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Abstract—Communication over a broadband fading channel
powered by an energy harvesting transmitter is studied. Assum-
ing non-causal knowledge of energy/data arrivals and channel
gains, optimal transmission schemes are identified by taking into
account the energy cost of the processing circuitry as well as
the transmission energy. A constant processing cost for each
active sub-channel is assumed. Three different system objectives
are considered: i) throughput maximization, in which the total
amount of transmitted data by a deadline is maximized for a
backlogged transmitter with a finite capacity battery; ii) energy
maximization, in which the remaining energy in an infinite
capacity battery by a deadline is maximized such that all the
arriving data packets are delivered; iii) transmission completion
time minimization, in which the delivery time of all the arriving
data packets is minimized assuming infinite size battery. For
each objective, a convex optimization problem is formulated, the
properties of the optimal transmission policies are identified, and
an algorithm which computes an optimal transmission policy is
proposed. Finally, based on the insights gained from the offline
optimizations, low-complexity online algorithms performing close
to the optimal dynamic programming solution for the throughput
and energy maximization problems are developed under the
assumption that the energy/data arrivals and channel states are
known causally at the transmitter.

Index Terms—Offline power optimization, throughput maxi-
mization, remaining energy maximization, transmission comple-
tion time minimization, online algorithms.

I. INTRODUCTION

Wireless sensor nodes are typically designed to have low

cost and small size. These design objectives impose restric-

tions on the capacity and efficiency of the energy storage

units that can be used. As a result, continuous operation of

the sensor network requires frequent battery replacements,

which increases the maintenance cost. Energy harvesting (EH)

devices are able to overcome these challenges by collecting

energy from the environment. However, due to the nature

of the ambient energy sources, the amount of useful energy

that can be harvested is limited and unreliable. Consequently,

optimal management of the harvested energy becomes a new

challenge for EH wireless nodes.

In most communications literature the energy cost of oper-

ating transmitter circuitry, such as digital-to-analog converters,

mixers, filters, etc. is ignored. In short range communica-

tions, as in most wireless sensor networks, where inter-node

distances are less than 10m, processing energy consumption

can be comparable to the transmission energy [1]. When the

processing cost is negligible, increasing the transmission time

and lowering the transmission power increases the energy

efficiency (nats-per-joule), provided the rate-power function

is monotonically increasing and concave, properties satisfied

by most common transmission schemes as well as Shannon’s

capacity function. However, as shown in [2], when processing

cost is taken into account, bursty transmissions separated

by “sleep” periods become optimal. In EH communication

systems, this affects the optimal power allocation scheme

considerably since both the power allocation and the sleep

intervals will depend on the energy arrival profile.

In this paper, we consider an EH transmitter with processing

cost communicating over a broadband fading channel, mod-

elled as K parallel sub-channels with each sub-channel having

independent fading. Following the power consumption model

in [2] and [3], processing energy cost is modelled as a function

of the transmission bandwidth and time and is assumed to be

equal to a constant value for each sub-channel. We characterize

optimal transmission policies for three different system objec-

tives under the offline optimization framework which assumes

that all channel gains and the sizes of arriving energy and data

packets are known non-causally before transmission starts.

First, we only consider energy packet arrivals over time for

a backlogged transmitter1 with a finite capacity battery, and

we maximize the amount of total data delivered by a deadline

T . We call this the throughput maximization problem [4].

Throughput maximization is an important objective for high

data rate applications. Then, we consider both data and energy

arrivals over time and an unlimited battery, and maximize

the remaining energy in the battery by the deadline. This is

the energy maximization problem [5] most suitable for energy

efficient, green applications. Finally, for the joint energy and

data arrival scenario we also find the minimum delivery time of

all the data packets. This is called the transmission completion

time (TCT) minimization problem [6], is important for delay

limited applications. For each of these problems we identify

the structure of the optimal transmission policy by solving

a convex optimization problem, and based on this structure

we provide an algorithm which finds the optimal transmission

policy.

We next consider a more realistic model assuming only

the causal knowledge of energy/data arrivals and channel

gains, and study the online optimization problem. Since the

optimal solution of the online optimization problem based on

dynamic programming is prohibitively complex, we propose

simple algorithms for the throughput and energy maximization

problems based on the insights gained from the optimal

solutions of the corresponding offline optimization problems.

In recent years, optimal transmission policies for EH com-

1A backlogged transmitter is the one that always has data available for
transmission.
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munication systems have been studied extensively under var-

ious assumptions regarding the knowledge at the transmit-

ter about the energy harvesting process. Within the offline

optimization framework optimal transmission policies have

been investigated for point-to-point [6]-[7] and various multi-

user communication scenarios, including broadcast channel

[8], [9], [13], interference channel [10] and two-hop networks

[11], [12]. In addition, battery imperfections in terms of

leakage, finite energy storage capacity, and energy storing

and retrieving losses are investigated in [13], [4], and [14],

respectively.

Online optimization of EH communication systems has

also received considerable interest. Optimal transmission poli-

cies for EH nodes based on Markov decision processes are

studied [15]-[16]. In [7], [14], [19], heuristic online policies

are presented. A more practically oriented learning-theoretic

approach to EH system optimization is studied in [17]. See

[18] for a general overview of EH communication systems

under offline, online and learning-theoretic frameworks.

The effect of processing cost on EH communication systems

have been investigated in [19]-[22]. Optimal transmission

policies that maximize the average throughput are studied for

a constant single-link in [19]-[20], and parallel channels in

[19]. In [21], the throughput maximization problem is studied

for a time-slotted system using suboptimal slot selection and

power allocation. Our previous work [22] and [5] consider a

narrowband fading channel with processing cost and study the

throughput maximization and energy maximization problems.

The current paper extends all the prior literature by considering

a broadband fading EH communication system with process-

ing cost.

In the next section, we describe the system model. In

Section III, we summarize the glue-pouring algorithm which

provides the optimal power allocation strategy in a battery op-

erated communication system when the processing energy cost

is taken into account [2]. We investigate the structure of the

optimal offline transmission policies and provide directional

glue-pouring interpretations for the throughput maximization,

energy maximization and the TCT minimization problems in

Section IV, V, and VI, respectively. In Section VII, we propose

online algorithms for the throughput and energy maximization

problems. In Section VIII, numerical results are presented.

Finally, we conclude our paper in Section IX.

II. SYSTEM MODEL

We consider an EH transmitter communicating over a broad-

band fading channel modelled as K parallel independently

fading sub-channels. Each sub-channel has additive white

Gaussian noise (AWGN) with unit variance. The real valued

channel gain for sub-channel k at time t is denoted as γk(t),
k = 1, ...,K . Without loss of generality, Shannon capacity,

defined as g(pk(t)) , 1
2 log (1 + γk(t)pk(t)) (nats/sec/Hz),

k = 1, ...,K , is considered as the transmission rate-power

function, where pk(t) is the transmission power of sub-channel

k at time t.

