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Abstract-Zero-delay transmission of a Gaussian source over 
an additive white Gaussian noise (AWGN) channel with a 1-
bit analog-to-digital converter (ADC) front end is investigated 
in the presence of correlated side information at the receiver. 
The design of the optimal encoder is considered for the mean 
squared error (MSE) distortion criterion under an average power 
constraint on the channel input. A necessary condition for the 
optimality of the encoder is derived. A numerically optimized 
encoder (NOE) is then obtained that aims that enforcing the 
necessary condition. It is observed that, due to the availability 
of receiver side information, the optimal encoder mapping is 
periodic, with its period depending on the correlation coefficient 
between the source and the side information. We then propose 
two parameterized encoder mappings, referred to as periodic 
linear transmission (PLT) and periodic BPSK transmission (PBT), 
which trade-off optimality for reduced complexity as compared 
to the NOE solution. We observe via numerical results that PBT 
performs close to the NOE in the high signal-to-noise ratio (SNR) 
regime, while PLT approaches the NOE performance in the low 
SNR regime. 

Index Terms-Joint source channel coding, zero-delay transmis­
sion, I-bit ADC, correlated side information. 

I. INTRODUCTION 

A key component of the front end of any digital receiver 
is the analog-to-digital converter (ADC) that is typically con­
nected to each receiving antenna. The energy consumption of 
an ADC (in Joules/sample) increases exponentially with its 
resolution (in bits/sample) [1]. This leads to a growing concern 
regarding the energy consumption of digital receivers, either 
due to the increasing number of receiving antennas, e.g., for 
massive multiple-input multiple-output (MIMO) transceivers 
[2], or due to the limited availability of energy, e.g., in energy 
harvesting terminals [3]. An energy-efficient operation of dig­
ital receivers may hence impose constraints on the resolution 
of the ADCs that can be employed for each receiving antenna. 

Motivated by communication among energy- and 
complexity-limited sensor nodes, we study zero-delay 
transmission of analog sensor measurements to a receiving 
sensor equipped with a I-bit ADC front end. In keeping with 
the scenario of a network of sensors, we further assume that 
the receiving sensor nodes has its own correlated measurement 
of the transmitted source sample. Focusing on mean squared 
error (MSE) distortion criterion, our goal is to gain insights 
into the structure and the performance of optimal encoder 
and decoder functions when the source sample and the side 
information are jointly Gaussian. 
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Figure l. System model for the transmission of a Gaussian source over 
an AWGN channel with a I-bit ADC receiver front end and correlated side 
information at the receiver. 

This work contributes to a line of research that endeavors 
to understand the impact of front end ADC limitations on the 
performance limits of communication systems. The capacity 
analysis of a real discrete-time AWGN channel with a K­
level ADC front end is studied in [4], proving the sufficiency 
of K + 1 constellation points at the encoder. Furthermore, it 
is shown in [4] that BPSK modulation achieves the capacity 
when the receiver front end is limited to a I-bit ADC. In 
[5], the authors show that, in the low signal-to-noise ratio 
(SNR) regime, the symmetric threshold I-bit ADC is subop­
timal, while asymmetric threshold quantizers and asymmetric 
signalling constellations are needed to obtain the optimal per­
formance. Generalization of the analysis from single-antenna 
AWGN channels to MIMO fading systems are put forth in 
[6], and, more recently, to massive MIMO systems in [2] and 
[7]. In [8] some of the authors of this work considered the 
set-up analyzed here, but in the absence of correlated side 
information at the receiver. It is noted that the zero-delay 
constraint prevents the application of the mentioned channel 
capacity results to this set-up, and that, as it will be seen, 
the presence of correlated side information at the receiver 
significantly modifies the optimal design problem. 

In this work, we first derive a necessary condition for the 
optimality of the encoder mapping using calculus of variations. 
We then develop a gradient-based numerically optimized en­
coder (NOE). From numerical section, we observe that, simi­
larly to the case with an infinite resolution receiver front end 
studied in [9]-[11], the optimal encoder mapping is periodic. 
Furthermore, the period of this function depends solely on 
the correlation coefficient between the source and the side 
information, and is independent of the input power constraint, 
or equivalently the channel SNR. Motivated by the structure of 
the NOE, we also propose two simple parameterized mappings, 
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which, although being suboptimal, approach the perrormance 
of NOE in low and high SNR regimes. 

The rest of the paper is organized as follows. In Sec. II, the 
system model is explained. In Sec. III we present preliminaries 
and review the previous results, while Sec. IV focuses on the 
design of encoders and decoders. In Sec. V, numerical results 
are provided, and Sec. VI concludes the paper. The proofs of 
the propositions in this work are not included due to space 
limitations. 

