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Abstract—Demand-side energy management (EM) is studied
from a privacy-cost trade-offperspective, considering time-of-use
pricing and the presence of an energy storage unit. Privacysi
measured as the variation of the power withdrawn from the grd
from a fixed target value. Assuming non-causal knowledge ohe
household’s aggregate power demand profile and the electity
prices at the energy management unit (EMU), the privacy-cds
trade-off is formulated as a convex optimization problem, ad
a low-complexity backward water-filling algorithmis proposed to
compute the optimal EM policy. The problem is studied also in
the online setting assuming that the power demand profile is
known to the EMU only causally, and the optimal EM policy is
obtained numerically through dynamic programming (DP). Due
to the high computational cost of DP, a low-complexity heustic
EM policy with a performance close to the optimal online soltion
is also proposed, exploiting the water-filling algorithm oltained
in the offline setting. As an alternative, information theoretic
leakage rate is also evaluated, and shown to follow a similar
trend as the load variance, which supports the validity of tte
load variance as a measure of privacy. Finally, the privacycost
trade-off, and the impact of the size of the storage unit on tts
trade-off are studied through numerical simulations usingreal
smart meter data in both the offline and online settings.

Index Terms—Smart meter, privacy, demand-side manage-
ment, energy storage, home energy management.

I. INTRODUCTION
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Fig. 1. A smart meter (SM) system diagram with an energy mamagt
unit (EMU) and a rechargeable battery (RB) at the user's éloolsl. The
EMU manages the power flows (solid lines) among the power, ghié
appliances and the RB. SM reports its readings to the UP #icetime
instants, illustrated by the dashed line.

readings [7], by adding random noise [8], or by sending
the aggregated energy consumption of a group of users [9].
However, tampering with SM readings also reduces their
relevance and value as control signals. Alternativelyeamy

can also be provided by demand-side management utilizing
storage units, such as rechargeable batteries (RBs) [19)]-[
and alternative energy sources, such as a renewable energy
source like a solar panel [10], [11], [20]. In [10] user’s
privacy is protected by using a RB and a renewable energy
source from an information theoretic perspective. Heigrist
algorithms are proposed in [13]-[15]. The joint optimipati

Smart meters (SMs) are key components for demand-sig€privacy and energy cost with a RB is addressed in [17]-
management in smart grids. SMs measure power consumpligg]. The authors in [17] and [18] propose online algorithms

of users and transmit their readings to the utility provigé®)
in almost real-time. This allows the UPs to closely monita t
grid, improving its reliability, robustness and efficiengdj.

based on stochastic dynamic programming (DP) and Lyapunov
optimization techniques, respectively. The authors ir,[[4]
and [22] study a stochastic control model, formulated as a

For example, the UPs can support time-of-use electricifartially observeable Markov decision process. Charedtey

pricing based on fine-grained SM readings and encouragg optimal strategy is computationally challenging du¢hi
consumers to shift their demands to off-peak hours with th@ntinuous state-action space; while approximate soisti@n
promise of reduced energy costs. Despite many potential bgR optained numerically through discretization, or uppet a
efits, the possible misuse of SM data by third parties, as Wgj{yer bounds can be derived.
as the UP, raises serious privacy concerns [2]. Intrudems ca | this paper, we consider the SM system depicted in Fig. 1.
analyze SM readings [3], [4], and extract private informati The energy flow is managed by the energy management unit
regarding user activities, such as residential occupasiegp (EMU), which satisfies the power demands of the appliances,
schedule, meal time [5], and appliance usage patterns [6]. x, from the power grid and the RB. We do not allow any
Privacy can be achieved by modifying SM readings befoggtages or shifting of user demands. The SM measures the
being reported to the UP. For example, by compressing SMwer withdrawn from the gridy;, and reports it to the UP

The first two authors received support from the Catalan Gowent under at certain time instants without any tampering. Assumirgg th
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the electricity price is time-dependent, the EMU utilizég t

RB both to reduce the energy cost, and to mask the energy
consumption profile of the user. One can argue that perfect
privacy is achieved if a constant SM reading is reported o th