We assume that finite number of energy and data packets

arrive at the transmitter in time interval [0, T ) each carrying

finite amount of energy and data, respectively. We assume that

the energy and data packet arrival times are denoted as te0 =
0 < te1 < te2 < · · · < T and 0 ≤ tb1 < tb2 < · · · < tbn <

T , respectively. A rechargeable battery with a finite capacity

of Emax is available at the transmitter. We assume that the

harvested energy is first stored in the battery before being used

by the transmitter. Accordingly, the size of an harvested energy

packet is less than Emax without loss of generality. In addition,

we assume that the battery is able to store and preserve the

harvested energy without any loss. We also assume that γk(t)
changes at the time instances 0 < t

f
1,k < t

f
2,k < · · · < T , and

remains constant in between. In order to simplify the problem

formulation, all channel changes and energy/data arrival events

are combined in a single time series as t1 = 0 < t2 < t3 <

· · · < tI < T by allowing zero energy/data arrivals when the

channel gain of any sub-channel changes, or the channel gains

to remain constant when an energy/data packet arrives. We

define an epoch as the time interval between two consecutive

events. We denote the duration of the i’th epoch as τi , ti+1−
ti. The size of the energy and data packet arriving at time ti
is referred to as Ei and Bi, respectively, and γi,k indicates the

channel gain of sub-channel k in epoch i.

In addition to the energy used for transmission, we consider

the processing energy cost of the transmitter circuitry which

models the energy dissipated by the microprocessors, mixers,

filters, and converters. Using the system level power consump-

tion model of a wireless transmitter in [3], we take into account

the dependence of the processing cost on the transmission

bandwidth. We assume a processing cost of ǫ joules per second

for a sub-channel simplicity. This constant processing energy

per sub-channel, independent of the transmission power, is

consumed only during the time the corresponding sub-channel

is used.

Using optimality of constant power transmission within

each epoch [6], we denote the non-negative transmission

power within epoch i of sub-channel k as pi,k. As argued

in [2], due to the processing cost it may not be optimal to

transmit continuously, i.e., bursty transmission can be optimal.

Therefore, we denote transmission duration of pi,k as Θi,k,

0 ≤ Θi,k ≤ τi. Accordingly, a transmission policy refers to

power levels pi,k with durations Θi,k, ∀k, i, that determine the

energy allocated to each sub-channel k at each epoch i. Any

feasible transmission policy should satisfy the energy causality

constraint:

i
∑

j=1

K
∑

k=1

Θj,k (pj,k + ǫ) ≤

i
∑

j=1

Ej , i = 1, ..., I. (1)

Moreover, since increasing the transmission power or duration

strictly increases the amount of transmitted data, an optimal

transmission policy must avoid battery overflows by utilizing

all the harvested energy. Therefore, an optimal transmission

policy must also satisfy the following battery overflow con-

straint:

i+1
∑

j=1

Ej −

i
∑

j=1

K
∑

k=1

Θj,k (pj,k + ǫ) ≤ Emax, i = 1, ..., I. (2)
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Data arrivals over time also impose data causality con-

straints on the feasible transmission policy as follows:

i
∑

j=1

K
∑

k=1

Θj,k

2
log (1 + γj,kpj,k) ≤

i
∑

j=1

Bj , i = 1, ..., I. (3)

In Sections IV-VI, we identify the optimal offline transmis-

sion policies, in which all energy/data arrivals and channel

gains are known before transmission starts, for three different

system objectives stated below. Mathematical formulations are

deferred to Sections IV, V, and VI.

• Throughput maximization: Assuming that the transmitter

has sufficient data in its data buffer before transmission

starts, i.e., backlogged system with B1 = ∞, Bi = 0, i =
2, ..., I , we maximize the total amount of data delivered

by the deadline T .

• Energy maximization: Relaxing the battery size con-

straint, i.e., Emax → ∞, we maximize the remaining

energy in the battery by the deadline T while guarantee-

ing that all the arriving data is delivered to the destination.

• TCT minimization: We minimize the delivery time of all

data packets arriving at the transmitter while assuming

an infinite size battery, i.e., Emax → ∞.

In addition, we consider online transmission policies in which

we assume that all energy/data arrivals and channel gains

are known causally for throughput and energy maximization

problems in Section VII.

III. PRELIMINARIES

For ease of exposure, we first illustrate the optimal transmis-

sion policy for throughput maximization for I = 1, K = 1.

This models a battery operated system. For a single energy

arrival E1 at time t1 = 0, a channel state γ and processing

cost ǫ, for T → ∞, maximum throughput is given by the

solution of the following optimization problem:

max
Θ,p:Θ(p+ǫ)≤E1

Θ

2
log(1 + γp), (4)

where Θ is the total transmission duration and p is the

transmission power. The corresponding optimal transmission

power p∗ [2] satisfies

1
1
γ
+ p∗

=
1

ǫ+ p∗
log(1 + γp∗). (5)

The above equation has only one solution for the optimal

power level p∗ which is given by (11) in [2]. Note that p∗

increases as the channel gain γ decreases2. Moreover, p∗ does

not depend on the available energy E1. For finite transmission

deadline T , if T ≥ E1

p∗+ǫ
, then the above solution is still

optimal. On the other hand, if T < E1

p∗+ǫ
, transmitting at power

p∗ cannot be optimal because some energy would remain in the

battery at time T . In this case, we can increase the throughput

by increasing the transmission power so that all the available

energy is consumed by time T , and the optimal transmission

power is given by E1

T
− ǫ.3

2This follows from (5) by taking the derivative of p∗ with respect to γ.
3A similar observation is made in [13] where constant rate battery leakage

is considered instead of processing cost. This correspondence does not extend
to multiple energy packets or fading channels as will be seen later in the paper.

In the case of multiple fading levels, again for single sub-

channel K = 1, single energy arrival E1 and no transmission

deadline (T → ∞), the optimal transmission policy is given by

the glue-pouring algorithm [2]. For two fading levels γ1 > γ2
with durations τ1, τ2, respectively, the glue-pouring solution

is summarized below. In the following, Θ1 and Θ2 denote the

transmission durations for epochs with fading levels γ1 and γ2,

and p∗1 and p∗2 denote the solutions of (5) for channel gains

γ1 and γ2, respectively.

• If E1 ≤ τ1(p
∗
1 + ǫ), then the optimal transmission policy

is Θ1 = E1

p∗

1+ǫ
and Θ2 = 0 with power levels p∗1 and 0,

respectively.

• If τ1(p
∗
1 + ǫ) < E1 ≤ τ1(p

∗
2 + 1

γ2
− 1

γ1
+ ǫ), then the

optimal transmission policy is Θ1 = τ1 and Θ2 = 0 with

power levels E1

τ1
− ǫ and 0, respectively.

• If τ1(p
∗
2 +

1
γ2

− 1
γ1

+ ǫ) < E1 ≤ τ1(p
∗
2 +

1
γ2

− 1
γ1

+ ǫ) +
τ2(p

∗
2 + ǫ), then the optimal transmission policy is Θ1 =

τ1 and Θ2 =
E1−τ1(p

∗

2+
1
γ2

− 1
γ1

+ǫ)

p∗

2+ǫ
with power levels p∗2+

1
γ2

− 1
γ1

and p∗2, respectively.

• If τ1(p
∗
2 + 1

γ2
− 1

γ1
+ ǫ) + τ2(p

∗
2 + ǫ) < E1, then

the optimal transmission policy is obtained through the

classical waterfilling algorithm.

Based on the above solution, for the general system model

with K sub-channels glue level in epoch i of sub-channel k is

defined as the sum of the transmission power and the inverse

channel gain in that epoch, i.e., 1
γi,k

+ pi,k.

