Time-Correlated Sparsification for
Communication-Efficient Federated Learning

Emre Ozfatural, Kerem Ozfatura* and Deniz Giindiiz
fInformation Processing and Communications Lab, Dept. of Electrical and Electronic Engineering, Imperial College London
J;Department of Computer Science, Ozyegin University
{m.ozfatura,d.gunduz}@imperial.ac.uk, kerem.ozfaturalozu.edu.tr

Abstract—Federated learning (FL) enables multiple clients to
collaboratively train a shared model,with the help of a parameter
server (PS), without disclosing their local datasets. However, due
to the increasing size of the trained models, the communication
load due to the iterative exchanges between the clients and
the PS often becomes a bottleneck in the performance. Sparse
communication is often employed to reduce the communication
load, where only a small subset of the model updates are commu-
nicated from the clients to the PS. In this paper, we introduce a
novel time-correlated sparsification (TCS) scheme, which builds
upon the notion that sparse communication framework can be
considered as identifying the most significant elements of the
underlying model. Hence, TCS exploits the correlation between
the sparse representations at consecutive iterations in FL, so that
the overhead due to encoding of the sparse representation can
be significantly reduced without compromising the test accuracy.
Through extensive simulations on the CIFAR-10 dataset, we
show that TCS can achieve centralized training accuracy with
100 times sparsification, and up to 2000 times reduction in the
communication load when employed with quantization

I. INTRODUCTION

The key dilemma in the employment of deep neural net-
works (DNNs) is that often the training data is distributed
across multiple institutions, and cannot be aggregated for
centralized training due to the sensitivity of data [1]. On the
other hand, data available at a single institution, such as a
single bank, hospital, or a factory, may not be sufficient to train
a “sufficiently good" model with the desired generalization
capabilities. Federated learning (FL) framework has been
introduced to address this dilemma [2] by orchestrating the
participating clients with the help of a central, so-called pa-
rameter server (PS), such that they can perform local training
using their datasets first, and seek consensus on the global
model by communicating with each other. Since it requires the
exchange of a large number of parameter values periodically,
the communication load can be a major bottleneck, particularly
when the underlying model is of high complexity. Besides, in
FL, communication often takes place over bandwidth-limited
channels [3], [4], which further increases the latency. To this
end, communication-efficient designs are one of the key re-
quirements for the successful implementation of collaborative
training over multiple clients in a federated manner.

This work was funded by the European Research Council (ERC) through Starting
Grant BEACON (no. 677854) and by the UK EPSRC (grant no. EP/T023600/1).

Algorithm 1 Federated Averaging (FedAvg)
1: fort=1,2,... do
for n=1,..., N do in parallel
Pull @, from PS: 0, , = 6,
forr=1,...,H do
Compute SGD: g, , = ngn(ef,/?_tl, nr)
Update model: 0;7,5 = 0;;1 — MG

N RN

Federated Averaging: 0,1 = 57 >_,.cs, oy,

A. Preliminaries

The objective of FL is to solve the following optimization
problem over N clients

N
, 1
min f(6) = Z_lEcmbnf(ev Gn); M
nEL)

where 8 € R¢ denotes the model parameters, (, is a random
data sample, D,, denotes the dataset of client n, and f is the
problem specific empirical loss function. At each iteration of
FL, each client aims to minimize its local loss function f,,(0)
using the stochastic gradient descent method. Then, the clients
seek a consensus on the model with the help of the PS. The
most widely used consensus strategy is to periodically average
the locally optimized model parameters, which is referred to
as federated averaging (FedAvg) [2]. The FedAvg procedure
is summarized in Algorithm 1.

At the beginning of iteration ¢, each client pulls the current
global parameter vector 8; from the PS. In order to reduce
the communication load, each client performs H local updates
before the consensus step, as illustrated in Algorithm 1 (lines
5-6), where g, , = Vg fn(GZL;l, Cn,r) is the gradient estimate
of the n-th client at 7-th local iteration based on the randomly
sampled local data ¢y, -, and 7, is the learning rate.

We note that when H = 1, clients can send their local gra-
dient estimates instead of updated models, and this particular
implementation is called federated SGD (FedSGD) [2]. For
the sake of completeness, we also want to highlight that when
the number of participating clients are large, e.g., FL across
mobile devices, the PS can choose a subset of the clients
for the consensus to reduce the communication overhead.