UP over time [13]. Consequently, we measure user privacy in Power (kW)
terms of the variation of the power withdrawn from the grid, I Xi—
Y;, from a constant target consumption value over the period of X3 e X
interest [12]. In addition to the load variance, we also estd X7 s
the information leakage rate, which is defined as the mutua' X ’ X
information rate between the aggregated power demands of t. 3 . - > - > - - —
appliances and the SM readings. Mutual information, which t5=90 tll ty t? ta t;S t‘ T time
takes into account the statistics of the user's demand ha‘b) Cyi Los L Cf KoL , N
been previously considered as a measure of privacy for SN.™ . to ! EREE A T ftime
systems [7], [10], [11], [14]-[16], [19]-[21], [23]. On thather 0 ! o
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hand, the energy cost is measured with a time-varying tifne-o ¢ ! ' A S T I
- - . : 0 t, 1, t, tyts s titg toty, T time

use electricity pricing model. Our goal here is to desigrrgyne
management (EM) policies that jointly increase the privaty _ o
the user and reduce the energy cost over a given period':@f 2. lllustration of the t|mel'|nes for the total power dand of the
. . . household, and the cost per unit energy. The total power dénchanges
time !-m.der a RB capauty constraint. _ _ at time instantst?, 5, ..., t5, while the price of energy changes at time

Building upon our previous work [12], we first characterizénstantst$, ¢, 5, 5.

the optimal offine EM policy, assuming that the energy

demands and electricity prices are known non-causally by th ] ) )

EMU over the period of interest. We formulate the privacgico  °ff: and the impact of the RB capacity on this trade-off
trade-off as a convex optimization problem, and identifg th ~ &re analyzed for the proposed policies.

structure of the optimal policy. Exploiting this structunge ~ The remainder of the paper is structured as follows. In
provide abackward water-filling algorithmwhich efficiently Section Il, we describe the system model. In Section Iil, we
finds the optimal EM policy. characterize the optimal offline EM policy, and provide the

Next, we study the online optimization problem consideringackward water-filling algorithm. The optimal and heudsti

0n|y causal know|edge of the energy demands at the EMmllne EM pO”Cies are presented in Section IV. In Section V,
that is, the EMU learns only the energy demand at the curreve explain how to characterize the information Ieakage fate
time slot (TS). We characterize the optimal online policings Section VI, extensive numerical results are presentealliyjin
DP. Due to the continuous state space, DP algorithms wit#¢ conclude our paper in Section VII.

good approximation to the optimal solution are prohibitve

complex; and therefore, we propose a simple heuristic enlin Il. SYSTEM MODEL

algorithm, which exploits the backward water-filling algbm We consider a discrete-time power consumption model in
obtained in the offline setting. Finally, we numerically xaie  a household (see Fig. 2(a)). In this model, each appliance
the load variance as well as the information leakage rathnsumes a constant power for an arbitrary duration when
and characterize the trade-off between the privacy and casts active. Appliances can be in the active or inactiveestat
The operating points on this trade-off can be chosen basedaarany time. Lett) = 0 < ¥ < --- < tix_1y < T be the
user's preferences. We also investigate the impact of the RBe instants at which there is a change in the total power
capacity on the performance. Our main contributions can bensumption. We denote the total power consumption within
summarized as follows [t’(’kil),ti] by X} (kW) for k =1,..., K, whereX} > 0.

« We consider the SM system illustrated in Fig. 1, and study We also consider a time-varying electricity pricing model
the design of EM policies that aim at minimizing a joinin which the cost per unit energy changes over time at certain
privacy-cost objective. time instants, and remains constant in between (see Fiy). 2(b

« We formulate the optimal privacy-cost trade-off in theet¢f =0 < ¢f < --- < t—1y <T be the time instants
offline setting as a convex optimization problem. Wat which the cost of energy changes. We denote the cost
identify the structure of the optimal solution, and provideer unit energy within[t@n_l),tfn] by C¢, (cent/kwWh) for

m

a low-complexity backward water-filling algorithm form =1,..., M. We can combine the time instants at which the
computing it. power consumption or the cost per unit energy changes into a

« We solve the online optimization problem by first dissingle time seriegsy = 0 < t; < -+ < ty_1 < ty =T
cretizing the continuous state space, and then applyi(eee Fig. 2(c)). The duration of the TS between two con-
DP. Alternatively, we provide an efficient heuristic algosecutive time instants is denoted by = t; — t;,_; (min),
rithm that exploits the optimal offline algorithm to solvefor ¢ = 1,..., N. TSs do not necessarily have the same
a particular subproblem constructed at each iteration. duration. We denote the total power consumption and the cost

« The information leakage rate between the user’s demaper unit energy within TS as X; (kW) and C; (cent/kWh),
profile and the SM readings is also evaluated. Comparismspectively, wher&; > 0. Note that for any two consecutive
with the load variance indicate that the two privacy'Ss, either the power demadd, or the costC;, or both may
measures exhibit similar trends. change, whereas they remain constant within a TS.