Notations: The standard Gaussian distribution is denoted by 
N(O,I) with probability density function <I>(-) and comple­
mentary cumulative function Q(-). Unless stated otherwise, the 
integration intervals are ( - 00 ,  +00). The conditional density 
for standard bivariate Gaussian variables is denoted as 

<I> (vlu) = 
1 

exp { 
J27f(1 - r2) 

(v - ru)2 } 
2(1 - r2) . 

(1) 

II. SY STEM MODEL 

A single source sample V � N(O,O";) is transmitted over 
a single use of an AWGN channel followed by a I-bit ADC 
(see Fig. 1). The receiver is provided with side information 
U � N(O, 0";), which follows a bivariate Gaussian distribution 
with the source sample V with correlation coefficient r. 

The channel input is denoted by X = f(v), where f : IR. -+ 
IR. is the encoder mapping function, which must satisfy the 
average power constraint lE[j(V)2] :::; P. The received noisy 
signal at the ADC is 

Z = f(V) + W, (2) 

where the Gaussian noise term W � N(O, 0";) is independent 
of V. The decoder is fed by the output of the ADC given by 

Y=f(Z)= { 1 
-1 (3) 

The SNR is defined as SNR = �. Having observed Y and 
U, the decoder produces an estim;te V = fJy(U) of V. 

The goal is to find the optimal encoder function f ( .) and 
the optimal decoder functions vy(-), with y E {-I, I}, which 
jointly minimize the MSE distortion defined as 

(4) 

III. PRELIMIN ARIES 

In this section, we consider for reference the scenario in 
which both the encoder and the decoder have access to the 
side information U. In this case, without loss of optimality, 
the encoder can encode the error 

o"v 
E= V--rU, 

O"u 
(5) 

where the random variable O"vrU /O"u is the minimum MSE 
(MMSE) estimate of V from U, which can be computed 
at both encoder and decoder. Since the random variable E, 
which is distributed as N(O, O"�), with O"� = 0"; (1 - r2), is 
independent of the side information U, the encoder can directly 
encode the error E via a mapping function J (e) of the error 

Figure 2. Illustration of the optimal encoder mapping where there is no side 
information at the receiver (0"1 = O"w = 1). The application if this mapping to 
the error (5) is optimal if the side information U is also known a the encoder. 

E by neglecting the presence of the side information U at the 
receiver. Therefore, the problem reduces to that studied in [8]. 

In [8, Proposition. I] it is shown that the optimal zero-delay 
encoder mapping in the absence of side information (assuming 
the mapping function is odd) is obtained from the implicit 
equation 

(6) 

where A 2: ° is chosen such that the power constraint is 
satisfied. Examples of the optimal mapping are shown in Fig. 
2. It is observed that, in the high SNR regime, that the optimal 
mapping tends to digital 2-level antipodal signaling, whereas, 
in the low SNR regime it tends to linear mapping. 

In Sec. V, we will use the resulting optimal performance in 
the presence of side information at both encoder and decoder 
as a lower bound on the performance of the set-up under study 
in which the side information is solely available at the receiver. 

IV. TRANSCEIVER DESIGN 

In this section we tackle the design problem introduced in 
the previous section. We first observe that, for any encoding 
function, the optimal decoder is always the MMSE estimator; 
therefore, in this section we focus on the design of the encoder 
mapping. Our first design is based on derivation of a neces­
sary optimality condition and by an iterative gradient-based 
numerical optimization algorithm. Due to the relatively high 
computational complexity of this approach, we also propose 
two simple yet suboptimal encoder designs. 

A. Optimal Encoder and Decoder 

The design goal is to minimize the MSE distortion under an 
average power constraint with respect to the encoder mapping 
f ( v) and the decoding function Vy ( u). Therefore, we consider 
the following optimization problem 

mini!fiize D + AlE[j(V)2], 
J,vy (7) 

where A 2: ° is the Lagrange multiplier. With an MMSE 
estimator at the receiver, the optimal reconstruction function 
is given by 

(8a) 
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Figure 3. IUustration of the PLT encoder mapping for a = 2, f3 = 2.5. 

Jv<t> (tl-t) Q (�) dv 
J <t> (:J :u) Q ( y��v) ) dv . (8b) 

The following proposition provides a necessary condition for 
the optimal encoder mapping. 

Proposition IV.1. The optimal encoder mapping f(-) for 

problem (7) must satisfy the implicit equation 

2vf2;O"wO"uAf(v) exp {f(vt} = 2vA(v) - B(v), (9) 
20"w 

where A is chosen such that the average power constraint P 
is satisfied. The functions A(v) and B(v) are defined as 

A(v):@: j <t> (
O":I:

v
) (v_I(u)-fh(U))du, (lOa) 

B(v):@: j <t> (
O":I:

v
) (V_I(U)2_VI(U)2)du, (lOb) 

with vy(u) as in (8). 

