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Abstract—Zero-delay transmission of a Gaussian source over
an additive white Gaussian noise (AWGN) channel is considered
with a one-bit analog-to-digital converter (ADC) front end and
a correlated side information at the receiver. The design of
the optimal encoder and decoder is studied for two different
performance criteria, namely the mean squared error (MSE)
distortion and the distortion outage probability (DOP), under an
average power constraint on the channel input. For both criteria,
necessary optimality conditions for the encoder and the decoder
are derived, which are then used to numerically obtain encoder
and decoder mappings that satisfy these conditions. Using these
conditions, it is observed that the numerically optimized encoder
(NOE) under the MSE distortion criterion is periodic, and its
period increases with the correlation between the source and the
receiver side information. For the DOP, it is instead seen that
the NOE mappings periodically acquire positive and negative
values, which decay to zero with increasing source magnitude,
and the interval over which the mapping takes non-zero values
becomes wider with the correlation between the source and the
side information. Finally, inspired by the mentioned properties of
the NOE mappings, parameterized encoder mappings with a small
number of degrees of freedom are proposed for both distortion
criteria, and their performance is compared with that of the NOE
mappings.

Index Terms- Joint source channel coding, zero-delay transmis-
sion, mean squared error distortion, distortion outage probability,
one-bit ADC, correlated side information.

I. INTRODUCTION

Current wireless communication systems enable reliable
transmission of specific high-rate content types, such as JPEG
and MPEG, by exploiting near capacity-achieving channel
codes and highly optimized compression algorithms. However,
many emerging applications, such as the Internet-of-Things
(IoT) or machine-to-machine (M2M) communications, impose
further constraints on the cost and complexity of communi-
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cation devices, or on the available energy and the end-to-
end latency, which render many of the known codes and
modulation techniques inapplicable. For example, in time-
sensitive control applications, such as the monitoring of power
lines for attacks or failures in a smart grid or the detection
and prevention of epileptic seizures through embedded sensors,
the underlying signals should be measured and transmitted to
the receiving-end under extreme latency constraints. In such
scenarios, neither measuring multiple signals to improve the
compression efficiency nor using the channel many times to
approach the channel capacity is possible. Here, we model
such a communication scenario with the extreme zero-delay
constraint, imposing the transmission of a single sample of the
underlying signal over a single use of the channel.

A key component of the front end of any digital receiver
is the analog-to-digital converter (ADC) that is typically con-
nected to each receiving antenna. The energy consumption of
an ADC (in Joules/sample) increases exponentially with its res-
olution (in bits/sample) [2]. This is causing a growing concern
regarding the energy consumption of digital receivers, either
due to the increasing number of receiving antennas, e.g., for
massive multiple-input multiple-output (MIMO) transceivers
[3], or due to the limited availability of energy, e.g., in energy
harvesting terminals [4]. Energy-efficient operation of digital
receivers may hence impose constraints on the resolution of
the ADCs that can be employed for each receiving antenna.

Motivated by communication among energy- and
complexity-limited sensor nodes under extreme latency
constraints, we study the zero-delay transmission of analog
sensor measurements to a receiver equipped with a 1-bit ADC
front end. Considering that the transmitter and the receiver
should be physically close to each other when communicating
at low power, we further assume that the receiving node has
its own correlated measurement of the transmitted source
sample (see Figure 1). We consider two standard performance
criteria, namely the mean squared error (MSE) distortion
and the distortion outage probability (DOP). Our goal here
is to gain insights into the structure and the performance of
the optimal encoder and decoder functions when the source
sample and the side information are jointly Gaussian.

This work contributes to a line of research that endeavors to
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understand the impact of front-end ADC limitations on the
fundamental performance limits of communication systems.
The capacity analysis of a real discrete-time AWGN channel
with a K-level ADC front end is studied in [5], proving
the sufficiency of K + 1 constellation points at the encoder.
Furthermore, it is shown in [5] that BPSK modulation achieves
the capacity when the receiver front end is limited to a 1-
bit ADC. In [6], the authors prove that, in the low signal-
to-noise ratio (SNR) regime, the symmetric threshold 1-bit
ADC is suboptimal, while asymmetric threshold quantizers
and asymmetric signalling constellations are needed to obtain
the optimal performance. The generalization of the analysis to
multiple-input multiple-output (MIMO) fading systems is put
forth in [7], and, more recently, to massive MIMO systems
in [3] and [8]. In [9] the authors of this work considered
the zero-delay transmission set-up analysed here, but in the
absence of correlated side information at the receiver. It is
noted that the zero-delay constraint prevents the application
of the channel capacity results in [5], [8], and as it will be
seen, the presence of correlated side information at the receiver
significantly modifies the optimal design problem with respect
to the set-up studied in [9].

The main contributions of this work are as follows. We
derive necessary optimality conditions for encoder and decoder
mappings for both of the performance criteria under consider-
ation, namely the MSE and the DOP. Then, we numerically
obtain an encoder mapping that satisfies the corresponding
necessary condition through the gradient descent algorithm.
For the MSE criterion, we observe that, in a manner similar
to the case with an infinite resolution front end studied in
[10]–[12], the numerically optimized encoder (NOE) mapping
is periodic. Furthermore, the period of this function depends
on the correlation coefficient between the source and the side
information, and is independent of the input power constraint,
or equivalently the channel SNR. Motivated by the structure
of the NOE mappings, we also propose simple parameterized
mappings, which, although being suboptimal, approach the
performance of NOE mappings, while requiring significantly
less computations for optimization. For the DOP criterion, we
observe that the NOE mappings periodically acquire positive
and negative values with decaying magnitude with the absolute
value of the source. It is also observed that, as the correlation
between the source and the side information increases, the
number of changes between positive and negative values in
the encoder mapping, as well as the size of the intervals
of the source output values for which the encoder mapping
is non-zero, increase. A parameterized encoder mapping is
also proposed for the DOP criterion and its performance is
compared with that of the NOE mapping.

The rest of the paper is organized as follows. In Section
II, the system model is explained. Section III focuses on the
MSE criterion. We study the optimal design of the encoder
and the decoder in Section III-A, while Sections III-B, III-C
and III-D present different parameterized encoding schemes.
In Section III-E, we consider the scenario in which the side
information is also available at the encoder, and, by leveraging

Figure 1. System model for the zero-delay transmission of a Gaussian source
sample over an AWGN channel with a one-bit ADC front end and correlated
side information at the receiver.

the results in [9], we obtain a lower bound on the performance
of the original problem with decoder-only side information.
As another reference result, in Section III-F, we present the
Shannon lower bound for the decoder-only side information
problem. Focusing on the DOP criterion in Section IV, we
first consider the optimal design of the encoder and decoder in
Section IV-A. Next, in Section IV-B, we propose a suboptimal
parameterized encoder mapping under the DOP criterion. In
Section IV-C, as for the MSE counterpart, we consider the case
in which the side information is also available at the encoder.
In Section V, numerical results are provided, and Section VI
concludes the paper.