IV. THROUGHPUT MAXIMIZATION

In this section, we consider the throughput maximization

problem introduced in Section II, that is, we maximize the total

delivered data until the deadline T . We assume that B1 = ∞
and Bi = 0, i = 2, ..., I , and the last event corresponds to

the transmission deadline, i.e., tI+1 = T . Mathematically, the

problem can be formulated as follows.

max
αi,k,Θi,k

I
∑

i=1

K
∑

k=1

Θi,k

2
log

(

1 + γi,k
αi,k

Θi,k

)

(6a)

s.t.

i
∑

j=1

K
∑

k=1

(αj,k +Θj,kǫ)−
i
∑

j=1

Ej ≤ 0, ∀i, (6b)

i+1
∑

j=1

Ej −

i
∑

j=1

K
∑

k=1

(αj,k +Θj,kǫ) ≤ Emax, ∀i,(6c)

0 ≤ Θi,k ≤ τi, and 0 ≤ αi,k, ∀i, ∀k, (6d)

where we have defined αi,k , Θi,kpi,k, for i = 1, ..., I
and k = 1, ...,K . Notice that αi,k is equivalent to the

total allocated transmission energy to epoch i of sub-channel

k. In the above optimization problem, the constraints in

(6b) and (6c) are due to the energy causality and bat-

tery overflow constraints in (1) and (2), respectively. The

term
Θi,k

2 log
(

1 + γi,k
αi,k

Θi,k

)

is the perspective function of

the concave function 1
2 log (1 + γi,kαi,k). Here, we take

Θi,k

2 log
(

1 + γi,k
αi,k

Θi,k

)

= 0 when Θi,k = 0. Since perspective

operation preserves concavity [23], the objective function in

(6a) is concave. In addition, the constraints in (6b)-(6d) are
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linear. Therefore, the optimization problem in (6) is convex,

and efficient numerical solutions exists [23].

The optimal allocated transmission energy α∗
i,k to epoch i

of sub-channel k, and the corresponding optimal transmission

duration Θ∗
i,k, for i = 1, ..., I and k = 1, ...,K , must satisfy

the following KKT conditions:

∂L

∂αi,k

=
Θ∗

i,kγi,k

2(Θ∗
i,k + γi,kα

∗
i,k)

−

I
∑

j=i

(λj − µj) + σi,k = 0,(7)

∂L

∂Θi,k

=
1

2
log

(

1 +
γi,kα

∗
i,k

Θ∗
i,k

)

−
γi,kα

∗
i,k

2(Θ∗
i,k + γi,kα

∗
i,k)

−

ǫ

I
∑

j=i

(λj − µj)− φi,k + ψi,k = 0, (8)

for i = 1, ..., I and k = 1, ...,K . Here L is the Lagrangian of

(6) with λi ≥ 0, µi ≥ 0, φi,k ≥ 0, ψi,k ≥ 0, and σi,k ≥ 0 as

Lagrange multipliers for constraints in (6b)-(6d), respectively.

The complementary slackness conditions are

λi





i
∑

j=1

K
∑

k=1

(

α∗
j,k +Θ∗

j,kǫ
)

−

i
∑

j=1

Ej



=0, ∀i, (9)

µi





i+1
∑

j=1

Ej −

i
∑

j=1

K
∑

k=1

(

α∗
j,k +Θ∗

j,kǫ
)

− Emax



=0, ∀i,(10)

φi,k(Θ
∗
i,k − τi) = 0, ψi,kΘ

∗
i,k = 0, σi,kα

∗
i,k = 0, ∀i, ∀k. (11)

We next identify some properties of an optimal transmission

policy for the throughput maximization problem based on the

KKT conditions in (7)-(11) which are both necessary and

sufficient due to the convexity of the optimization problem

in (6):

• If Θ∗
i,k = 0 or α∗

i,k = 0, then the optimal transmission

power p∗i,k must be zero.

• If 0 < Θ∗
i,k ≤ τi and α∗

i,k > 0, then ψi,k = σi,k = 0 due

to the complementary slackness conditions in (11). There-

fore we can compute the optimal transmission power in

terms of λi and µi as follows:

p∗i,k =

[

1

2
∑I

j=i (λj − µj)
−

1

γi,k

]+

, (12)

which is obtained by substituting α∗
i,k = Θ∗

i,kp
∗
i,k into

(7). By combining (7) and (8) we can obtain

log

(

1 +
γi,kα

∗
i,k

Θ∗
i,k

)

=
γi,k(α

∗
i,k + ǫΘ∗

i,k)

Θ∗
i,k + γi,kα

∗
i,k

+ 2φi,k. (13)

When we replace α∗
i,k in (13) with Θ∗

i,kp
∗
i,k, we obtain

log
(

1 + γi,kp
∗
i,k

)

=
p∗i,k + ǫ
1

γi,k
+ p∗i,k

+ 2φi,k. (14)

Note that when 0 < Θ∗
i,k < τi, i.e., φi,k = 0, (14) is

equivalent to (5). Therefore, it has a unique solution for

given γi,k and ǫ. We denote the solution of (14) when

0 < Θ∗
i,k < τi as p∗i,k = v∗i,k. Since (14) depends only

on γi,k and ǫ, we can compute the optimal transmission

power directly without solving the optimization problem

in (6). When Θ∗
i,k = τi, i.e., φi,k ≥ 0, it can be argued

from (14) that the optimal transmission power p∗i,k must

satisfy p∗i,k ≥ v∗i,k.

Remark 4.1: When there is no processing cost, i.e., ǫ = 0
and α∗

i,k > 0, Θ∗
i,k = τi, and when α∗

i,k = 0, Θ∗
i,k = 0. To

see this suppose 0 < Θ∗
i,k < τi and α∗

i,k > 0. In this case

we can argue that (14) leads to p∗i,k = v∗i,k = 0 when ǫ = 0.

However this contradicts with the assumption on α∗
i,k > 0,

since α∗
i,k = Θ∗

i,kp
∗
i,k = 0. Therefore, when ǫ = 0, there is

no bursty transmission. Consequently the optimal transmission

policy for ǫ = 0 leads to the classical water-filling over sub-

channels [25].

Lemma 1: In the optimal transmission policy, whenever

the glue level in sub-channel k, i.e., 1
γi,k

+ pi,k, decreases

(increases) from one epoch to the next, the battery must be

full (empty).

Proof: The optimal transmission power satisfies (12)

whenever a non-zero transmission energy is allocated to epoch

i of sub-channel k, i ∈ {1, ..., I} and k ∈ {1, ...,K}. In

addition, from the complementary slackness conditions (9)-

(10), we can argue that the battery is empty whenever λi > 0
and µi = 0, and the battery is full whenever λi = 0 and

µi > 0. This is because whenever the constraint in (6b)

is satisfied with equality, i.e., λ > 0, the constraint in (6c)

cannot be satisfied with equality, i.e., µ = 0, and vice versa.

From (12) we see that 1
γi,k

+ pi,k >
1

γi+1,k
+ pi+1,k implies

λi = 0 and µi > 0, since λi = 0 and µi > 0 leads to

an increase in the denominator of RHS of (12). Similarly,
1

γi,k
+ pi,k < 1

γi+1,k
+ pi+1,k implies λi > 0 and µi = 0.