Proof: The optimization objective function in (7) is continu­
ous and coercive over f(-) (see [12, Sec. A.2] for definitions). 
This guarantees that (7) is Gateaux differentiable [13, Sec. 7.1]. 
Using the Theorem I in [13, Sec. 7.4], the gradient of the 
Lagrangian, denoted by \7 f L is obtained as 

---'�.;;;...<- (2vA(v) - B(V))) ' (11) 

Enforcing that the gradient of the Lagrangian in (11) be zero 
yields the necessary condition in (9) [13, Sec. 7.4]. 0 

Remark IV.t. In Sec. V, it wil l be seen that the application of 

a gradient descent based optimization procedure that uses (11), 

yiel ds periodic NOE mappings, whose periods are dependent 

on the correlation coefficient r. The periodic behaviour of the 

NOE mappings can be explained with reference to the optimal 

solution discussed in Sec III, for the scenario in which U is 

also known at the encoder. In fact, in that case, it was argued 

that a mapping f(v) = ](v - O"vru/O"u ) is optimal , where 

J(-) is shown in Fig. 2. Therefore, the optimal mapping is 

centred on the MMSE estimate O"vTU/O"u. When the latter is 

not avail abl e at the encoder, the NOE turns out to consist of 

periodic repl icas of a basic mapping that behaves in a manner 

simil ar to f ( .) in Fig. 2. As further discussed in Sec. V, the 

period increases with the variance of the MMSE estimate of 

V given U, namely  0";(1 -r2). 
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Figure 4. IUustration of the PBT encoder mapping for I = 0.2, J = 3. 

To elaborate on the necessary condition (9), we consider the 
two extreme values of the correlation coefficient r . 

• Uncorrel ated sources (r = 0): When the correlation 
coefficient is zero, the necessary condition (9) reduces 
to 

where vY' for y = 1, -1 is defined as 

It can be shown that, in the absence of side information 
at the receiver, the optimal mapping is an odd function. 
Therefore, it can be easily verified that we can let Va = 

-VI with no loss of optimality. Hence, the equality (12) 
can be further simplified as 

(14) 

which is the result (6) obtained in [8, Proposition 111.1]. 
• Identical sources (r = 1): In this case, we have 

<t>(u/O"ulv/O"v) = �:5(u - v), where 5(-) is the Dirac 
delta function. Therefore, it can be easily verified from 
(9) that the optimal mapping is f (v) = 0, as expected. 

Remark IV.2. Due to the symmetry of the quantizer at the 

receiver and the symmetry of the noise distribution, we con­

jecture that the optimal encoder is an odd function of v. While 

this argument is strengthened by our numerical observations 

(see Sec. V), we l eave the proof of the validity of this conjecture 

as an open problem for future work. 

In Sec. V, we will present NOE mappings obtained by 
using a gradient descent approach using (11). As mentioned in 
Remark IV.l due to the correlated receiver side information, 
the resulting mappings are periodic, with a period that depends 
on the correlation coefficient r. Motivated by this observation, 
and related results for the case with an infinite-resolution front 
end in [9], we propose two simple parameterized encoder 
mappings. Their performance will be compared with that of 
NOE in Sec. V. 
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Figure 5. MSE encoder mappings f(v) with different average power values 
and r = 0.85, (av = aw = 1). Increasing the power constraint P has no 
impact on the period of the NOE mapping. 

B. Periodic Linear Transmission (PLT) 

The first proposed encoder mapping is a function, which is 
a periodic linear function with period 213 and slope a within 
each period. The encoder function is defined as 

(15) 

where l x J is the largest integer less than or equal to x. In 
Fig. 3, an illustration of this mapping for a = 2, 13 = 2.5 is 
shown. In (15) we optimize the parameters a and 13 under a 
given average power constraint in order to minimize the MSE 
distortion. 

C. Periodic BPSK Transmission (PBT) 

The second proposed encoder mapping, unlike NOE and 
PLT, adopts digital modulation with two levels, namely, , and 
-I' with a period of 5. The mapping is defined as 

f ( v ) = , ( 1 + 2f ( v ) . mod (l
2; J) J ' (16) 

where mode h is the argument in modulo 2. In Fig. 4, an 
illustration of this mapping for, = 0.2, and 5 = 2.5 is shown. 
Due to the average power constraint, we set , = yP, and 
parameter 5 is optimized to minimize the MSE. 

