounds, respectively.

Conventional FL and CL are considered as the benchmarks. By

comparing the red, blue and green curves, we see that SemiFL

outperforms FL in both accuracy and loss. Notably, the reason

for the different total number of training samples, i.e., Nf+Nc,

is that we attempt to emphasize the performance gain is

brought by the extra training sample for CL. This reveals

the advantage of the proposed SemiFL over the conventional

FL. However, by utilizing the same total number of training

samples, CL is superior to other schemes, which plays the role

Fig. 3. Accuracy versus number of communication rounds.

Fig. 4. Loss versus number of communication rounds.

of a performance upper bound. Although SemiFL achieves

moderate learning performance between FL and CL, it would

approach CL as more training samples are transmitted to the

BS. The observations imply that SemiFL is a more general

framework between FL and CL, and integrating CL into FL

is a promising method to improve the learning performance

when there are less privacy concerns.

VI. CONCLUSION

This paper proposed an integrated SemiFL framework for

pervasive intelligence in 6G networks, where the devices

transmit local gradients and training samples to the BS concur-

rently. The superposed signal was skillfully processed at the

BS considering different transmission goals. Then, we derived

a closed-form convergence upper bound of SemiFL to reveal

the influence of the wireless-related factors. Next, we proposed

a two-stage algorithm to solve the formulated non-convex

problem efficiently. Numerical experiments confirmed that the

proposed SemiFL framework can outperform FL in terms

of both accuracy and loss. Compared to CL, the integrated

framework can reduce communication overhead at the cost of

moderate performance degradation.



APPENDIX A

PROOF OF THEOREM 1

We rewrite ĝt as ĝt = ∇F (wt) − e, where e = a1e1 +
a2e2 + a1e3, e1 = ∇F (wt)− gf

t , e2 = ∇F (wt)− gc
t , e3 =

gf
t − ĝf

t , gf
t = 1

Nf

∑K
k=1 Nf,kg

f
t,k, a1 =

Nf

Nf+Nc
and a2 =

Nc

Nf+Nc
. By plugging w = wt+1, w′ = wt, η = 1

L and (11)

into (14), while taking the expectation of both sides, we have

E[F (wt+1)] ≤E[F (wt)]− 1

2L
‖∇F (wt)‖2 + 1

2L
‖e‖2

(a)

≤E[F (wt)]− 1

2L
‖∇F (wt)‖2 + 2a21

L
E[‖e1‖2]

+
2a22
L

E[‖e2‖2] + a21
L
E[‖e3‖2], (32)

where (a) stems from the Cauchy-Schwarz inequality and

triangle inequality.

For E[‖e1‖2], we have

E[‖e1‖2] = 1

NN2
f

E[‖
∑

n∈(∪kDf,k)
(Nf −N)gt,k,n

+
∑

n∈D/(∪kDf,k)
Nfgt,k,n‖2]

(a)

≤ 1

NN2
f

E[
∑

n∈(∪kDf,k)
(Nf −N)2‖gt,k,n‖2

+
∑

n∈D/(∪kDf,k)
N2

f ‖gt,k,n‖2]
(b)

≤N −Nf

Nf
(ξ1 + ξ2‖∇F (wt)‖2), (33)

where (a) holds because of the Cauchy-Schwarz inequality

and triangle inequality, and (b) comes from applying (16).

Similarly, we can obtain

E[‖e2‖2] ≤ N −Nc

Nc
(ξ1 + ξ2‖∇F (wt)‖2). (34)

Based on (10), we derive E[‖e3‖2] as

E[‖e3‖2] (a)=E[

Q∑
q=1

|
K∑

k=1

Nf,k

Nf
(1−pt,f,kb

H
t ht,k)(g

f
t,k,q−ḡt)|2]

+Qσ2
t σ

2‖bt‖2
(b)

≤Qσ2
t σ

2‖bt‖2 + 2(
K∑

k=1

E[

Q∑
q=1

|gft,k,q|2]+KQ|ḡt|2)

(
K∑

k=1

|Nf,k

Nf
(1−pt,f,kb

H
t ht,k)|2), (35)

where (a) takes the expectation w.r.t. noise {nt,q}, and (b)
holds because of the Cauchy-Schwarz inequality. Moreover,

it is obtained that |ḡt|2 ≤ 1
KQ

∑K
k=1 ‖gf

t,k‖2 and σ2
t ≤

1
KQ

∑K
k=1 ‖gf

t,k‖2. By plugging
∑Q

q=1 |gft,k,q|2 = ‖gf
t,k‖2, the

obtained two inequalities, and (15) into (35), we have

E[‖e3‖2]≤4KG2

N2
f

K∑
k=1

N2
f,k|1−pt,f,kb

H
t ht,k|2+G2σ2‖bt‖2. (36)

According to [10], we have Polyak-Lojasiewicz inequality

as ‖∇F (wt)‖2 ≥ 2μ(F (wt) − F (w∗)). By plugging (33),

(34), (36) and Polyak-Lojasiewicz inequality into (32), while

subtracting F (w∗) from both sides, we have

E [F (wt+1)− F (w∗)] ≤ρ1E [F (wt)− F (w∗)] + ρ2

+ ϕt ({pf,k},b) . (37)

Recursively applying (37) for T times, we finally reach (17).

The proof is complete.
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