Notations: Throughout the paper upper case and lowercase
letters denote random variables and their realizations, respec-
tively. The standard normal distribution is denoted by N(0, 1),
and its probability density function (pdf) by Φ(·). E[·] and Pr(·)
stand for the expectation and probability, respectively. Q(·)
denotes the complementary cumulative distribution function
(CCDF) of the standard normal distribution, defined as

Q(z) ,
1
√

2π

∞∫
z

e−
x2
2 dx. (1)

The boundaries of integrals are from −∞ to ∞ unless stated
otherwise. We denote the pdf of a standard bivariate normal
distribution with correlation r as

Φ (v, u) =
1

2π
√

1 − r2
e
− 1

2(1−r2) (v
2+u2−2rvu)

, (2)

and the conditional pdf for these variables as

Φ (v |u) =
1√

2π(1 − r2)
e
−
(v−ru)2

2(1−r2) . (3)

II. SYSTEM MODEL

We consider the system model in Figure 1, in which a single
Gaussian source sample V ∼ N(0, σ2

v ) is transmitted over a
single use of a channel characterized by AWGN followed by
a one-bit ADC front end. Unlike the model studied in [9], the
receiver has access to side information U ∼ N(0, σ2

u), which
is correlated with the source V . The correlation matrix of the
source and the side information is given by

Λ =

[
σ2
v rσvσu

rσvσu σ2
u

]
, (4)
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where r ∈ [−1, 1] denotes the correlation coefficient.
The encoded signal is obtained as X = f (V), where f : R→
R is a mapping that is constrained to satisfy an average power
constraint E[ f (V)2] ≤ P. At the receiver, the received noisy
signal is modelled as

Z = f (V) +W, (5)

where W ∼ N(0, σ2
w) is independent of the source and side

information. The noisy signal Z is quantized with a one-bit
ADC producing the received signal as

Y = Q(Z) =
{

0 Z ≥ 0,
1 Z < 0. (6)

We define the signal-to-noise ratio (SNR) as γ = P/σ2
w . Based

on Y and U, the decoder produces an estimate V̂ of V using a
decoding function g : {0, 1} × R→ R, i.e., V̂ = g(Y,U).

Two performance criteria are considered in this paper,
namely, the MSE distortion

D̄ = E
[
(V − V̂)2

]
, (7)

and the DOP

ε(D) = Pr
(
(V − V̂)2 ≥ D

)
. (8)

In both cases, we aim at studying the optimal encoder mapping
f , along with the corresponding optimal estimator g at the
receiver, such that D̄ and ε(D) are minimized subject to the
average power constraint. More specifically, as it is common in
related works (see, e.g., [10]), we consider the unconstrained
minimization

minimize
f ,g

L( f , g, λ), (9)

where

L( f , g, λ) =
{

D̄ + λE[ f (V)2] for the MSE criterion,
ε(D) + λE[ f (V)2] for the DOP criterion,

(10)

with λ ≥ 0 being a Lagrange multiplier that defines the relative
weight given to the average transmission power E[ f (V)2] as
compared to the distortion criterion.

III. MSE DISTORTION CRITERION

In this section, we study the performance of the system
model in Figure 1 under the MSE distortion criterion. In
the following, we first consider the optimal design of the
encoder and the decoder, and obtain a necessary condition for
the optimality of an encoder mapping. Then we numerically
obtain an encoder mapping that aims at satisfying these nec-
essary conditions via gradient descent. As lower complexity
alternatives, and inspired by the shape of the obtained NOE
mappings, we propose three different parameterized encoding
schemes, namely periodic linear transmission (PLT), periodic
BPSK transmission (PBT) and multi-sine transmission (MST).
Then, as lower bounds, we consider the MSE in the presence
of side information at both the encoder and the decoder, and
the Shannon lower bound.

A. Optimal Encoder and Decoder Design

The design goal is to minimize the Lagrangian in (9) for the
MSE distortion criterion. The following proposition provides
a necessary condition for the optimal encoder mapping.

Proposition III.1. The optimal encoder mapping f for prob-
lem (9) under the MSE distortion criterion must satisfy the
implicit equation

2
√

2πσwσuλ f (v)e
f (v)2

2σ2
w = 2vA(v) − B(v), (11)

where λ ≥ 0 and is given. The functions A(v) and B(v) are
defined as

A(v) ,
∫
Φ

(
u
σu

��� v
σv

)
(g(0, u) − g(1, u)) du, (12a)

B(v) ,
∫
Φ

(
u
σu

��� v
σv

) (
g(0, u)2 − g(1, u)2

)
du, (12b)

where g(y, u), for y = 0, 1, is the optimal MMSE estimator
given by

g(y, u) =

∫
vΦ

(
v
σv

�� u
σu

)
Q

(
(−1)y+1 f (v)

σw

)
dv∫

Φ

(
v
σv

�� u
σu

)
Q

(
(−1)y+1 f (v)

σw

)
dv

. (13)

Furthermore, the gradient of the Lagrangian function L( f , g, λ)
over f , for g given as in (13), is given by

∇L = 2λ f (v) −
e
−

f (v)2

2σ2
w

√
2πσwσu

(2vA(v) − B(v)). (14)

Proof : See Appendix B.

Remark III.1. The parameter λ in (11) is the Lagrange
multiplier, which is unique for a given power constraint [13,
Theorem 3.3.1]1. We also remark that, by following steps
similar to [10, Theorem 3], the same optimality condition in
(11) can also be derived by considering the decoder g(·, ·) as
a fixed functional of the encoder f (·). Hence, condition (11)
justifies an alternating optimization scheme in which f and g

are optimized iteratively while keeping one of them fixed at
each iteration.

To elaborate on the necessary condition obtained in (11), we
consider two extreme values of the correlation coefficient r . If
we have an independent side information, that is, when r = 0, it
can be easily verified that the condition (11) coincides with the
result obtained in [9, Proposition III.1], where there is no side
information at the receiver. The optimal mapping in this case
is an odd function. Plot of the optimal encoder mapping for
different SNR values is shown in Figure 7. It can be seen that,
for high SNR (large γ), the mapping tends to binary antipodal
signalling, whereas for low SNR (small γ), it tends to a linear
mapping. In contrast, with perfect side information, i.e., r =
±1, we have Φ (u/σu |v/σv) = ±

σu

σv
δ(u − v), where δ(·) is the

Dirac delta function, and, from (13), it is seen that g(y, u) is

1Uniqueness of the Lagrange multiplier λ, requires that the solution is
regular [13, Section 3.3.1]. The regularity of a solution is verified, since there
is only one constraint.
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Figure 2. NOE mappings under the MSE criterion with different average
power values and r = 0.85 (σv = σw = 1). Increasing the power constraint
P has no impact on the period of the NOE mapping, which instead depends
on r (see Figure 3).

the MMSE estimate of V given U, namely g(y, u) = σv

σu
u.

Therefore, from (12a) and (12b) along with (11) it is verified
that f (·) = 0.

In the following, we present NOE mappings obtained via
gradient descent by using the gradient (14). It is observed that,
due to the correlated receiver side information, the resulting
encoder mappings are periodic, with a period that depends on
the correlation coefficient r . Similar periodic mappings have
been found to be optimal in [10] for the case with an infinite-
resolution front end.

NOE mappings under the MSE distortion criterion: In order
to derive the NOE mappings we apply a gradient descent-
based iterative algorithm. The algorithm performs a gradient
descent search in the opposite direction of the derivative of the
Lagrangian (10) with respect to the encoder mapping f (·). The
update is obtained by

fi+1(v) = fi(v) − µ∇ f L, (15)

where i is the iteration index, ∇ f L is defined in (14), and
µ > 0 is the step size. The algorithm can be initialized with an
arbitrary mapping. Here, we use a linear mapping with slope
close to zero for initialization. It is noted that the algorithm is
not guaranteed to converge to a global optimal solution.

In Figure 2, NOE mappings for the MSE distortion criterion
obtained using the aforementioned gradient descent algorithm
are plotted for different average power constraints, for a corre-
lation coefficient of r = 0.85. We note the periodic structure of
the mappings, which is in line with the results in [10] for an
infinite resolution front end. In contrast, the optimal mapping
obtained in [9] when r = 0 is a monotonically increasing
function. We also observe that the average power constraint
P does not affect the period of the mapping. In Figure 3,
NOE mappings for an average power of P = 5 are plotted
for different correlation coefficients. We see that the period of

−5 0 5
−4

−2

0

2

4

v

f
(v
)

r = 0.6r = 0.05r = 0.45 r = 0.95

Figure 3. NOE mappings under the MSE criterion for different correlation
coefficients r and an average power constraint P = 5 (σ2

v = σ
2
w = 1).
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Figure 4. Illustration of th.e PLT encoder mapping for α = 2 and β = 2.5.

the mapping instead depends on r: the higher the correlation
coefficient r is, the smaller the period of the mapping is.