Therefore, we can conclude that whenever the glue level in

sub-channel k, k ∈ {1, ...,K}, decreases (increases) from one

epoch to the next, the battery must be full (empty).

Lemma 2: In the optimal transmission policy, the glue

levels in an epoch are the same for all sub-channels to which

non-zero transmission energy is allocated.

Proof: Rearranging (12) we obtain

1

γi,k
+ p∗i,k =

1

2
∑I

j=i (λj − µj)
, (15)

for ∀k ∈ {k : α∗
i,k > 0}. Note that right hand side of (15)

must be the same for all sub-channels in epoch i to which

non-zero transmission energy is allocated. Therefore, we can

conclude that the glue level in an epoch is the same for all

sub-channels with non-zero transmission energy.

Remark 4.2: It is possible to show that v∗i,k, the solution of

(14) when φi,k = 0, is a decreasing function of γi,k. Since

the optimal transmission power in an epoch of sub-channel

k must satisfy p∗i,k ≥ v∗i,k , the optimal transmission policy

utilizes epochs with the highest channel gain under the energy

causality and battery size constraints.

Remark 4.3: The optimization problem in (6) may have

multiple solutions. Consider a sub-channel with multiple

epochs having the same channel gain. In an optimal trans-

mission policy, if these epochs are partially utilized, i.e.,

0 < Θi,k < τi, then the corresponding optimal transmission

power must be equal to v∗i,k. Then, the corresponding optimal

values for
γi,kα

∗

i,k

Θ∗

i,k

= γi,kv
∗
i,k in (6a) must also be the same,
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therefore, we can obtain another transmission policy by trans-

ferring some of the energy between these epochs under the

energy causality and battery size constraints. Similarly, if an

epoch has multiple partially utilized sub-channels having the

same channel gain, we can find another optimal transmission

policy by transferring energy between these sub-channels.

A. Directional Backward Glue-Pouring Algorithm

The directional backward glue-pouring algorithm, intro-

duced in [22] for the throughput maximization problem with

a single fading channel (K = 1), is an adaptation of the

glue-pouring algorithm in Section III to the EH model, where

the energy becomes available over time. Due to the energy

causality constraint, harvested energy Ei can only be allocated

to epochs j ≥ i. When Ei energy of amount is transferred

to future epochs j > i, the constraint (6b) is satisfied with

strict inequality, i.e., λi = 0. Then the glue level cannot

increase as argued in Lemma 1. Conversely, if there is a

glue level increase, that is, if λi > 0, then the constraint

(6b) is satisfied with equality, and no energy is transferred

to future epochs. In addition, due to battery size constraint,

the amount of energy that can be transferred to epoch j is

limited by Emax − Ej . When the transferred energy is less

than Emax − Ej , the battery size constraint in (6c) must be

satisfied with strict inequality, i.e., µi = 0, and the glue level

does not change as argued in Lemma 1. Conversely, when

there is a glue level decrease, that is, if µi > 0, the amount of

transferred energy to the j’th epoch is Emax−Ej . Therefore,

we can allocate the harvested energy to epochs, starting from

the last non-zero energy packet to the first, under the energy

causality and battery size constraints. Moreover, the optimal

transmission power for different sub-channels of an epoch

must have the same glue level while satisfying the condition

p∗i,k ≥ v∗i,k. These suggest that, the optimal transmission policy

can be obtained through the directional backward glue-pouring

algorithm over the epochs of sub-channels. Accordingly, the

optimal transmission policy can be computed as in Table I.

Table I
DIRECTIONAL BACKWARD GLUE-POURING ALGORITHM

1) Initialization: Set glue level for epoch j, ξj = 0, j = 1, ..., I . Also
set i = I .

2) Allocate Ei to the subchannels of epoch i using the glue pouring
algorithm. Compute the glue level ξi = 1

γi,k
+ p∗

i,k
while satisfying

the condition p∗
i,k

≥ v∗
i,k

for each subchannel as argued in Lemma

2. Note that Lemma 2 guarantees 1

γi,k
+ p∗

i,k
is the same for all

k = 1, ...,K .
3) Set m = i. If m = I , go to step 6.
4) If the glue level of epoch m is greater than the subsequent epoch m+1,

i.e., ξm > ξm+1, reallocate previously allocated energies to epochs
i, ...,m + 1 while satisfying the glue pouring solution within each
epoch, such that the transferred energy to epoch j, j ∈ i+1, ...,m+1,
is less than and equal to Emax −Ej . Note that when the transferred
energy to epoch j is less than Emax −Ej , the glue level of epoch j
is equal to the preceding epoch j − 1, i.e., ξj−1 = ξj as argued in
Lemma 1.

5) If m = I , go to step 6. Otherwise, increase m by one, and go to step
4.

6) If i = 1, stop. Otherwise, decrease i by one and go to step 2.

E1 E2

T0 τ1 τ2

1

2

T ime
Subchannels

(a)

E1 E2

T0 τ1 τ2

1

2

T ime
Subchannels

(b)

E1 E2

T0 τ1 τ2

1

2

T ime
Subchannels

(c)

Fig. 1. Directional backward glue-pouring algorithm.

To illustrate the directional backward glue-pouring algo-

rithm, consider the example in Fig. 1. There are two sub-

channels (K = 2) and two fading levels (I = 2) in each sub-

channel. The inverse channel gains 1
γi,k

are shown as heights

of the solid blocks. The dashed lines above the block are

used to express optimal power levels v∗i,k for 0 < Θ∗
i,k < τi,

such that v∗i,k corresponds to the difference in height between

the solid block and the dashed one. We consider two energy

arrivals at the beginning of each epoch which are indicated

by the downward arrows in the figure. As argued above, the

algorithm first allocates power to the second epoch using

the last harvested energy E2, as shown in Fig. 1(b), then

considers the first energy packet E1 for the first and second

epochs together. The glue levels are the same among the sub-

channels for which the condition p∗i,k ≥ v∗i,k holds, as shown

in Fig. 1(b). Note that due to the limited battery capacity,

the transferable energy from the first epoch to the second is
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limited by Emax−E2, which explains the glue level difference

between the first and second epochs in Fig. 1(c).

V. ENERGY MAXIMIZATION

In this section, we study the energy maximization problem

introduced in Section II, that is, we maximize the remaining

energy in the battery by the deadline T such that all the data

packets Bi, i = 1, ..., I , are delivered. We assume that the last

event corresponds to the transmission deadline, i.e., tI+1 = T ,

and relax the finite battery size constraint, i.e., Emax → ∞.

The optimization problem for the energy maximization can be

formulated as follows:

max
βi,k,Θi,k

I
∑

i=1

(

Ei −

K
∑

k=1

Θi,k

γi,k

(

e
2βi,k
Θi,k − 1

)

+Θi,kǫ

)

(16a)

s.t.

i
∑

j=1

K
∑

k=1

Θj,k

γj,k

(

e
2βj,k
Θj,k − 1

)

+Θj,kǫ−
i
∑

j=1

Ej ≤ 0, ∀i,

(16b)
i
∑

j=1

K
∑

k=1

βj,k −

i
∑

j=1

Bj ≤ 0, i = 1, ..., I − 1, (16c)

I
∑

j=1

Bj −

I
∑

j=1

K
∑

k=1

βj,k ≤ 0, (16d)

0 ≤ Θi,k ≤ τi, and 0 ≤ βi,k, ∀i, ∀k, (16e)

where we have defined βi,k ,
Θi,k

2 log (1 + γi,kpi,k) for

i = 1, ..., I and k = 1, ...,K . Here, βi,k can be considered

as the total amount of data transmitted within epoch i of sub-

channel k. In the above optimization problem, (16b) and (16c)

are due to the energy and data causality constraints in (1)

and (3), respectively. Constraint (16d) arises as a result of

the delivery requirement of all data packets by the deadline.