However, in the scope of this work, we consider a scenario
with a moderate number of clients, all of which participate in
all the iterations of the learning process. This would be the
case when the clients represent institutions, e.g., hospitals or
banks; and hence, client selection is not required. In addition
to multiple local iterations, we can also employ compression
of model updates in order to reduce the communication load
from the clients to the PS at each iteration [5]. Next, we briefly
explain common compression strategies used in conveying the
model updates from the clients to the PS in an efficient manner.

B. Compressed Communication

The global model update in Algorithm 1 (line 8) can be
equivalently written in the following form:

1 N H
041 =0:+ N Z Z —ﬂtgﬁ,t, 2)

n=171=1

A6, ¢

where we call the term A8, ; the model difference of the nth
client at iteration ¢t. Hence, each client can send the model
difference instead of the updated model, and the compression
is applied to this model difference. Sparsification and quanti-
zation are two frequently used approaches for communication
efficient FL.

Quantization aims to represent each element of A@,, ; with
fewer bits to reduce the communication load [6]-[9], where,
initially, each element represented according to floating point
precision with 32 bits. Hence, with quantization it is possible
to achieve up to x32 reduction in the communication load [6],
(81, [9].

Sparsification [10]-[13], instead, transforms a d dimensional
vector into its sparse representation by mapping each element
of vector to either its original value or zero, such that in
the sparse representation only ¢ - d number of elements have
non-zero values, where ¢ denotes the sparsification ratio.
Sparsification in the FL setup, according to the model update
in (2), can be considered as applying a d-dimensional mask
vector m € {0, 1}d on A6, ;; that is, ABmt =m®® A0, ,,
where ® denotes element-wise multiplication.

For collaborative/distributed learning, sparsification is com-
monly adopted in practice, and we identify its two popular
variations in the literature: fop-K sparsification and rand-K
sparsification [14]. Each variation has certain advantages and
disadvantages; to summarize in a very broad sense, in general,
top-K sparsification has a lower compression error compared
to rand- K sparsification, especially for lower ¢ values; how-
ever, it is less efficient from the communication and processing
perspectives. In rand-K sparsification, all the clients generate
a random mask using the same seed; therefore, the information
of non-zero positions is not required at the PS, which is not
the case for top-K sparsification; that is, in addition to the
sparse values, clients need to communicate the locations of
these non-zero values to the PS. More detailed discussion on
the comparison of these two sparsification strategies can be
found in [15].

C. Sparse Network Architectures: Connections to Dynamic
Network Pruning

Network pruning aims to reduce the size and complexity of
DNNs [16], [17]. Given an initial DNN model 6, the objective
of network pruning is to find a sparse version of &, denoted
by 0, where only a small subset of the parameters are utilized
with minimal loss in accuracy. In other words, the objective
is to construct a d-dimensional mask vector m,, € {0, 1}d
to recover § = m, ® 0, where ||m,||; << d. The ‘lottery
ticket hypothesis’ [17] further states that such a mask can
be employed throughout training to obtain the same level of
accuracy with similar training time. We note that the existence
of a “good" mask with ||mp|l; << d and a similar test
accuracy as the unpruned network implies the existence of a
sparse communication strategy during training. If the optimal
pruning mask m,, is used throughout training, this would also
result in a significant reduction in the communication load by
more than a factor of ¢ = ||m,||1/d, as the clients need to
convey only ||m,||; values, and there is no need to specify
their locations. However, the optimal pruning mask typically
cannot be determined at the beginning of the training process.
Alternatively, in dynamic network pruning [16], an evolving
sequence of masks are employed over iterations, where the
pruning mask employed at each iteration is updated gradually.

D. Motivation and Contributions

At each iteration of the top-K sparsification strategy, each
client constructs a mask vector m,, ; from scratch, indepen-
dently of the previous iterations, although the gradient values,
and hence, the top-K positions, exhibit certain correlation over
time. The core idea of our work is to exploit this correlation
to reduce the communication load resulting from the trans-
mission of non-zero parameter locations. In other words, if
the significant locations, those often observe large gradient
values, were known, the clients could simply communicate
the values corresponding to these locations without searching
for the top-K locations, or specifying their indices to the PS,
reducing significantly both the communication load and the
complexity.