Furthermore, Figure 2 shows that the SNR, or P, affects
the shape of the encoder mapping in each period, where for
low SNR the optimal mapping resembles a periodic linear
function, while for high SNR, the optimal mapping resembles
a periodic BPSK encoder. Motivated by these observations and
by the results in [9] for the case of no side information, we
now propose three simple parameterized encoder mappings,
whose performance will be compared with the NOE mapping
in Section V.

B. Periodic Linear Transmission (PLT)

Targeting the low-SNR regime, the first proposed encoder
mapping is a periodic linear function with period β and slope
α within each period. The encoder function is given by

fPLT(v) = α(−1)
⌊
v
β +

1
2

⌋ (
β

⌊
v

β
+

1
2

⌋
− v

)
, (16)



5

where bxc is the largest integer less than or equal to x. In
Figure 4, an illustration of this mapping for α = 2 and β = 2.5
is shown. To satisfy an average power constraint of P, the
following condition must be satisfied by (α, β)

E[ f (V)2] =

α2

(
σ2
v + β

2
∞∑

i=−∞

i2

(
Q

(
−
β
2 + iβ
σv

)
−Q

(
β
2 + iβ
σv

))
−

2βσv
√

2π

∞∑
i=−∞

i ©­«e
−

(
−
β
2 +iβ

)2

2σ2
v − e

−

(
β
2 +iβ

)2

2σ2
v

ª®¬ª®¬ ≤ P. (17)

Remark III.2. The parameters α and β are optimized under
a given average power constraint P in order to minimize the
MSE distortion D̄; that is, we solve the following optimization
problem

minimize
α,β

D̄

s.t. E
[

f (V)2
]
≤ P,

(18)

where D̄ is given by

D̄ =σ2
v −

1
σuσv

∬
vΦ

(
v

σv
,

u
σu

)
·

(
g(1, u)Q

(
f (v)
σw

)
+ g(0, u)Q

(
− f (v)
σw

))
dudv. (19)

We solve the above optimization problem numerically using the
interior-point algorithm implemented by the fmincon function
in MATLAB software, where a large value for β, and an α
such that the power constraint P is satisfied with equality, are
chosen as initialization.

C. Periodic BPSK Transmission (PBT)

The second proposed encoder mapping, unlike PLT, targets
the high-SNR regime and adopts digital modulation with two
levels, namely, γ and −γ, with a period of δ. The mapping is
defined as

fPBT(v) = γ

(
1 + 2(1 − 2Q(v)) ·mod

(⌊
2v
δ

⌋)
2

)
, (20)

where mod(·)2 return its argument modulo 2. In Figure 5, an
illustration of this mapping for γ = 0.2 and δ = 2.5 is shown.
The numerical optimization over γ and δ is also performed
using the fmincon function.

D. Multi-Sine Transmission (MST)

Due to the periodic nature of the NOE mapping under the
MSE distortion criterion, as seen in Figures 2 and 3, the
NOE can be approximated by a sum of sinusoidal functions
with odd frequencies. Accordingly, we consider the following
parametrization of the encoder mapping f (·) given as

fMST(v) =m0 sin(wv) + m1 sin(3wv)
+ m2 sin(5wv) + m3 sin(7wv), (21)

where m0, m1, m2, m3 and w are the optimization parameters.
In Figure 6, an illustration of this mapping is shown for m0 =

-5 0 5
v

-0.2

-0.1

0

0.1

0.2

f
(v
) δ

2γ

Figure 5. Illustration of the PBT encoder mapping for γ = 0.2 and δ = 3.

-10 0 10
v

-1

0

1

f
M

S
T
(v
)

Figure 6. Illustration of the MST encoder mapping for m0 = 1, m1 =
0.2, m2 = 0.06, m3 = 0.015 and w = 1.

1, m1 = 0.2, m2 = 0.06, m3 = 0.015 and w = 1. Optimization
over the parameters m0, m1, m2, m3 and w is performed by
using the interior-point algorithm as explained in Remark III.2.

E. Side Information Available at Both the Encoder and De-
coder

Here, we consider the scenario in which both the encoder
and the decoder have access to the side information U. Source
V can be written as a linear combination of the side information
U and an independent noise term. Since the first term is known
perfectly both at the encoder and the decoder, all transmission
power should be used for the transmission of the independent
component. Therefore, without loss of optimality, the encoder
can encode the error

T = V −
σv

σu
rU, (22)
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-10 -5 0 5 10
-5

0

5

Figure 7. Illustration of the optimal encoder mapping when there is no side
information at the receiver, i.e., r = 0 (σ2

v = σ
2
w = 1).

where the random variable σvrU/σu is the MMSE estimate of
V given U, which can be computed at both the encoder and
the decoder. Since the random variable T , which is distributed
as N(0, σ2

t ), with σ2
t = σ

2
v (1 − r2), is independent of the side

information U, the encoder can directly encode the error T
via a mapping function f̃ (t) ignoring the presence of the side
information U at the receiver. Therefore, the problem reduces
to the one studied in [9] and discussed in Section III-A (see
Figure 7). As a result, a mapping f (v) = f̃ (v − σvru/σu)

is optimal, where f̃ (·) is the optimal mapping with no side
information shown in Figure 7. Therefore, the optimal mapping
is centred on the MMSE estimate σvru/σu . We will see in
Section V that, when the side information is not available at
the encoder, the NOE consists of periodic replicas of a mapping
similar to f̃ (·) in Figure 7.

F. Shannon Lower Bound (SLB)

A lower bound on the MSE distortion can be obtained by
relaxing the zero-delay constraint, and using the Shannon’s
source-channel separation theorem. In [5], it is shown that the
capacity of the AWGN channel with a 1-bit ADC in (6) is
given by

C = 1 − h
(
Q

(√
SNR

))
, (23)

where h(·) is the binary entropy function defined as h(p) ,
−p log2 p−(1− p) log2 (1 − p). Furthermore, the rate-distortion
function of a Gaussian source with correlated Gaussian side
information at the receiver is given by the Wyner-Ziv rate-
distortion function [14]

R(D̄) =
1
2

[
log2

σ2
v (1 − r2)

D̄

]+
, (24)

where [x]+ = max(0, x). Combining (23) and (24) a lower
bound on the MSE distortion D̄ is obtained as

D̄lower = (1 − r2)σ2
v2−2

(
1−h

(
Q

(√
SNR

)))
. (25)

IV. DOP CRITERION

In this section, we consider the optimization of the system
in Figure 1 under the DOP criterion. We first derive necessary
conditions for an optimal encoder and decoder pair. Then we
obtain a lower bound by considering the availability of the side
information also at the transmitter.

A. Optimal Encoder and Decoder Design

We first obtain the necessary optimality condition of an
encoder mapping f for a given decoder g. Then, we obtain
the optimal decoder g for a given encoder mapping f .

Optimal encoder: For a fixed decoder function g(y, u), we
define the intervals

Iy(u) =
{
v : (v − g(y, u))2 < D

}
, y = 0, 1. (26)

Each interval I0(u) and I1(u) in (26) corresponds to the set of
source values that are within the allowed distortion target D of
the reconstruction points g(0, u) and g(1, u), respectively, when
the side information is U = u. Hence, the following claims
hold: (i) For all source realizations v in the set (I0(u)∪I1(u))C =
{v : miny=0,1(v − g(y, u))2 ≥ D}, outage occurs since no
reconstruction point g(y, u) satisfies the distortion constraint
(superscript C denotes the complement set). We refer to this
event as source outage. (ii) For all source realizations in the
interval I0(u) ∩ I1(u), either of the reconstruction points yields
a distortion not larger than the target value D. Therefore,
regardless of which output (g(0, u), g(1, u)) is selected by the
receiver, no outage occurs.