Note that, the term Θi,ke
2βi,k
Θi,k is the perspective function

of a strictly convex function f(βi,k) = e2βi,k . Here, we

take Θi,ke
2βi,k
Θi,k = 0 when Θi,k = 0. Since the perspective

operation preserves convexity [23], the objective function in

(16a) is concave, and the constraint set defined by (16b)-

(16e) is convex. Therefore, the optimization problem in (16)

is convex. The constraint set of (16) can be empty due to

insufficient harvested energy to deliver all the data packets.

Feasibility of (16) can be checked by solving the optimization

problem in (16) with a new objective function −B, and a new

constraint
∑I

j=1Bj −
∑I

j=1

∑K

k=1 βj,k ≤ B replaced with

(16d). Note that B corresponds to the additional amount of

data that can be delivered in the last epoch for the given energy

profile. If the optimal value of this optimization problem is

non-negative, i.e., B ≥ 0, then the constraint set defined by

(16b)-(16e) has a feasible solution.

The optimal value of the total transmitted data β∗
i,k and the

corresponding transmission duration Θ∗
i,k for epoch i of sub-

channel k, i = 1, ..., I and k = 1, ...,K , must satisfy the

following KKT conditions:

∂L

∂βi,k
=

2

γi,k
e

2β∗

i,k

Θ∗

i,k



1 +
I
∑

j=i

λj



+
I−1
∑

j=i

µj − µI − σi,k = 0,

(17)

∂L

∂Θi,k

=







2β∗
i,ke

2β∗

i,k

Θ∗

i,k

γi,kΘ∗
i,k

−
e

2β∗

i,k

Θ∗

i,k − 1

γi,k
− ǫ









1 +

I
∑

j=i

λj



−

φi,k + ψi,k = 0, (18)

for i = 1, ..., I and k = 1, ...,K . Here, L is the Lagrangian

of (16) with λi ≥ 0, µi ≥ 0, φi,k ≥ 0, ψi,k ≥ 0, and σi,k ≥ 0
as Lagrange multipliers corresponding to constraints (16b)-

(16e), respectively. The complementary slackness conditions

are given as:

λi





i
∑

j=1

K
∑

k=1

Θ∗
j,k

γj,k

(

e

2β∗

j,k

Θ∗

j,k − 1

)

+Θ∗
j,kǫ−

i
∑

j=1

Ej



= 0, ∀i

(19)

µi





i
∑

j=1

K
∑

k=1

β∗
j,k −

i
∑

j=1

Bj−1



 = 0, i = 1, ..., I − 1 (20)

µI





I
∑

j=1

Bj −

I
∑

j=1

K
∑

k=1

β∗
j,k



 = 0 (21)

φi,k(Θ
∗
i,k − τi) = 0, ψi,kΘ

∗
i,k = 0, σi,kβ

∗
i,k = 0, ∀i, ∀k. (22)

Similar to Section IV, we characterize the properties of

the optimal transmission policy for the energy maximization

problem using the KKT conditions in (17)-(22).

We observe that the optimal power p∗i,k and transmission

duration Θ∗
i,k for epoch i of sub-channel k for i = 1, ..., I and

k = 1, ...,K , satisfy the following:

• If Θ∗
i,k = 0, p∗i,k must be zero as no data is transmitted

in that epoch.

• If 0 < Θ∗
i,k ≤ τi, then ψi,k = σi,k = 0 due to the

complementary slackness conditions in (22). In this case,

the optimal transmission power p∗i,k can be computed in

terms of λj and µj , j ≥ i, as follows

p∗i,k =

[

µI −
∑I−1

j=i µj

2(1 +
∑I

j=i λj)
−

1

γi,k

]+

. (23)

This is obtained by using (17) and replacing β∗
i,k with

Θ∗
i,k log

(

1 + γi,kp
∗
i,k

)

. In addition, we can obtain the

following from (18):

2β∗
i,ke

2β∗

i,k

Θ∗

i,k

γi,kΘ∗
i,k

−
e

2β∗

i,k

Θ∗

i,k − 1

γi,k
− ǫ =

φi,k

2(1 +
∑I

j=i λj)
. (24)

When we replace β∗
i,k with Θ∗

i,k log
(

1 + γi,kp
∗
i,k

)

, we

get

log
(

1 + γi,kp
∗
i,k

)

(

1

γi,k
+ p∗i,k

)

− (p∗i,k + ǫ) =

φi,k

2(1 +
∑I

j=i λj)
(25)
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Note that when 0 < Θ∗
i,k < τi, i.e., φi,k = 0, we

obtain (5) since
(

1 +
∑I

j=i λj

)

> 0. This suggests that

the optimal transmission power p∗i,k is equal to v∗i,k , the

solution of (14) when φi,k = 0. When Θ∗
i,k = τi, i.e.,

φi,k ≥ 0, it can be argued from (25) that the optimal

transmission power p∗i,k must satisfy p∗i,k ≥ v∗i,k.

Remark 5.1: Similar to the throughput maximization prob-

lem in Section IV, as argued in Remark 4.1, the optimal trans-

mission policy over sub-channels becomes the classical water-

filling solution when there is no processing cost, i.e., ǫ = 0.

This follows from the fact that (25) leads to p∗i,k = v∗i,k = 0,

when ǫ = 0 and 0 < Θ∗
i,k < τi, as argued in Remark 4.1.

Lemma 3: In the optimal transmission policy, whenever the

glue level in sub-channel k, k ∈ {1, ...,K}, increases from one

epoch to the next, either the battery depletes and a new energy

packet is harvested, or the data buffer empties and a new data

packet arrives.

Proof: The optimal transmission power p∗i,k satisfies (23)

when there is non-zero data transmission in epoch i of sub-

channel k for i = 1, ..., I and k = 1, ...,K . We can also

conclude from the complementary slackness conditions in

(19)-(20) that whenever λi > 0, the battery depletes, and

whenever µi > 0, the data buffer empties. Therefore, the glue

level increases from one epoch to the next, when either the

battery depletes and a new energy packet is harvested, or the

data buffer empties and a new data packet arrives.

Similar to Lemma 2, in the optimal transmission policy, the

glue levels in an epoch are the same for all the sub-channels

k ∈ {k : β∗
i,k > 0}.

Note as in Section IV, the optimal transmission policy must

satisfy p∗i,k ≥ v∗i,k . Therefore, Remark 4.2 is valid for the

energy maximization problem as well.

Remark 5.2: Similar to the throughput maximization prob-

lem in (6), the energy maximization problem in (16) may

have multiple solutions. The optimal transmission power p∗i,k
is equal to v∗i,k if the optimal transmission duration of an epoch

of a sub-channel satisfies 0 < Θ∗
i,k < τi. If multiple epochs

have the same channel gain, the optimal values satisfying
β∗

i,k

Θ∗

i,k

= 1
2 log(1 + γi,kp

∗
i,k) are the same. Therefore, as can

be argued from the objective function of (16), we can find

another optimal transmission policy satisfying the energy and

data causality constraints by transmitting some of the data in

a different epoch with the same optimal transmission power.