More specifically, inspired by the dynamic pruning tech-
nique [16], we propose a novel sparse communication strategy,
called time correlated sparsification (TCS), where we search
for a “good" global mask m; to be used by all the clients at
iteration ¢, which evolves gradually over iterations. Client n
uses a slightly personalized mask m,, ; based on the global
mask m;, where

[lmy, ; —myll; = e << ¢d. 3)

The proposed TCS strategy exploits the correlation between
m,,; and m, to reduce the communication load, similarly
to data compression with side information [18], since m; is
already known to the PS. Therefore, only the locations of
the small number of additional entries of m,, ; need to be
conveyed to the PS. The presence of small variations between
m,,; and m; serve two purposes: First, they are used to

‘explore’ a small portion of new locations to improve the cur-
rent mask. Second, certain locations may become significant
temporarily due to the accumulation of errors when an error
feedback mechanism is employed [10], [19]. The advantages
of the proposed TCS strategy can be summarized as follows:

o Compared to top-K sparsification, each client encodes
and sends only a small number of non-sparse positions
at each iteration, which reduces the number of transmit-
ted bits. Furthermore, it makes high compression rates
possible when TCS is combined with quantization.

o Although both TCS and top-K offers the same spar-
sification level in the uplink direction, TCS achieves
much higher sparsification level in the downlink direction
thanks to the correlation of the masks across clients.

o Finally, since the individual masks mostly coincide, in
a federated edge learning (FEEL) scenario, where the
clients communicate with the PS over a shared wireless
channel, TCS allows employing over-the-air computation
in an efficient manner and can take advantage of the
superposition property of the wireless medium [20]-[24].

In Section III, through extensive simulations on the CIFAR-

10 dataset, we show that TCS can achieve centralized training
accuracy with 100 times sparsification, and up to 2000 times
reduction in the communication load when employed together
with quantization.

II. TIME CORRELATED SPARSIFICATION (TCS)

A. Design principle

The main design principle behind TCS is employing two
distinct mask vectors for sparsification: mgj,pq; is used to ex-
ploit previously identified important DNN parameters, whereas
My,cq; explores new parameters. In particular, mgiopa; iS
constructed based on the previous model update A@, motivated
by the assumption that the most important DNN weights do
not change significantly over iterations. Since all the clients
receive the same global model update from the PS, mask
vector Mg;ope 1S identical for all the clients.

Let ¢gi0pa1 be the sparsification ratio for the mask mg;opa;
such that

nglobalHl = Kglobal = ¢global -d . (4)

At the beginning of iteration ¢, each client receives the
global model difference A@;_; from the PS, and accordingly,
obtains myjepe; by simply identifying the top Kgiope values
in |AO;_1]. In parallel, each client uses the received global
model difference to recover 6;.

Following the model update, each client n € [N] carries out
the local SGD steps, and computes the local model difference
AB,, ;. Finally, it obtains the sparse version of the local model
difference, Aam, using the mask vector mgy;opai, i.€.,

Aen,t = Myjobal X Aemt- (5)

We want to emphasize that since the PS sent out A@;_7, mask
vector My;opq 1 known by the PS as well. Therefore, for each
client it is sufficient to send only the non-zero values of A8, ;,

without specifying their positions. Therefore, compared to
the conventional top-K sparsification framework, TCS further
reduces the communication load by removing the need to
communicate the positions of the non-zero values of ABM.

However, the main drawback of the above approach is that,
if mgiopq; is used throughout the training process, the same
subset of weights will be used for model update at all itera-
tions. Therefore, the proposed sparsification strategy requires
a feedback mechanism in order to explore new weights at each
iteration to check whether there are more important weights
to consider for model update.

To introduce such a feedback mechanism, each client n
employs a second mask m;j ., which is unique to that
client. The feedback mechanism works in the following way:
given A@,, ;, m} ., is obtained as the vector of the greatest
Kiocal = Plocal - d entries of |AB,, ; — ABML Hence, at each
iteration ¢, client n sends, n € [N],

Een,t = Aen,t @ (mglobal + mﬁ)cul) (6)

to the PS.