With these observations in mind, the next proposition char-
acterizes the optimal encoder mapping f for a given decoder
g.

Proposition IV.1. Given a target distortion D, and a decoder
with reconstruction function g(·, ·), the optimal mapping f (·)
for the problem (10) under the DOP criterion satisfies

f (v) =
e
−

f (v)2

2σ2
w

2λ
√

2π

(
Pr

(
U ∈ S0\1(v)

)
− Pr

(
U ∈ S1\0(v)

) )
. (27)

where S0\1(v) and S1\0(v) are defined as

S0\1(v) , {u : b0l(u) ≤ v ≤ b0r (u)},

S1\0(v) , {u : b1l(u) ≤ v ≤ b1r (u)}, (28)

and b1r (u), b1l(u), b0r (u) and b0l(u) are defined as below

b0r (u) ,{
g(0, u) +

√
D g(0, u) ≥ g(1, u),

min
{
g(1, u) −

√
D, g(0, u) +

√
D
}

g(0, u) < g(1, u),
(29a)

b0l(u) ,{
max

{
g(1, u) +

√
D, g(0, u) −

√
D
}

g(0, u) ≥ g(1, u),
g(0, u) −

√
D g(0, u) < g(1, u),

(29b)
b1r (u) ,
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Figure 8. Illustration of the intervals S0\1(v) and S1\0(v) for v = −0.7, and
functions I0r (u), I0l (u), I1r (u), I1l (u) for a given decoder mapping g(Y,U).

{
min

{
g(1, u) +

√
D, g(0, u) −

√
D
}

g(0, u) ≥ g(1, u),
g(1, u) +

√
D g(0, u) < g(1, u),

(29c)
b1l(u) ,{

g(1, u) −
√

D g(0, u) ≥ g(1, u),
max

{
g(1, u) −

√
D, g(0, u) +

√
D
}

g(0, u) < g(1, u).
(29d)

Furthermore, the gradient of the Lagrangian function L( f , g, λ)
over f , for a given g, is found as

∇L =2λ f (v) −
e
−

f (v)2

2σ2
w

√
2π

·

(
Pr

(
U ∈ S0\1(v)

)
− Pr

(
U ∈ S1\0(v)

) )
. (30)

Proof : See Appendix C.
The sets S0\1(v) and S1\0(v) and functions

I0r (u), I0l(u), I1r (u), I1l(u) are illustrated in Figure 8 for
an arbitrary decoding function g(Y,U).

Optimal decoder: Assuming that the encoder mapping f is
given, we now aim to minimize the Lagrangian function in (10)
for the DOP criterion over the decoding function g. The next
proposition characterizes the optimal decoder mapping for a
given encoder f .

Proposition IV.2. Given a target distortion D and an encoder
mapping f (·), the optimal decoder g(·, ·) for the problem (10)
under the DOP criterion is obtained as

g(y, u) ∈ arg max
v̂

v̂+
√
D∫

v̂−
√
D

Φ

(
v

σv

��� u
σu

)
Q

(
(−1)y+1 f (v)

σw

)
dv.

(31)

Proof : See Appendix D.

To provide further insights into Propositions IV.1 and IV.2, it
is worth considering the two extreme cases of side information
correlation. When r = 0 the decoder outputs g(0, u) = v̂0 and
g(1, u) = v̂1 are independent of the side information U, and
the conditions derived here coincide with those obtained in [9,
Proposition IV.1] for the optimal mapping when there is no
side information at the receiver. Instead, with r = 1, we can
choose g(y, u) = g(u) = ±σv

σu
u; and hence, we have f (v) = 0

for all v.

Remark IV.1. In the low SNR regime, from (31), we have
g(y, u) ' rσv

σu
u, y = 0, 1. Therefore, in the asymptotic low SNR

regime, the DOP at the receiver is found as (see Appendix E)

lim
SNR→0

ε(D) = 2Q

( √
D

σv

√
1 − r2

)
. (32)

In Section V, we validate (32) in the asymptotic low SNR
regime.

Similarly to the MSE distortion, in the following, we
present NOE mappings obtained via gradient descent by using
(30). It will be observed that, due to the correlated receiver
side information, the resulting encoder mappings periodically
acquire positive and negative values, which decay to zero
with increasing source magnitude, and the interval over which
the mapping is nonzero becomes wider as the correlation
coefficient increases.

NOE mappings under the DOP criterion: Similarly to the
MSE distortion criterion, we apply a gradient descent-based
iterative algorithm. The update is obtained by (15), where ∇ f L
is defined in (30). The algorithm is initialized with a linear
mapping with slope close to zero.

Remark IV.2. While the optimality condition for the MSE
criterion is shown to be the same as for an alternating
optimization of the encoder and decoder mappings (see Remark
III.1), in the case of DOP, we have a priori focused our
attention to the use of alternating optimization. Therefore,
under both criteria the numerical algorithm employed to obtain
the NOE mappings is equivalent to the one described in [10].
We also remark that different power constraints are imposed
by means of a linear search over the Lagrange multiplier λ.

In Figure 9, NOE mappings for different power constraints
and correlation coefficients are shown under the DOP criterion.
For small values of the correlation coefficient, such as r = 0.1,
the NOE mappings resemble the optimal mappings in the
absence of receiver side information obtained in [9], which
correspond to a binary transmitter as seen in Figure 9. We
observe that the domain of the mapping is bounded, unlike
for the MSE criterion, since values of the source that differ
by more than

√
D from the reconstruction points yield an

outage irrespective of the mapping. As the correlation between
the source and the side information increases, the domain of
the mapping expands. Motivated by this observation, we now
propose a simple parameterized encoder mapping, which will
be compared with the NOE mapping in Section V.
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Figure 9. NOE mappings under the DOP criterion for different correlation
coefficients, (σ2

v = σ2
w = 1). The power constraint P of the mappings

increases in the direction of the arrow.

B. Periodically Decaying Transmission (PDT)

The proposed encoder mapping is a periodically decaying
function parameterized with the variables δ, γ, ζ , and is given
by

fPDT(v) = ζ

⌊
2|v |
δ

⌋
fPBT(v), (33)

where fPBT(v) is as defined in (20) and 0 ≤ ζ ≤ 1. In Figure
10, an illustration of this mapping for ζ = 0.5, δ = 3 and
γ = 0.2 is shown. The optimization over ζ, δ and γ in order to
minimize the DOP is performed by the interior-point algorithm
as explained in Remark III.2.

C. Side Information Available at Both Encoder and Decoder

When the side information U is also available at the encoder,
using the optimal decoder under the DOP criterion, the encoder
can reconstruct the source as

arg min
v̂

Pr(|V − v̂ |2 ≥ D |U = u) (34a)

= arg max
v̂

v̂+
√
D∫

v̂−
√
D

Φ

(
v

σv

��� u
σu

)
dv (34b)

=
σv

σu
ru. (34c)

From (34), we conclude that the best estimate of a Gaussian
source from Gaussian side information under the DOP cri-
terion equals the MMSE estimate. Given that (34c) can be
reconstructed at both encoder and decoder, as in Section III-E,

-10 -5 0 5 10
v

-0.2

-0.1

0

0.1

0.2

f
P
D
T
(v
)

γ

δ

γζ2

γζ

Figure 10. Illustration of the PDT encoder mapping for ζ = 0.5, γ = 0.2 and
δ = 3.

the optimal encoder uses the optimal mapping for the scenario
without side information [9] as applied to the error signal in
(22). In the following proposition, we show that the optimal
decoder under the DOP criterion is obtained by summing the
estimates computed on the basis of the side information u and
the channel output y, separately.