A. Directional Backward Glue-Pouring Algorithm with Data

Arrivals

The directional glue-pouring algorithm of Section IV-A can

be modified to solve the energy maximization problem by

taking into account data arrivals. A data packet can only

be transmitted after it has arrived due to the data causality

constraint. When part of the data Bi is transferred to future

epochs j > i, the constraint (16c) is satisfied with inequality,

i.e., µi = 0. Then the glue level remains the same as argued in

Lemma 3. Conversely, if there is a glue level increase, i.e., if

µi > 0, then the constraint (16c) is satisfied with equality, and

no data is transferred to future epochs. By Lemma 1 the opti-

mal transmission policy must satisfy the condition p∗i,k ≥ v∗i,k,

and the glue levels are the same for all sub-channels in an

epoch. Accordingly, we can schedule transmission of the data

starting from the last non-zero data packet to the first, such

that the required energy to transmit the data satisfies the energy

causality constraint. Therefore, the optimal transmission policy

can be computed using a directional backward glue-pouring

algorithm with data arrivals in which the data packet Bi is

transmitted over subsequent epochs, and the energy allocation

for each data packet is done using the glue-pouring algorithm

in Section IV-A. Accordingly, the optimal transmission policy

can be computed as in Table II.

Table II
DIRECTIONAL BACKWARD GLUE-POURING ALGORITHM WITH DATA

ARRIVALS

1) Initialization: Set glue level for epoch j, ξj = 0, j = 1, ..., I . Also
set i = I .

2) Allocate energy to the subchannels of epoch i using the glue pouring
algorithm such that Bi amount of data is delivered in that epoch.
Compute the glue level ξi =

1

γi,k
+p∗

i,k
while satisfying the condition

p∗
i,k

≥ v∗
i,k

for each subchannel as argued in Lemma 2.

3) Set m = i. If m = I , go to step 6.
4) If the glue level of epoch m is greater than the subsequent epoch

m + 1, i.e., ξm > ξm+1, reallocate power to the subchannels of
epochs i, ...,m + 1 while satisfying the glue pouring solution within
each epoch, such that the allocated energy to epochs j, j = i, ..., n,
n ≤ m + 1, is less than and equal to

∑n
j=1

Ej . Note that when the

allocated energy to epochs j, j = i, ..., n is less than
∑n

j=1
Ej , the

glue level of each epoch is constant.
5) If m = I , go to step 6. Otherwise, increase m by one, and go to 4.
6) If i = 1, stop. Otherwise, decrease i by one and go to step 2.

To illustrate the directional backward glue-pouring algo-

rithm with data arrivals, we consider the algorithm for two

sub-channels with two fading states in each sub-channel as

shown in Fig. 2. The inverse channel gains are indicated

by solid blocks in the figure. The optimal power levels v∗i,k
are indicated with dashed lines which are v∗i,k above the

solid blocks. In addition, the energy and data arrivals are

showed with downward arrows, respectively. The algorithm

first allocates power to the second epoch such that B2 bits are

transmitted in this epoch and the glue levels are the same in

the sub-channels in which the condition p∗2,k ≥ v∗2,k, k = 1, 2,

is satisfied (see Fig. 2(b)). Note that, although both energies

E1 and E2 are available for the transmission of B2 bits, E2

is used first, as E1 can also be used to transmit the bits in the

first data packet. If E2 was not enough to transmit B2 bits,

some of the energy from the first arrival E1 would also be

used. Then, the algorithm considers the first data packet B1

and allocates power according to the glue-pouring algorithm

in Section IV-A as shown in Fig. 2(c).

VI. TRANSMISSION COMPLETION TIME (TCT)

MINIMIZATION

In this section, we consider the TCT minimization problem

introduced in Section II. Our goal is to identify an optimal

transmission policy which minimizes the delivery time of all

the data packets Bi, i = 1, ..., I . We again assume that the

battery has infinite size Emax → ∞. We first discuss the rela-

tion between the TCT minimization and energy maximization
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E1 E2

T0 τ1 τ2

B2B1

1

2

T ime

Subchannel

(a)

E1 E2

T0 τ1 τ2

B2B1

1

2

T ime

Subchannel

(b)

E1 E2

T0 τ1 τ2

B2B1

1

2

T ime

Subchannel

(c)

Fig. 2. Directional backward glue-pouring algorithm with data arrivals.

problems, and then we propose an algorithm which finds the

optimal transmission policy for TCT minimization.

As argued in Remark 5.2, the optimal transmission scheme

for the energy maximization problem may have multiple solu-

tions which can lead to different TCTs. Since we are seeking

the minimum TCT, without loss of optimality, we put some

restrictions on the optimal transmission policy obtained by the

energy maximization problem before we relate the two prob-

lems: i) non-zero power is always allocated at the beginning

of an epoch, i.e., during the time interval
[

ti−1, ti−1 +Θ∗
i,k

)

;

ii) if there are multiple epochs with the same channel gain

in a sub-channel k, k = 1, ...,K , the transmission power is

allocated starting from the earliest epoch satisfying the energy

and data causality constraints; and iii) if all the utilized sub-

channels in the last epoch have the same channel gain, then

the transmission power is allocated to those sub-channels for

which the transmission duration Θ∗
i,k is the same.

Denoting the minimum TCT time as Tmin we note that the

battery must be depleted by the time Tmin, otherwise we could

increase the transmission power and deliver the arrived data in

a shorter time. Therefore, we can conclude that the remaining

energy in the battery obtained by the energy maximization

problem must be zero when the deadline T is equal to Tmin.

Any delay constraint T , for which the energy maximization

problem leads to zero remaining energy in the battery, satisfies

T ≥ Tmin, as the transmission power in the time interval

[Tmin, T ) can be zero.

Following the arguments above, the smallest transmission

deadline T = tm, for which the energy maximization problem

has a feasible solution, is an upper bound on Tmin. This sug-

gests that for T = tm−1, the harvested energy is insufficient to

transmit all the arrived data packets, and tm−1 is a lower bound

on Tmin. Note that due to the requirement of transmitting all

the arriving data packets, we also need to ensure that the last

non-zero data packet arrival instant tbn is upper bounded by tm.

After identifying the time interval (tm−1, tm], we formulate a

convex optimization problem which minimizes the maximum

of the transmission durations of sub-channels in epoch m, i.e.,

max{Θm,k : ∀k, Tmin ∈ (tm−1, tm]} to find Tmin. The TCT

minimization algorithm is outlined next.

A. TCT minimization

In order to compute Tmin, we first find the smallest m ∈
{1, ..., I}, such that tm is greater than the last nonzero data

packet arrival time tbn, and the directional backward glue-

pouring algorithm in Section V-A with T = tm has a feasible

solution.