Since the main purpose of mj} ., is to explore new impor-
tant parameters, we assume that ¢jocai << @giobal- Assume
that ¢ bits are used to represent the value of each parameter.
Then, using the global sparsification mask, the total number
of bits to be conveyed to the PS is K jj,pq: - g. For the feedback
mechanism, in addition to ¢ bits to represent each of the
parameter values, log, d bits are required to inform the PS
about each position of the parameter within the d-dimensional
update vector. Hence, the total number of bits transmitted at
each iteration is given by:

QTCS =q- d- (d)local + ¢global) + 10g2 d-d- ¢local- (7)

Here, we would like to note that by utilizing a more
efficient encoding strategy, it is possible to represent each
position with log,(1/diocai) + 2 bits, instead of log, d, which
is more communication efficient when d is large. We refer
the reader to [15] for the details of this encoding strategy.
We want to emphasize that since ¢iocar << QPgiobal, the
proposed TCS strategy is more communication efficient than
top-K sparsification with the same ¢gi0pq; value, such that
K = ¢giobar X d. The total number of required bits for top-K
sparsification is given by

QtopK =d- ¢global . (q + 10g2 d) (8)

One can easily observe that for ¢jocai << @giobat, @TCs iS
smaller than Qopx, especially when ¢ is small.

B. Error accumulation

Due to sparsification, there is an error in the local model
difference sent to the PS by client n, which can be expressed
as:

€nt = Aen,t ® (1 — Myglobal — mlrt)cal)' (9)

It has been shown that the convergence speed can be improved
by propagating the current compression error to next iterations
[19], [25], [26]. That is, at iteration ¢, client n intends to send

AHn,t = Aen,t + €n,t—1 (10)

Algorithm 2 TCS with error accumulation
1. fort=1,...,7T do
2 Client side:
3 for n=1,..., N do in parallel
4 Receive AB;_; from PS
S: Myjobal = Stop(AOt—la Kglobal)
6: Update model: 6,,, =0,, ;1 + AO;_,
7
8
9

Perform H local updates and compute JA-
Error Feedback: Ab,: =A0,:+ep: 1
I~nﬁ>cal = StOP(Aan,t ® (1 - mglobal)a Klocal)

10: Al = (mﬁ)cal + mglobal) ® Aan,t
1: Send A9, ; to PS

12: ent =00, — A0,

13: PS side: B

14: AG; = % ZnE[N] Aen’t

15: Send A0, to clients

to the PS. Accordingly, each client performs sparsification on
Aﬂnyt instead of A@,, ;. The overall TCS algorithm with error
accumulation is summarized in Algorithm 2.

We note that S;,,(v, K) in Algorithm 2 maps vector v €
R? to a mask vector m € {0,1}", such that if T is the
Kth greatest value in |v|, then m; = 1 if |v;| > Tx and 0
otherwise.

C. Quantization framework

For the quantization, we consider a similar approach to the
scaled sign operator [6], [19] which, for given d dimensional
vector u, maps the value of ¢th parameter, u;, to a quantized
scalar value, Q(u;), in the following way:

Quy) = ”‘;”1 (11

where sign(-) is the sign operator. It has been shown that the
impact of the quantization error can be reduced by dividing
u into P smaller disjoint blocks {u,... ut"}, and then
applying quantization to each block separately, and often these
blocks correspond to layers of DNN architecture [6]. Hence,
we use a variation of the scaled sign operator that utilizes
multiple mean values. Let 4, and u,,;, be the maximum
and minimum values in vector |ul, respectively. We divide the
interval [Upmqz, Umin) into P disjoint intervals I, ..., Ip, such
that the pth interval, I, is given as I, = [0P ™ upaz, 0PUmaz)
1/P

Z:ﬁ / . Further, let p,, be the average of the
values assigned to interval I,,. Then, fractional quantization
maps the value of the ith parameter, u;, to a quantized scalar
value, Qf(u;), in the following way:

sign(u;),

where, o =

P
Qf(ul) = Z]l{uiGIp}upSign(ui)7

p=1

12)

where 1.} is the indicator function. Since there are P intervals
in total, log, P bits are sufficient to identify the corresponding
interval of u;, ¢ = 1,...,d. An additional bit is sufficient to
represent the sign; hence, in total, logy, P 41 bits are required

per parameter. Additional 32 - P bits are required to convey
the mean values of the intervals. Consequently, for a given d
dimensional vector u, a total of d(log, P + 1) + 32 - P bits
are required, where the second term is often negligible.