Proposition IV.3. Given a target distortion D and side infor-
mation U being available at both encoder and decoder, the
optimal decoder g(·, ·) for the problem (10) under the DOP
criterion is obtained as

g(y, u) =
rσv

σu
u + t̂y, y = 0, 1, (35)

where t̂y represents the optimal decoder for a Gaussian source
with variance (1 − r2)σ2

v as a function of Y, which is given in
[9, Proposition IV.2]. The resulting minimum DOP is obtained
as

ε(D) =2Q

(
2
√

D − a
√

1 − r2σv

)
+ 2Q

(
t
σw

)
·

(
Q

(
a

√
1 − r2σv

)
−Q

(
2
√

D − a
√

1 − r2σv

))
, (36)

where t is the solution of the equation te
t2

2σ2
w = 1

2
√

2πσwλ
.

Proof : See Appendix F.

V. NUMERICAL RESULTS

In this section, we present numerical results with the aim
of assessing the performance of the encoder/ decoder pairs
obtained in the previous sections. In the following, we first
discuss the numerical results for the MSE distortion criterion,
followed by the DOP criterion.
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Figure 12. Complementary MSE distortion versus correlation coefficient r
under the average power constraint P = 5 (σ2

v = σ
2
w = 1).

MSE criterion: In Figure 11, we plot the complementary
MSE distortion (1 − D̄) versus SNR for the NOE, as well as
for the PLT, MST and PBT schemes, for correlation coefficient
r = 0.6. The SLB and the MSE distortion achieved when both
the encoder and the decoder have access to the side informa-
tion U, which is referred to as the informed-encoder lower
bound (ILB), are also included for comparison. Following the
discussion above, we observe that the performance of PBT
is close to that of NOE at high SNR values. On the other
hand, for low SNRs, PLT outperforms PBT and approaches
the NOE performance. In the low to medium SNR values,
the performance of MST is very close to the one obtained
by the NOE mappings, surpassing the performance of both
PBT and PLT. Its performance for the high SNR values can be

improved by introducing additional harmonics, at the expense
of increased complexity.

In Figure 12, we plot the complementary MSE distortion
(1 − D̄) versus the correlation coefficient r for a fixed average
power constraint of P = 5. We note from Figure 12 that the
ILB is tight in the low and high correlation regime with respect
to SLB, and in general there is a loss in the MSE distortion
by not having the side information at the encoder. We recall
that this is not the case with infinite resolution and infinite
block-length. We also observe that PLT is tighter when the
correlation is higher, while it performs quite poorly when the
side information quality is poor. On the other hand, for this
P values PBT performs relatively close to NOE for the whole
range of side information correlation values. As for MST, it
is observed that in the low correlation coefficient r values,
it performs similarly to PBT, while for the high correlation
coefficient r values, it almost closes that gap with NOE. For
an infinite resolution front end and side information at the
receiver (studied in [11]), the gradient of the Lagrangian can
be computed as

∇L = 2λ f (v) − v
∬

g
′

(u, f (v) + w)Φ(u|v)ΦW (w)dwdu,

(37)

where g
′

(u, f (v)+w) is the derivative of the MMSE estimator
g(·, ·) with respect to the second argument, and is given by

g
′

(x, y) =
d
dy

∫
vΦ(v |x)ΦW (y − f (v))dv∫
Φ(v |x)ΦW (y − f (v))dv

. (38)

Using the resulting gradient descent algorithm, the performance
of the NOE mappings with infinite resolution front end (IRF)
can be evaluated, and it is included in Figure 12 for compari-
son. As we observe from Figure 12, an infinite resolution front
end yields significant gains for low values of the correlation
coefficient r , with diminishing performance gains as r grows
larger due to the increasing reliance of the decoder on the side
information.

DOP criterion: In Figure 13, we plot the complementary
DOP, 1 − ε(D), versus SNR for NOE mappings as well as
the ILB and PDT, for correlation coefficients r = 0, 0.6, 0.8.
We observe that in the low SNR regime the DOP achieved
by NOE is close to the ILB. This is because, in the low
SNR regime the source estimate can be obtained based mainly
on the side information. We also observe that, as the SNR
increases, the DOP saturates to the source outage probability,
which is independent of the SNR. As for the PDT, it is observed
that the performance gap is not negligible, however, from the
complexity point of view, PDT is much simpler than the NOE
mappings.

VI. CONCLUSIONS

We considered the problem of transmission of a Gaussian
source over an AWGN channel to a receiver equipped with a
one-bit ADC front end. We also considered the availability of
a correlated side information at the receiver. We studied this
problem under two distinct performance criteria, namely the
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Figure 13. Complementary DOP vs. SNR for r = 0, 0.6, 0.8 (σ2
v = σ

2
w = 1)

and D = 0.09.

MSE distortion and the DOP, while imposing an average power
constraint at the transmitter. Assuming that the transmission is
zero-delay, in the sense that it maps every single source output
to a single channel input, we obtained necessary conditions
for the optimal encoder and decoder mappings under both
performance criteria. In the comparison to the previous work
in [9], we observed that the availability of correlated side
information at the receiver has a significant impact on the shape
of the optimal encoder mapping. For instance, as in the case of
infinite-resolution front end [10], the optimal mapping becomes
periodic under the MSE distortion criterion. We observed that
the period of the optimal mapping depends on the correlation
coefficient between the source and the side information, but
it is not affected by the transmitter power condition. For the
DOP criterion, the availability of the side information enlarges
the domain of the mapping, i.e., a larger set of source sample
values are mapped to a non-zero channel input. Interesting
future research direction include investigating the effect of
higher level ADCs on the performance of the system, obtaining
optimized structures when there is fading in the channel or
when there are multi observations at the receiver.
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VIII. APPENDICES

A. PRELIMINARIES: CALCULUS OF VARIATIONS

In the proof of the Proposition III.1, we use variational
calculus [15, Section 7] to obtain necessary optimality con-
ditions. The next theorem summarizes the key result that will
be needed.

Theorem A.1. Let F, G0 and Gi, i = 1, . . . , n, be continuous
functionals of ( f ,H, t), ( f , r1, . . . , rn, u, t) and ( f , t, u), respec-
tively, where H and ri, i = 1, . . . , n, are given by

H(t) =

t2∫
t1

G0( f (t), r1(u), . . . , rn(u), u, t)du, (39)

ri(u) =

t2∫
t1

Gi( f (v), v, u)dv, i = 1, . . . , n. (40)

Also, let F, G0 and Gi, i = 1, . . . , n, have continuous partial
derivatives with respect to ( f ,H), ( f , r1, . . . , rn) and f , respec-
tively. Consider the following minimization problem

minimize
f

L( f ) ,

t2∫
t1

F( f (t),H(t), t)dt . (41)

Define ∇L as

∇L , F f ( f (t),H(t), t)

+ FH ( f (t),H(t), t)

t2∫
t1

G f
0 ( f (t), r1(u), . . . , rn(u), u, t)du

+

t2∫
t1

t2∫
t1

FH ( f (v),H(v), v)
n∑
i=1

(
G f

i ( f (t), t, u)

· Gri
0 ( f (v), r1(u), . . . , rn(u), u, v)

)
dvdu, (42)

where F f and FH denote the partial derivatives of the func-
tional F with respect to f and H, respectively; and G f

0 and
Gri

0 denote the partial derivatives of the functional G0 with
respect to f and ri , respectively. Similarly, G f

i denotes the
partial derivative of the functional Gi with respect to f . A
necessary condition for a function f to be a solution to the
minimization problem in (41) is

∇L = 0. (43)

Proof : Following the conventional approach in the calculus
of variations, we perturb the function f (t) by an arbitrary
function η(t) that vanishes on the boundary points t1 and
t2 [15]. Let δf L , dL( f+αη)

dα

���
α=0

be the resulting Gateaux
derivative of the functional L with respect to the parameter
α. We have