We next solve the following minimization problem:

min
βi,k,Θi,k

t (26a)

s.t.

i
∑

j=1

K
∑

k=1

Θj,k

γj,k

(

e
2βj,k
Θj,k − 1

)

+Θj,kǫ−
i
∑

j=1

Ej ≤ 0,

i = 1, ...,m, (26b)
i
∑

j=1

K
∑

k=1

βj,k −

i
∑

j=1

Bj ≤ 0, i = 1, ...,m− 1, (26c)

m
∑

j=1

Bj −

m
∑

j=1

K
∑

k=1

βj,k ≤ 0, (26d)

0 ≤ Θi,k ≤ τi, i = 1, ...,m− 1, k = 1, ...,K, (26e)

0 ≤ Θm,k ≤ t, k = 1, ...,K, (26f)

0 ≤ βi,k, i = 1, ...,m, k = 1, ...,K, (26g)

where βi,k ,
Θi,k

2 log(1 + γi,kpi,k) for i = 1, ..., N and k =
1, ...,K , and t is the epigraph of max{Θm,k : k = 1, ...,K}
as stated in (26f). Here, βi,k can be considered as the total

amount of data transmitted within epoch i of sub-channel k.

In the above optimization problem (26b) and (26c) are due

to the energy and data causality constraints in (1) and (3),

respectively. The minimum TCT is Tmin = tm−1 + t∗, where

t∗ is the solution of the above optimization problem. Once

Tmin is found, the corresponding optimal transmission policy

can be obtained by solving the energy maximization problem

in Section V with deadline T = Tmin.
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VII. ONLINE TRANSMISSION POLICIES

In this section, we consider causal knowledge of the energy

and data arrival profiles and channel gains at the transmitter.

In such a scenario, the optimal online transmission policy can

be obtained by first discretizing the state space and applying

dynamic programming [24]. However, due to the high compu-

tational complexity of dynamic programming algorithms, here

we focus on less complex heuristic online algorithms for the

throughput and energy maximization problems using proper-

ties of the offline optimal transmission policies developed in

Sections IV and V. Numerical comparisons with the optimal

offline policies and dynamic programming solutions will be

provided in Section VIII.

A. Throughput Maximization

The proposed online throughput maximizing transmission

policy is of myopic nature. The algorithm allocates transmis-

sion power to sub-channels based on the available energy in

the battery and channel gains of sub-channels whenever an

event (a variation in the channel gain or an energy arrival)

occurs. Since consuming all the harvested energy by the

deadline is optimal, transmission powers over the sub-channels

are computed such that the battery is depleted by the deadline

as if there will be no more energy arrivals or channel state

variations. Therefore, available energy at the battery, which

is bounded by Emax, is allocated to sub-channels using the

directional backward glue pouring algorithm as introduced

in Section IV-A. As argued in Lemma 2, the optimal glue

level must be the same for all sub-channels to which non-zero

transmission energy is allocated. The transmitter continues its

transmission using the optimal transmission powers resulting

from the above computation until either the battery depletes,

or a new event occurs.

B. Energy Maximization

The online energy maximization problem is also a myopic

one. Since the transmitter does not know the future energy/data

packet arrivals or the channel gains, the online policy evaluates

the transmission power pi,k for each sub-channel at time ti
based on the available data in the data buffer and the channel

gains of the sub-channels. The energy maximization problem

requires transmitting all the data packets by the deadline T .

Therefore, the transmission powers pi,k, k = 1, ...,K , have to

be chosen to guarantee the transmission of all stored data at

time ti until the deadline T as if there are no energy/data

arrivals or channel gain changes after ti. Accordingly, the

optimal transmission powers pi,k can be computed using the

directional backward glue pouring algorithm as introduced in

Section V-A. Then the transmission powers are set to pi,k and

the transmission durations to Θi,k over the respective sub-

channels until either a new event occurs, or the battery depletes

due to insufficient energy to transmit all the data. As argued

in Section V, the optimal glue level is the same for all the

utilized sub-channels while the optimal transmission power

satisfies the condition p∗i,k ≥ v∗i,k.

VIII. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the

optimization problems considered. We first study the offline

throughput maximization problem. We consider four parallel

sub-channels with three epochs with durations τ = [3.5, 4, 2.5]
sec. We consider an energy arrival profile E = [9, 8, 5] micro-

joules (µJ) at the beginning of each epoch. We set Emax = 10
µJ. Channel gains of epochs are γ.,1 = (0.8, 0.55, 0.45)×106,
γ.,2 = (0.35, 0.9, 0.6) × 106, γ.,3 = (0.6, 0.4, 0.5) × 106,

and γ.,4 = (0.55, 0.35, 0.4) × 106 for sub-channels k =
1, 2, 3, 4, respectively. The optimal transmission policy for the

throughput maximization problem for the above energy and

channel profile for different values of the processing cost ǫ

is shown in Fig. 3. In Fig. 3, all the sub-channels in an

epoch are shown as a sequence of blocks which are labeled

with the corresponding sub-channel index. The solid blocks

represent the inverse channel gains, the dashed horizontal lines

correspond to 1
γi,k

+ v∗i,k, where v∗i,k is the solution of (14)

when φi,k = 0 and the shaded blocks show the optimal power

levels. The optimal transmission policy with no processing

cost, i.e., ǫ = 0, is shown in Fig. 3(a). As can be seen from

the figure, since there is no cost of increasing the transmission

duration, the optimal transmission policy across sub-channels

is classical water-filling (Remark 4.1). The difference in power

levels among epochs is due to the energy causality constraint

as argued in Section IV. For the same energy arrival and

channel profile, taking into account a processing cost of

ǫ = 0.25 µW per sub-channel, we obtain the transmission

policy in Fig. 3(b). The processing cost results in the total

transmitted data falling from 6.23 nats to 5.21 nats. As shown

in the figure, the optimal transmission policy becomes bursty

while having the same glue level within an epoch. In the figure,

the decrease in the optimal glue level from the first epoch to

the second is due to the finite battery size, and the increase in

the optimal glue level from the second epoch to the third is

due to the energy causality constraint.

In Fig. 4 we illustrate the variation of the throughput

with respect to ǫ for the same energy and channel profile

given above. In addition, we illustrate the total transmission

duration, which is the sum of the maximum of the transmission

durations of all the sub-channels in an epoch, with respect

to the processing energy cost in Fig. 5. As it can be seen

in the figure, as the processing energy cost increases, the

transmission becomes more bursty.

We next illustrate the optimal offline transmission policy

for the energy maximization problem for different processing

energy costs. We use the same energy arrival and channel

gain profile given above and a data profile B = [0.5, 2, 1.5]
nats. First, we set ǫ = 0 for each sub-channel, and obtain the

transmission policy shown in Fig. 6(a). As shown in the figure,

the optimal transmission policy utilizes epochs fully as there

is no cost in increasing the transmission duration. In this case,

the optimal transmission policy across sub-channels is classi-

cal water-filling (Remark 5.1), and the water level increases

monotonically within a sub-channel due to the energy and data

causality constraints. The remaining energy in the battery is

6.5 µJ. Then, we set ǫ = 0.25 µW, and obtain the optimal
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Fig. 3. Throughput maximization: (a) Optimal power levels for ǫ = 0,
shown as the heights of the shaded blocks, are ([1.18, 0.74, 0.57],
[0, 1.44, 1.13], [0.76, 0.05, 0.79], [0.61, 0, 0.29]) µW with durations
([3.5, 4, 2.5], [0, 4, 2.5], [3.5, 4, 2.5], [3.5, 0, 2.5]) sec. for sub-channels
k = 1, ...,4, respectively. Total transmitted data is B = 6.23 nats. (b)
Optimal power levels for ǫ = 0.25 µW, shown as the heights of the
shaded blocks, are ([1.4, 1.03, 0], [0, 1.74, 1.41], [1, 0, 1.08], [0, 0, 0]) µW
with durations ([3.5, 0.8, 0], [0, 4, 2.56], [2.04, 0, 2.13], [0, 0, 0]) sec. for
sub-channels k = 1, ...,4, respectively. Total transmitted data is B = 5.21
nats.
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Fig. 4. Average throughput versus processing energy cost.

transmission policy in Fig. 6(b). As shown in the figure, the

optimal transmission policy is now bursty. Consistent with the

observations in Section V, the glue levels are the same within

an epoch, and increase monotonically within a sub-channel

due to energy and data causality constraints. The remaining

energy in the battery is 2.54 µJ.