D. Shannon Lower Bound (SLB) 

A lower bound on the MSE distortion can be obtained 
by relaxing the zero-delay constraint, and using the Shannon 
source-channel separation theorem. In [4], it is shown that the 
capacity of the AWGN channel with a I-bit ADC in (3) is 
given by 

C = 1 - h ( Q ( v'SNR ) ) , (17) 

where h(·) is the binary entropy function defined as h(p) � 
-p log2 p-(1 -p) log2 (1 - p). Furthermore, the rate-distortion 
function of a Gaussian source with correlated Gaussian side 
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Figure 6. Encoder mappings that minimize MSE distortion for different 
correlation coefficients r and an average power constraint of P = 5 
(av = aw = 1). 

information at the receiver is given by the Wyner-Ziv rate­
distortion function [14] 

R(D)= � [IOg2 
a;(1; r2)

]
+ 

(18) 

where [x]+ = max(O, x). Combining (17) and (18) a lower 
bound on the MSE distortion [) is obtained as 

D- = (1 - r2) 22-2(1-h(Q(v'SNR))) 
lower av . 

V. NUMERIC AL RESULTS 

(19) 

In this section, we present numerical results with the aim of 
assessing the performance of the encoder/ decoder pairs pro­
posed in the previous sections. In order to derive NOE mapping 
functions we apply a gradient descent-based algorithm. The 
algorithm performs a gradient descent search in the direction 
of the derivative of the Lagrangian (11) with respect to the 
encoder mapping fe). The update is done as 

(20) 

where i is the iteration index, \7 fL is defined in (11) and {L > 0 
is the step size. The algorithm is initialized with an arbitrary 
mapping, e.g., linear mapping. It is noted that the algorithm is 
not guaranteed to converge to a global optimal solution. We 
also remark that different power constraints are imposed by 
means of a linear search over the Lagrange multiplier A. 

In Fig. 5, NOE mappings are plotted for different average 
power constraints, for a correlation coefficient of r = 0.85. 
We note the periodic structure of the mapping, which is due 
to the available side information at the receiver as discussed 
in Remark (IV 1). In contrast, the optimal mapping obtained 
in [8] for r = 0 is a monotonically increasing function (see 
Fig. 2). We also observe that the average power constraint, 
does not affect the period of the mapping. In Fig. 6, NOE 
mappings for an average power of P = 5 are plotted for 
different correlation coefficients. We see that the period of 
the mapping indeed depends on r: the higher the correlation 
coefficient r the smaller the period of the mapping. 
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Figure 7. Complementary MSE distortion vs. SNR for r = 0.6 (av = aw = 
1). 

In Fig. 7, we plot the complementary MSE distortion (I-D) 
versus SNR for NOE, as well as for the PLT and PBT schemes, 
for the correlation coefficients r = 0.6. The SLB and the 
MSE distortion for the reference case reviewed in Sec. III 
in which both encoder and decoder have access to the side 
information U, which is referred to as encoder side lower 
bound (ESLB), are also included for comparison. We observe 
that the performance of PBT is close to that of NOE at 
high SNR values. On the other hand, for low SNRs, PLT 
outperforms PBT and approaches the NOE performance. The 
results are aligned with the extreme-SNR behaviour of the 
mapping in Fig. 2 in the case of no side information (see Sec. 
III). 

In Fig. 8, the complementary MSE distortion (1 - D) is 
plotted versus the correlation coefficient r for a fixed average 
power constraint of P = 5. We see that, for this SNR value, 
PBT performs very close to NOE for a wide range of r 

values. However, as r approaches 1, PLT outperforms PBT, and 
approaches the performance of NOE. This can be explained 
based on the observation in Fig. 5 that, as average power 
constraint decreases, the NOE mapping functions resembles 
the PLT mapping. 

We finally observe from the comparison of the SLB and 
ESLB bounds in both Fig. 7 and Fig. 8, that the zero-delay 
constraint entails a significant loss with respect to the case in 
which block processing is allowed. 

VI. CONCLUSION 

We have studied the problem of zero-delay transmission 
of a Gaussian source over an AWGN channel followed by 
a I-bit ADC front end, in the presence of correlated side 
information at the receiver. We have adopted the MSE distor­
tion criterion with average power constraint at the transmitter. 
We first derived a necessary condition for the optimality of 
an encoder function, and then, based on this condition, and 
using gradient descent algorithm, we obtained a numerically 
optimized encoder mapping. We observed that this encoder 
mapping is periodic, with a period that depends on the cor­
relation coefficient of the side information. This motivated us 
to propose two new periodic parameterized encoding schemes, 

··· SLB 
··· ESLB 0.9 -NOE 
···· PBT 

qO.8 
- PLT 

I 
,.., 0.7 

0.2 0.4 0.6 0.8 
Correlation Coefficient (r) 

Figure 8. Complementary MSE distortion versus correlation coefficient under 
the average power constraint P = 5 (av = aw = 1). 

referred to as PLT and PBT. Finally, we have shown through 
numerical simulations that, PLT and PBT perform close to the 
NOE in the low and high SNR regimes, respectively. 
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