δf L =
d

dα

t2∫
t1

F( f (t) + αη(t),Hα(t), t)dt

�����
α=0

, (44)

where Hα(t) is defined as

Hα(t) ,

t2∫
t1

G0( f (t) + αη(t), rα1 (u), . . . , r
α
n (u), u, t)du, (45)
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and rαi (u), i = 1, . . . , n, are defined as

rαi (u) ,

t2∫
t1

Gi( f (v) + αη(v), v, u)dv, i = 1, . . . , n. (46)

Evaluating the derivative in (44), we have

δf L =

t2∫
t1

[
η(t)F f ( f (t),H(t), t)

+
dHα(t)

dα
FH ( f (t),H(t), t)

]
dt, (47)

where dHα (t)
dα is the Gateaux derivative of the functional H(t),

which is computed as

dHα(t)
dα

=

d
dα

t2∫
t1

G0( f (t) + αη(t), rα1 (u), . . . , r
α
n (u), u, t)du

���
α=0

(48)

=

t2∫
t1

(
η(t)G f

0 ( f (t), r1(u), . . . , rn(u), u, t)

+

n∑
i=1

drαi (u)
dα

Gri
0 ( f (t), r1(u), . . . , rn(u), u, t)

)
du, (49)

where

drαi (u)
dα

,
d

dα

t2∫
t1

Gi( f (v) + αη(v), v, u)dv

�����
α=0

(50)

=

t2∫
t1

η(v)G f
i ( f (v), v, u)dv. (51)

By plugging (51) into (49), we can write

dHα(t)
dα

=

t2∫
t1

η(t)G f
0 ( f (t), r1(u), . . . , rn(u), u, t)du,

+

t2∫
t1

t2∫
t1

n∑
i=1

(
η(v)G f

i ( f (v), v, u)

· Gri
0 ( f (t), r1(u), . . . , rn(u), u, t)

)
dvdu. (52)

By substituting (52) into (47) we have

δf L =

t2∫
t1

η(t)F f ( f (t),H(t), t)dt

+

t2∫
t1

FH ( f (t),H(t), t)

·
©­«

t2∫
t1

η(t)G f
0 ( f (t), r1(u), . . . , rn(u), u, t)du

+

t2∫
t1

t2∫
t1

n∑
i=1

η(v)G f
i ( f (v), v, u)

· Gri
0 ( f (t), r1(u), . . . , rn(u), u, t)dvduª®¬ dt (53)

=

t2∫
t1

η(t) ©­«F f ( f (t),H(t), t) + FH ( f (t),H(t), t)

·

t2∫
t1

G f
0 ( f (t), r1(u), . . . , rn(u), u, t)duª®¬ dt

+

t2∫
t1

t2∫
t1

t2∫
t1

η(v)FH ( f (t),H(t), t)
n∑
i=1

(
G f

i ( f (v), v, u)

· Gri
0 ( f (t), r1(u), . . . , rn(u), u, t)

)
dvdudt (54)

=

t2∫
t1

η(t) ©­«F f ( f (t),H(t), t) + FH ( f (t),H(t), t)

·

t2∫
t1

G f
0 ( f (t), r1(u), . . . , rn(u), u, t)duª®¬ dt

+

t2∫
t1

t2∫
t1

t2∫
t1

η(t)FH ( f (v),H(v), v)
n∑
i=1

(
G f

i ( f (t), t, u)

· Gri
0 ( f (v), r1(u), . . . , rn(u), u, v)

)
dvdudt (55)

=

t2∫
t1

η(t) ©­«F f ( f (t),H(t), t) + FH ( f (t),H(t), t)

·

t2∫
t1

G f
0 ( f (t), r1(u), . . . , rn(u), u, t)du

+

t2∫
t1

t2∫
t1

FH ( f (v),H(v), v)
n∑
i=1

(
G f

i ( f (t), t, u)

· Gri
0 ( f (v), r1(u), . . . , rn(u), u, v)

)
dvduª®¬ dt. (56)

Since η(t) in (56) is an arbitrary function, the necessary
condition for f to be a solution is that the term inside the
round brackets in (56) is zero. This concludes the proof.

�

Remark A.1. In Proposition IV.1, we will consider the
minimization of the functional

L( f ) =
1
σv

t2∫
t1

Φ

(
t
σv

)
F̃ (t, f (t)) dt . (57)
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By writing the Euler-Lagrange equation from [15, Section 7.5,
Equation (2)], it can be easily verified that the solution of (57)
needs to satisfy

∇L , F̃ f (u, f (u)) = 0, u ∈ [t1, t2], (58)

where F̃ is continuous with respect to f and has continuous
partial derivatives with respect to f .

B. PROOF OF PROPOSITION III.1

Note that under the MSE distortion criterion the optimal
decoder is MMSE, which for this system model is obtained as
follows

v̂ = g(y, u) (59)
= E[V |Y = y,U = u] (60)

=

∫
vΦ

(
v
σv
, u
σu

)
Pr(Y = y |U = u,V = v)dv

Pr(Y = y,U = u)
(61)

=

∫
vΦ

(
v
σv

�� u
σu

)
Q

(
(−1)y+1 f (v)

σw

)
dv∫

Φ
(
v
σv

�� u
σu

)
Q

(
(−1)y+1 f (v)

σw

)
dv

(62)

,
r2y+1

r2y+2
. (63)

Due to the orthogonality principle of the MMSE estimation,
it can be easily verified that D̄ = σ2

v − E[VV̂]. Rewriting
the Lagrangian L( f , g, λ) for the MSE distortion criterion and
dropping constants that are independent of f , we have

minimize
f

− E[VV̂] + λE[ f (V)2]. (64)

By expanding the objective function in (64), it can be written
as

−1
σwσvσu

∫ ∫ ∫
vg(y, u)Φ

(
v

σv
,

u
σu

)
Φ

(
w

σw

)
dwdudv

+
λ

σv

∫
Φ

(
v

σv

)
f (v)2dv (65)

=
−1
σvσu

∫ ∫
v

(
g(1, u)Q

(
f (v)
σw

)
+ g(0, u)Q

(
− f (v)
σw

))
· Φ

(
v

σv
,

u
σu

)
dudv +

λ

σv

∫
Φ

(
v

σv

)
f (v)2dv (66)

=
−1
σv

∫ (
v

∫
1
σu
Φ

(
v

σv
,

u
σu

) (
r3(u)
r4(u)

Q
(

f (v)
σw

)
+

r1(u)
r2(u)

Q
(
− f (v)
σw

))
du + λΦ

(
v

σv

)
f (v)2

)
dv, (67)

Note that (67) is in the form of (41) with F( f ,H(v), v) and
H(v) defined as

F( f ,H(v), v) =
1
σv

(
−vH(v) + λΦ

(
v

σv

)
f (v)2

)
, (68)

and

H(v) =
∫

G0 ( f (v), r1(u), . . . , r4(u), u, v) du, (69)

where G0 ( f (v), r1(u), . . . , r4(u), u, v) is given by

G0 ( f (v), r1(u), . . . , r4(u), u, v) =
1
σu
Φ

(
v

σv
,

u
σu

)
·

(
r3(u)
r4(u)

Q
(

f (v)
σw

)
+

r1(u)
r2(u)

Q
(
− f (v)
σw

))
, (70)

and Gi, i = 1, ..., 4, are the arguments of the integrals r2y+1
and r2y+2 for y = 0, 1 defined in (63). Now we can apply the
necessary condition in (42). To this end, we compute

F f ( f (v),H(v), v) =
2λ
σv
Φ

(
v

σv

)
f (v), (71a)

FH ( f (v),H(v), v) =
−v

σv
, (71b)