The variation of the remaining energy in the battery with

respect to ǫ for the above energy/data arrival and channel gain

profile is shown in Fig. 7. We observe that the maximum

energy that can be saved in the battery at the end of the

deadline decreases rapidly as the processing cost increases.

For a processing cost of ǫ = 0.49 µW, the arriving energy is
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Fig. 5. Total transmission duration versus processing energy cost.
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Fig. 6. Energy maximization: (a) Optimal power levels
for ǫ = 0, shown as the heights of the shaded blocks, are
([0.41, 0.52, 0.57], [0, 1.23, 1.13], [0, 0, 0.8], [0, 0, 0.3]) µW with durations
([3.5, 4, 2.5], [0, 4, 2.5], [2.05, 0, 2.5], [0, 0, 2.5]) sec. for sub-channels
k = 1, ...,4, respectively. The remaining energy in the battery is 6.5 µJ. (b)
Optimal power levels for ǫ = 0.25 µW, shown as the heights of the shaded
blocks, are ([0.87, 1.03, 0], [0, 1.74, 1.66], [0, 0, 1.32], [0, 0, 0]) µW with
durations ([1.87, 0.51, 0], [0, 4, 2.5], [0, 0, 2.5], [0, 0, 0]) sec. The remaining
energy in the battery is 2.54 µJ.

exactly the amount that is needed to transmit the arriving data.

Transmission of all the data by the deadline is not possible for

ǫ > 0.49 µW.

We also consider the offline TCT minimization problem for

the above energy/data arrival and channel gain profile with

processing cost ǫ = 0.25 µW. The corresponding optimal

transmission policy is given in Fig. 8. The corresponding

minimum TCT is 8.26 sec.

Finally, we evaluate the average performance of the on-

line algorithms of Section VII by comparing them with the

corresponding optimal offline policies. We consider two sub-

channels. Each sub-channel has a fixed channel gain for 1
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Fig. 7. Remaining energy in the battery versus processing energy cost.
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Fig. 8. TCT minimization: Optimal power levels for
ǫ = 0.25, shown as the heights of the shaded blocks, are
([0.87, 1.03, 3.02], [0, 1.74, 3.86], [0, 0, 3.52], [0, 0, 3.02]) µW with
durations ([1.89, 0.51, 0.76], [0, 4, 0.76], [0, 0, 0.76], [0, 0, 0.76]) sec.
for sub-channels k = 1, ...,4, respectively. The minimum transmission
completion time is 8.26 sec.

sec, which is independent across sub-channels and fading

blocks, drawn from an exponential distribution with parameter

λ = 1. We set the transmission deadline to T = 10 sec.

Therefore, there are ten fading levels for each sub-channel.

We also assume that energy/data packets arrive only when

the channel gains change. We first illustrate the performance

of the throughput maximization problem. We set the battery

size to Emax = 10 µJ, and the processing cost of the sub-

channels to ǫ = 1 µW, respectively. We assume that energy

packets have sizes chosen from a uniform distribution in the

interval [0, E] µJ, where E ∈ (0, 10] µJ. In order to see

the degradation in the performance of the proposed online

algorithm, we also provide a dynamic programming based

solution [24]. The dynamic programming solution requires

the quantization of battery state, energy amounts and fading

states, and it achieves optimal performance asymptotically as

the quantization resolution becomes finer. In our simulation we

quantize the amount of energy in the battery uniformly with

step size 1 µJ. We also quantize the fading states into eight

levels such that levels are uniformly distributed. We illustrate

the average throughput as a function of the average energy

arrival rate E
2 in Fig. 9(a). As shown in the figure, the online

algorithm performs close to the offline transmission policy

despite the lack of information about the future events. It

also performs close to the dynamic programming solution. The

performance loss of the online algorithm at high energy rates

is partly due to the increased probability of battery overflows.

Next, we evaluate the performance of the online energy

maximization policy. We assume that the sizes of the energy
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Fig. 9. (a) Average performances of online and offline throughput maximiza-
tion policies as a function of the energy arrival rates. Dynamic programming
(DP) solution is also included. (b) Average performances of online and offline
energy maximization policies as a function of the data arrival rates. Dynamic
programming (DP) solution is also included.

and data packets are chosen from uniform distribution over

the intervals [0, 3] µJ and [0, B] nats, where B ∈ (0, 0.18]
nats, respectively. Similarly to the throughput maximization

problem, to see the degradation in the performance of the

proposed online algorithm, we also provide a dynamic pro-

gramming based solution. We quantize the energy levels and

fading states as in the throughput maximization problem. We

also quantize the amount of data in the data buffer uniformly

with step size 0.01 nats. We demonstrate the average remaining

energy in the battery as a function of the average data arrival

rate B
2 in Fig. 9(b). Some of the energy/data and channel

gain realizations lead to infeasible solutions. Therefore, the

remaining energy in the battery is averaged only over the

feasible cases. When the average energy and data arrival rates

are low, the optimal power allocation is mostly bursty, and

the proposed online algorithms perform closer to the offline

ones as seen in Fig. 9(a) and 9(b). However, as the energy/data

rate increases the information about the future events becomes

more significant, and the lack of information on the future

energy/data arrivals leads to a degradation in the performance

of the online algorithm as well as the dynamic programming

based policy as seen in Fig. 9(a) and 9(b).

IX. CONCLUSIONS

We have studied a broadband energy harvesting communi-

cation system modelled as having K parallel fading channels

by considering both the transmission and processing energy

for each sub-channel. We have identified the optimal offline

transmission policies for three different objectives; maximiza-

tion of the transmitted data by a deadline, maximization of
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the remaining energy in the battery by a deadline and mini-

mization of the TCT of all the arriving data packets. For the

throughput and energy maximization problems we have formu-

lated a convex optimization problem and identified properties

of the optimal transmission policies. We have then discussed

the relation between the energy maximization and the TCT

minimization problems. We have also provided algorithms

which compute the optimal transmission policies for all the

three problems. Moreover, for the case the energy/data arrivals

and channel gains are known causally, we have suggested

myopic online algorithms for throughput and energy maxi-

mization. We have shown that the proposed low-complexity

online algorithms perform close to the dynamic programming

solution and the offline policies at low energy/data arrival rates.

Finally, numerical results have been presented to illustrate

the effect of the processing cost on the optimal transmission

policies and the performance in both the offline and online

settings.
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