III. NUMERICAL RESULTS
A. Simulation Setup

To evaluate the performance of the proposed TCS strategy,
we consider the image classification task on the CIFAR-10
dataset [27], which consists of 10 image classes, organized into
50K training and 10K test images, respectively. We employ the
ResNet-18 architecture as the DNN [28], which consists of 8
basic blocks, each with two 3x3 convolutional layers and batch
normalization and contains 11,173,962 trainable parameters
in total. We consider a network of N = 10 clients and a
federated setup, in which the training dataset is divided among
the clients in a disjoint manner. The images, based on their
classes, are distributed in an identically and independently
distributed (IID) manner among the clients.

B. Implementation

For performance evaluation, we consider the centralized
training as our main benchmark, where we assume that all
the training dataset is collected at one client. We set the batch
size to 128 and the learning rate to 7 = 0.1. The performance
of this centralized setting will be referred to as the “Baseline”
in our simulation results. For all the FL strategies considered
in this work we set the batch size to 64, and adopt the
linear learning rate scaling rule in [29], where the learning
rate is scaled according to the cumulative batch size and the
total number of samples trained by all the clients, taking the
batch size of 128 as a reference value with the corresponding
learning rate n = 0.1. Hence, for our setup with N = 10
clients, we use the learning rate = 0.5. Further, in all the FL
implementations we employ the warm up strategy [29], where
the learning rate is initially set to n = 0.1, and is increased to
its corresponding scaled value gradually in the first 5 epochs.
We also note that during the warm up phase we do not employ
sparsification and quantization methods for communication.

The DNN architecture is trained for 300 epochs and the
learning rate is reduced by a factor of 10 after the first 150
and 225 epochs, respectively [28], [30]. Lastly, in all the
simulations we employ L2 regularization with a given weight
decay parameter 10~%.

For performance evaluation, we consider the top-K sparsi-
fication scheme as a second benchmark. For top-K sparsifica-
tion we set the sparsification ratio to ¢ = 10~2. Accordingly,
for the proposed TCS strategy we set Ggiopai = 10~2 and
Glocar = 1073, We want to emphasize that for the TCS strategy
with 10 clients, these parameters imply a maximum of 0.02
sparsification ratio; in other words x50 compression in the
PS-to-client direction as well, which is not the case for top-K
sparsification.

We recall that one of the key design parameters of FL is the
number of local steps H. Hence, we use TCS-LH to denote
the TCS scheme with H local iterations. We use only TCS to

— TCS
94 TCS-L2
—-- TCS-L4
+ TCS-L4-Q5
Top-K
92 Baseline

Test Accuracy
w
o
|

88+

86

T T T T
0 50 100 150 200 250 300
Epoch

Fig. 1: Comparison of the test accuracy results for variants
of the proposed TCS strategy with top-K sparsification and
the centralized baseline over 300 epochs (for n = 0.5).

refer to the FedSGD scheme with H = 1. For FedAvg, we
consider H = 2 in our simulations. Finally, we also employ
quantization strategy to represent each non-zero value with
q << 32 bits and use the notation ‘Qg’ to denote the number
of bits used to represent each element. For example, TCS-L4-
QS5 denotes the TCS strategy with H = 4 local iterations along
with 5-bit quantization.

For performance evaluation, we employ two performance
metrics: test accuracy and the bit budget, corresponding to the
performance of the final trained model and the communication
load, respectively. More specifically, the bit budget refers to
the average number of bits conveyed from a client to the PS
per parameter per iteration.

C. Simulation Results

In our simulation, we consider 6 schemes, namely the Base-
line, top-K sparsification, TCS, TCS-L2, TCS-L4, and TCS-
L4-Q5, where the first two are used as benchmark schemes.
For each scheme we take the average over 5 trials. The final
test accuracy results, with mean and standard deviation, and
the bit budget for each scheme is presented in Table I. In
Figure 1, we present the test accuracy results with respect to
the epoch index.