G f
0 ( f (v), r1(u), . . . , r4(u), u, v) =

e
−

f (v)2

2σ2
w

σwσu

√
2π
Φ

(
v

σv
,

u
σu

) (
r1(u)
r2(u)

−
r3(u)
r4(u)

)
, (71c)

Gr2y+1
0 ( f (v), r1(u), . . . , r4(u), u, v) =

1
σur2y+2(u)

Φ

(
v

σv
,

u
σu

)
Q

(
(−1)y+1 f (v)

σw

)
, (71d)

Gr2y+2
0 ( f (v), r1(u), . . . , r4(u), u, v) =

− r2y+1(u)G
r2y+1
0 ( f (v), r1(u), . . . , r4(u), u, v), (71e)

G f
2y+2( f (v), v, u) = (−1)yΦ

(
v

σv
,

u
σu

)
e
−

f (v)2

2σ2
w

√
2πσw

, (71f)

G f
2y+1( f (v), v, u) = v(−1)yG f

2y+2( f (v), v, u). (71g)

Substituting (71) in (42), the necessary condition in (41) is
obtained as

∇L =
2λ
σv
Φ

(
v

σv

)
f (v) −

ve
−

f (v)2

2σ2
w

σvσwσu

√
2π

·

∫
Φ

(
v

σv
,

u
σu

) (
r1(u)
r2(u)

−
r3(u)
r4(u)

)
du

−

∫ ∫
t
σv

©­­«vΦ
(
v

σv
,

u
σu

)
−e
−

f (v)2

2σ2
w

√
2πσw

·
1

σur4(u)
Φ

(
t
σv
,

u
σu

)
Q

(
f (t)
σw

)
+ Φ

(
v

σv
,

u
σu

)
−e
−

f (v)2

2σ2
w

√
2πσw

·
−r3(u)
σur4(u)2

Φ

(
t
σv
,

u
σu

)
Q

(
f (t)
σw

)
+ vΦ

(
v

σv
,

u
σu

)
e
−

f (v)2

2σ2
w

√
2πσw

·
1

σur2
Φ

(
t
σv
,

u
σu

)
Q

(
− f (t)
σw

)
+ Φ

(
v

σv
,

u
σu

)
e
−

f (v)2

2σ2
w

√
2πσw

·
−r1(u)
σur2(u)2

·Φ

(
t
σv
,

u
σu

)
Q

(
− f (t)
σw

) ª®®¬ dtdu = 0. (72)
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Rewriting (72), we have

2
√

2πσwσuλΦ

(
v

σv

)
f (v)e

f (v)2

2σ2
w =

v

∫
Φ

(
v

σv
,

u
σu

) (
r1(u)
r2(u)

−
r3(u)
r4(u)

)
du

−

∫ ∫
Φ

(
v

σv
,

u
σu

)
·

vt
r4(u)

Φ

(
t
σv
,

u
σu

)
Q

(
f (t)
σw

)
dtdu

+

∫ ∫
Φ

(
v

σv
,

u
σu

)
·

tr3(u)
r4(u)2

Φ

(
t
σv
,

u
σu

)
Q

(
f (t)
σw

)
dtdu

+

∫ ∫
Φ

(
v

σv
,

u
σu

)
·

vt
r2(u)

Φ

(
t
σv
,

u
σu

)
Q

(
− f (t)
σw

)
dtdu

−

∫ ∫
Φ

(
v

σv
,

u
σu

)
·

tr1(u)
r2(u)2

Φ

(
t
σv
,

u
σu

)
Q

(
− f (t)
σw

)
dtdu (73)

= v

∫
Φ

(
v

σv
,

u
σu

) (
r1(u)
r2(u)

−
r3(u)
r4(u)

)
du

− v

∫
Φ

(
v

σv
,

u
σu

)
·

r3(u)
r4(u)

du

+

∫
Φ

(
v

σv
,

u
σu

)
·

r3(u)2

r4(u)2
du

+ v

∫
Φ

(
v

σv
,

u
σu

)
·

r1(u)
r2(u)

du

−

∫
Φ

(
v

σv
,

u
σu

)
·

r1(u)2

r2(u)2
du. (74)

Finally, by some elementary manipulations the result in (11)
is obtained.

�

C. PROOF OF PROPOSITION IV.1

Assume that a decoder function g(Y,U) is given. By expand-
ing the Lagrangian function L( f , g, λ) for the DOP we have

L( f , g, λ) = ε(D) + λE[ f (V)2] (75)

=
1
σu

∫
ε(D |U = u)Φ

(
u
σu

)
du

+
λ

σv

∫
Φ

(
v

σv

)
f (v)2dv. (76)

Expanding ε(D |U = u) = Pr
(
(V − V̂)2 ≥ D |U = u

)
we have

ε(D |U = u) = Pr(V ∈ I0(u) \ I1(u),Y = 1|U = u)

+ Pr(V ∈ I1(u) \ I0(u),Y = 0|U = u)

+ Pr(V ∈ (I0(u) ∪ I1(u))C, |V̂ − V |2 ≥ D|U = u)

+ Pr(V ∈ (I0(u) ∩ I1(u)), |V̂ − V |2 ≥ D |U = u) (77a)

=
1
σv

∫
v∈I0(u)\I1(u)

Φ

(
v

σv

��� u
σu

)
Q

(
f (v)
σw

)
dv

+
1
σv

∫
v∈I1(u)\I0(u)

Φ

(
v

σv

��� u
σu

)
Q

(
− f (v)
σw

)
dv

+
1
σv

∫
v∈(I0(u)∪I1(u))C

Φ

(
v

σv

��� u
σu

)
dv, (77b)

where we used the fact that no outage occurs when V ∈ I0(U)∩
I1(U). Substituting (77b) in (76), we can write the Lagrangian
L( f , g, λ) as

L( f , g, λ) =
1

σvσu

∫
Φ

(
u
σu

) ∫
Φ

(
v

σv

��� u
σu

)
G (u, v, f (v)) dvdu

+
λ

σv

∫
Φ

(
v

σv

)
λ f 2(v)dv (78)

=
1
σv

∫
Φ

(
v

σv

)
[∫

1
σu
Φ

(
u
σu

��� v
σv

)
G (u, v, f (v)) du + λ f 2(v)

]
dv, (79)

with G (u, v, f (v)) defined as

G (u, v, f (v)) ,


Q

(
f (v)
σw

)
v ∈ (I0(u) \ I1(u)),

Q
(
− f (v)
σw

)
v ∈ (I1(u) \ I0(u)),

1 v ∈ (I0(u) ∪ I1(u))C,
0 v ∈ (I0(u) ∩ I1(u)).

(80)

Applying the Euler-Lagrange equation (57), we have

∇L = 2λ f (v) +
1
σu

∫
Φ

(
u
σu

��� v
σv

)
G f (u, v, f (v)) du = 0,

(81)

where G f (u, v, f (v)) is the derivative of G (u, v, f (v)) with
respect to the function f and is obtained as

G f (u, v, f (v)) =
−1√
2π

e
−

f (v)2

2σ2
w v ∈ (I0(u)\I1(u)),

1√
2π

e
−

f (v)2

2σ2
w v ∈ (I1(u)\I0(u)),

0 v ∈ (I0(u)∩I1(u)) or v ∈ (I0(u)∪I1(u))C .
(82)

Note that the integration in (81) is over the side information
u. In the following, we aim at identifying the boundaries of the
intervals of u, such that, for a given source output v we have
G f (u, v, f (v)) , 0. To do so, we characterize the intervals as

I0(u) \ I1(u) = (b0l(u), b0r (u)) ,

I1(u) \ I0(u) = (b1l(u), b1r (u)) . (83)

Note that if v ∈ I0(u) ∩ I1(u) and v ∈ (I0(u) ∪ I1(u))C , we have
G f (u, v, f (v)) = 0. For a given side information realization u,
g(0, u) and g(1, u) are two points. Hence, depending on the
condition that g(0, u) is equal to, less than, or greater than
g(1, u), we have different situations for I0(u) and I1(u) in (82).

Case 1) g(0, u) = g(1, u): In this case the two intervals I0(u)
and I1(u) overlap completely, and therefore, I0(u) \ I1(u) and
I1(u) \ I0(u) are both empty sets.

Case 2) g(0, u) > g(1, u): In this case b0l(u), b0r (u), b1r (u)
and b1l(u) are obtained as

b0r (u) = g(0, u) +
√

D,

b0l(u) = max
{
g(1, u) +

√
D, g(0, u) −

√
D
}
,
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b1r (u) = min
{
g(1, u) +

√
D, g(0, u) −

√
D
}
,

b1l(u) = g(1, u) −
√

D. (84)

Case 3) g(0, u) < g(1, u): In this case b0l(u), b0r (u), b1r (u)
and b1l(u) are obtained as

b0r (u) = min
{
g(0, u) +

√
D, g(1, u) −

√
D
}
,

b0l(u) = g(0, u) −
√

D,

b1r (u) = g(1, u) +
√

D,

b1l(u) = max
{
g(1, u) −

√
D, g(0, u) +

√
D
}
. (85)

It can be easily verified that for a given source output v, the
side information range corresponding to G f (u, v, f (v)) , 0 can
be obtained as S0\1(v) ∪ S1\0(v), where S0\1(v) and S1\0(v) are
defined as

S0\1(v) , {u : b0r (u) ≥ v ≥ b0l(u)},

S1\0(v) , {u : b1r (u) ≥ v ≥ b1l(u)}. (86)

Finally, we can simplify (81) as

∇L =
−1
√

2πσu

e
−

f (v)2

2σ2
w

∫
u∈S0\1(v)

Φ

(
u
σu

��� v
σv

)
du

+
1

√
2πσu

e
−

f (v)2

2σ2
w

∫
u∈S1\0(v)

Φ

(
u
σu

��� v
σv

)
du + 2λ f (v). (87)

Imposing (87) to be zero we have

f (v) =
e
−

f (v)2

2σ2
w

2λ
√

2π
(
Pr

(
U ∈ S0\1(v)

)
− Pr

(
U ∈ S1\0(v)

) )
. (88)

�

D. PROOF OF PROPOSITION IV.2

The optimal decoder functions, i.e., g(0, u) and g(1, u) can
be obtained as

g(0, u) = arg min
v̂

Pr
(
|V − v̂ |2 ≥ D|U = u,Y = 0

)
(89)

= arg max
v̂

Pr
(
|V − v̂ |2 < D |U = u,Y = 0

)
(90)

= arg max
v̂

1
σvσu

v̂+
√
D∫

v̂−
√
D

pV |U,Y (t |u,Y = 0) dt (91)

= arg max
v̂

v̂+
√
D∫

v̂−
√
D

Φ

(
t
σv

��� u
σu

)
Q

(
− f (t)
σw

)
dt . (92)

We note that, since the mapping f (v) is given, it could be
possible that for some encoder mapping f and side information
realization u, more than one output is obtained in (92). From

the DOP point of view, there is no difference in choosing either
of these points. Therefore, we have

g∗(0, u) ∈ arg max
v̂

v̂+
√
D∫

v̂−
√
D

Φ

(
t
σv
,

u
σu

)
Q

(
− f (t)
σw

)
dt. (93)

g(1, u) is derived similarly to g(0, u).
�

E. PROOF OF (32) IN REMARK IV.1
In the low SNR regime (large values of σ2

w), it can be
verified from (27) that the encoder mapping tends to an all-zero
function. Hence, the DOP can be evaluated as

ε(D) = 1 − Pr(|V − V̂ |2 < D) (94a)

= 1 −
1
σu

∫
Pr(|V − V̂ |2 < D|U = u)Φ

(
u
σu

)
du (94b)

= 1 −
1
σu

∫
Φ

(
u
σu

)
Pr

(��V − rσv

σu
u
��2 < D|U = u

)
du (94c)

= 1 −
1

σuσv

∫
Φ

(
u
σu

) rσv
σu

u+
√
D∫

rσv
σu

u−
√
D

Φ

(
v

σv

��� u
σu

)
du (94d)

= 1 −
1
σu

∫
Φ

(
u
σu

)
·

(
Q

(
−
√

D

σv

√
1 − r2

)
−Q

( √
D

σv

√
1 − r2

))
du (94e)

= 2Q

( √
D

σv

√
1 − r2

)
. (94f)

�

F. PROOF OF PROPOSITION IV.3
We first define as f (·) the encoder mapping applied to the

error in (22). Assuming that the side information is available
at both the encoder and the decoder, the optimal decoder can
be obtained as

g(y, u) =

arg min
v̂

Pr
(
|V − v̂ |2 ≥ D|Y = y,U = u

)
+ λE[ f̃ (T)2] (95a)

= arg min
v̂

v̂+
√
D∫

v̂−
√
D

Φ

(
v

σv

��� u
σu

)

· Q
©­­«
(−1)y+1 f̃

(
v − rσvu

σu

)
σw

ª®®¬ dv − λE[ f̃ (T)2] (95b)

= arg min
v̂

v̂+
√
D∫

v̂−
√
D

e
−
(v− rσv u

σu )
2

2σ2
v (1−r2)

· Q
©­­«
(−1)y+1 f̃

(
v − rσvu

σu

)
σw

ª®®¬ dv − λE[ f̃ (T)2]
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= arg min
v̂

v̂+
√
D− rσv u

σu∫
v̂−
√
D− rσv u

σu

e
− t2

2σ2
v (1−r2)

· Q
(
(−1)y+1 f̃ (t)

σw

)
dt − λE[ f̃ (T)2] (95c)

=
rσvu
σu
+ arg min

t̂

t̂+
√
D∫

t̂−
√
D

e
− t2

2σ2
v (1−r2)

· Q
(
(−1)y+1 f̃ (t)

σw

)
dt − λE[ f̃ (T)2] (95d)

=
rσvu
σu
+ t̂Y, (95e)

where in (95c) we used the transformation v − rσvu
σu
= t; in

(95d) we replaced v̂ − rσvu/σu with t̂ by adding rσvu/σu

to the resultant argument. Finally, the second term in (95e)
represent the optimal decoder when there is no side information
as derived in [9, Proposition IV.2].

The DOP in (8) can be evaluated as

ε(D) =
1
σv

∫
Φ

(
u
σu

)
Pr

(
|V − V̂ |2 ≥ D |U = u

)
du (96a)

=
1
σv

∫
Φ

(
u
σu

)
Pr

(���V − rσvu
σu
− t̂Y

���2 ≥ D
���U = u

)
du (96b)

=
1
σv

∫
Φ

(
u
σu

) [
Pr

(
V ∈ (I0(u) ∪ I1(u))C

)
+ Pr

(
V ∈ I0(u) \ I1(u), t̂Y = t1

)
+ Pr

(
V ∈ I1(u) \ I0(u), t̂Y = t0

) ]
du (96c)

=
1

σuσv

∫
Φ

(
u
σu

) 
∫

(I0(u)∪I1(u))C

Φ

(
v

σv

��� u
σu

)
dv

+Q
(

t
σw

) ©­­«
∫

I1(u)\I0(u)

Φ

(
v

σv

��� u
σu

)
dv

+

∫
I0(u)\I1(u)

Φ

(
v

σv

��� u
σu

)
dv

ª®®¬
 , (96d)

where we have defined

Iy(u) ,

{
v :

(
v −

rσvu
σu
− t̂y

)2
≤ D

}
, y = 0, 1. (97)

�
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