We observe that the proposed TCS scheme requires 12%
lower bit budget than top-K sparsification while achieving a
higher average test accuracy. Similarly, it achieves approxi-
mately x100 reduction in the communication load without
losing the accuracy. We also observe that TCS with multiple
local iterations, in particular, TCS-L2 and TCS-L4, achieve
higher test accuracy compared to TCS with single local itera-
tion. While the best accuracy is achieved by TCS-L2, almost
the same accuracy is achieved by TCS-L4, but with half the
average bit budget. Although this may seem counter-intuitive
at a first glance, we remark that due to random batch sampling

Method Test Accuracy (mean =+ std) | Bit budget
TCS 92.44 + 0.143 0.363
TCS-L2 92.578 + 0.189 0.1815
TCS-L4 92.53 + 0.22 0.0907
TCS-L4-Q5 92.485 + 0.22 0.01675
Top-K 92.194 £+ 0.247 0.41
Baseline 92.228 4+ 0.232 -

TABLE I: Test accuracy (for n = 0.5) and bit budget
comparison between the studied schemes. While best test
accuracy is achieved with TCS with 2 local iterations, TCS
with 4 local iterations can achieve a similar test accuracy
with only half the communication load. The communication
load of TCS can be further reduced with quantization at the
expense of a very small reduction in the test accuracy.

in SGD, gradient values behave as random variables; and
hence, using model difference over H iterations may provide a
more accurate observation to be able to identify new important
weights. To reduce the bit budget further we consider TCS-
L4-Q5, where all the non-zero values are represented with 5
bits in total while one bit is used for the sign. We observe
that TCS with quantization can achieve x2000 reduction in
the communication load, with an even better test accuracy
compared to the centralized baseline.

We emphasize that the impact of quantization on the bit
budget is more visible with TCS compared to top-K sparsifica-
tion. When quantization is used with top- K sparsification, the
number of bits used for the location becomes the bottleneck as
quantization cannot reduce that. When TCS (with ¢giopa1 =
1072 and drocqr = 1073) is employed together with 5-bit
quantization, the corresponding bit budget is 0.067 (bits per
element). On the other hand, top-K sparsification (¢ = 1072)
with 5-bit quantization requires a bit budget of 0.14, which is
more than twice the bit budget of TCS. Furthermore, when the
number of bits used for quantization decreases, TCS becomes
more and more communication efficient.

IV. CONCLUSION

In this paper, we introduced a novel sparse communication
strategy for communication-efficient FL, called time corre-
lated sparsification (TCS), by establishing an analogy between
network pruning and gradient sparsification frameworks, and
benefiting from the side information available at the PS to
reduce the communication load from the clients to the PS.
The proposed strategy is built upon the assumption that at
“important locations” the model difference (or the gradient)
changes slowly over time, and utilizes this correlation over
iterations to reduce the communication load. Through exten-
sive simulations on CIFAR-10 dataset, we show that TCS can
meet or even surpass the centralized baseline accuracy with
x100 sparsification, and can reach up to %2000 reduction
in the communication load when it is employed together
with quantization. The proposed TCS strategy results in the
sparsification of the model updates transmitted from the PS to
the clients as well, which can further be exploited to reduces
the communication load in the downlink direction.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

W. Li, F. Milletari, D. Xu, N. Rieke, J. Hancox, W. Zhu, M. Baust,
Y. Cheng, S. Ourselin, M. J. Cardoso, and A. Feng, “Privacy-preserving
federated brain tumour segmentation,” in Machine Learning in Medical
Imaging. Springer International Publishing, 2019, pp. 133-141.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, vol. 54, Fort Lauderdale, FL, USA, 20-22 Apr 2017, pp.
1273-1282.

M. S. H. Abad, E. Ozfatura, D. Gunduz, and O. Ercetin, “Hierarchical
federated learning across heterogeneous cellular networks,” in /ICASSP
2020 - 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020, pp. 8866—8870.

S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and
K. Chan, “Adaptive federated learning in resource constrained edge com-
puting systems,” IEEE Journal on Selected Areas in Communications,
vol. 37, no. 6, pp. 1205-1221, 2019.

J. Kone¢ny, H. B. McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” in NIPS Workshop on Private Multi-Party Machine Learning,
2016. [Online]. Available: https://arxiv.org/abs/1610.05492

S. Zheng, Z. Huang, and J. Kwok, “Communication-efficient distributed
blockwise momentum SGD with error-feedback,” in Advances in Neural
Information Processing Systems 32, 2019, pp. 11450-11460.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems 30, 2017, pp.
1709-1720.

J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signSGD: Compressed optimisation for non-convex problems,” in Pro-
ceedings of the 35th International Conference on Machine Learning,
Stockholmsméssan, Stockholm Sweden, Jul 2018, pp. 560-569.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and application to data-parallel distributed training of speech
dnns,” in Interspeech 2014, September 2014.

S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with
memory,” in Advances in Neural Information Processing Systems 31,
2018, pp. 4448-4459.

D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,” in
Advances in Neural Information Processing Systems 31, 2018, pp. 5976—
5986.

J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Advances in
Neural Information Processing Systems 31, 2018, pp. 1305-1315.

A. F Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing. — Copenhagen, Denmark:
Association for Computational Linguistics, Sep. 2017, pp. 440-445.
N. F. Eghlidi and M. Jaggi, “Sparse communication for training deep
networks,” CoRR, vol. abs/2009.09271, 2020.

E. Ozfatura, K. Ozfatura, and D. Gunduz, “Time-correlated sparsi-
fication for communication-efficient federated learning,” CoRR, vol.
abs/2101.08837, 2021.

T. Lin, S. U. Stich, L. Barba, D. Dmitriev, and M. Jaggi, “Dynamic
model pruning with feedback,” in International Conference on Learning
Representations, 2020.

J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in International Conference on Learning
Representations, 2019.

T. M. Cover and J. A. Thomas, Elements of Information Theory 2nd
Edition (Wiley Series in Telecommunications and Signal Processing).
Wiley-Interscience, July 2006.

S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi, “Error feedback
fixes SignSGD and other gradient compression schemes,” in Proceedings
of the 36th International Conference on Machine Learning, Long Beach,
California, USA, Jun 2019, pp. 3252-3261.

M. M. Amiri and D. Gunduz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Transactions
on Signal Processing, vol. 68, pp. 2155-2169, 2020.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

G. Zhu, Y. Wang, and K. Huang, “Broadband analog aggregation for
low-latency federated edge learning,” IEEE Trans. Wireless Comms.,
2019.

T. Sery and K. Cohen, “On analog gradient descent learning over
multiple access fading channels,” IEEE Trans. Signal Proc., vol. 68,
pp. 2897-2911, 2020.

M. M. Amiri and D. Giindiiz, “Federated learning over wireless fading
channels,” IEEE Transactions on Wireless Communications, vol. 19,
no. 5, pp. 3546-3557, 2020.

G. Zhu, Y. Du, D. Giindiiz, and K. Huang, “One-bit over-the-air aggre-
gation for communication-efficient federated edge learning: Design and
convergence analysis,” IEEE Transactions on Wireless Communications,
pp. 1-1, 2020.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and application to data-parallel distributed training of speech
dnns,” in Interspeech 2014, September 2014.

J. Wu, W. Huang, J. Huang, and T. Zhang, “Error compensated quantized
SGD and its applications to large-scale distributed optimization,” in
Proceedings of the 35th International Conference on Machine Learning,
Stockholmsmissan, Stockholm Sweden, Jul 2018, pp. 5325-5333.

A. Krizhevsky, V. Nair, and G. Hinton, “Cifar-10 (canadian institute
for advanced research).” [Online]. Available: http://www.cs.toronto.edu/
~kriz/cifar.html

K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual
networks,” in Computer Vision — ECCV 2016, B. Leibe, J. Matas,
N. Sebe, and M. Welling, Eds. Cham: Springer International Publishing,
2016, pp. 630-645.

P. Goyal, P. Dollar, R. B. Girshick, P. Noordhuis, L. Wesolowski,
A. Kyrola, A. Tulloch, Y. Jia, and K. He, “Accurate, large minibatch
SGD: training imagenet in 1 hour,” CoRR, vol. abs/1706.02677, 2017.
K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770-778.