« Finally, the performances of the proposed offline and We study the SM model depicted in Fig. 1, whe¥e (kW)
online EM policies are assessed through numerical simdenotes the aggregated real power consumption i, While
lations, using a real SM data set. The privacy-cost tradg; (kW) denotes the real power drawn from the grid. SM



reports{Y;}~, to the UP without any tampering. We assumappliances up to each TS is not more than the capacity of the
thatY; remains constant within each TS. We show later th&B. This guarantees that the extra energy drawn from the grid
this assumption is without loss of optimality. Accordinglycan be stored for future use, and no energy is wasted due to
there is no loss of information by the SM reporting itdattery overflows. The constraint in (4) assumes that energy
measurement once per TS. We integrate a RB with finitmnnot be drawn from the grid to be wasted for the sake of
capacityB,,., (kWh), and an EMU that manages the energgrivacy. However, we do not constrain the final battery state
flow in the system. The EMU can use both the grid and thee empty; hence, more energy than requested by the apiance
RB to satisfy the energy deman;, such that; = X; — P;, can be drawn to be left in the battery at the end of ¥'S
whereP; (kW) is the power charged tdX < 0), or discharged  Since both objective functions (1) and (2) are convex, and
from (P; > 0) the RB in TSi, andY; € R*, whereR™ denotes the constraints are linear, achievable pairs(bfC) under
the set of nonnegative real numbers. By constrairting> 0 constraints (3) and (4) form a convex region, and the optimal
Vi, we do not allow the user to sell his excess energy backaperating points are characterized by the Pareto boundary o
the grid. this region [24]. Hence, we use the weighted average ahd

We can argue that “perfect privacy” is achieved if the powet to identify all the points on the Pareto boundary [24]. The
withdrawn from the grid,Y;, takes a constant valug, Vi. convex optimization problem can be written: as
Ideally, if a user has a flat power demand from the grid, N
all individual appliance signatures are filtered out frone th min [9 1 (Y — E)2 +(1-0)-7-Y;-C;
aggregated energy consumption data, and we can assume that Yiz0 i
the UP cannot learn anything about her energy consumption  s.t. (3) and(4), (5)

behaviour [13]. Accordingly, the privacy of an EM policy is _ _
measured by théoad variance defined as where(0 < 6 < 1 is the parameter that adjusts the trade-

off between the privacy and cost. The value tbfs set in
advance by the user. W = 1, the user is interested only
in privacy; while if § = 0, only in the cost. Since the cost

) ] ] per unit energy and the user’s total load remain constant ove
Perfect privacy is achieved when = 0. The target power gach TS it follows from the convexity of the objective fuinet
demand£ is a constant parameter in our model, which i§, (5 that the optimal power drawn from the grid must remain

1 N
2 2N (Y — B2
2= T ;zl - (Vi —E) (1)

selected by the user in advarce o . constant within a TS [25]. Hence, the assumption of having
The average energy cosif an EM policy is defined as 6 5\ report only once per TS does not lead to any loss of
1 & information.
cCa — Z Y- C;. (2) In Section Ill, we identify theoptimal offline EM policythat
r i=1 minimizes (5), where all the demands and prices are known by

In our model all the energy demands must be satisfied the EMU in advance & = 0. While non-causal knowledge of
the time of request, i.e., outages or demand shifting are 8¢ user's energy consumption may not be feé}|ISIIC for erta
allowed. Hence, assuming that the RB is empty at 0, ¥; appliances, activity patterns of majority of appliancestsas

have to satisfy the following cumulative constraints refrigerators, heating, programmable washing machines an
; ; dish washers, electrical vehicles, are highly predictalieng
ZTJ' X, < ZTJ Y;, i=1,...,N, 3) the!r opergtlpn perlgds [26_]. Alternatively, we will studiie
= = online optimization in Section IV.

which assure that a sufficient amount of energy is drawn from [I1. OPTIMAL OFFLINE EM PoLicy

the grid to satisfy the energy demands of the appliances atfo obtain the optimal offline EM policy for the problem
each TS. We allow drawing more energy from the grid than (5), we define the Lagrangian function

that is requested by the appliances, which is then storeakin t N

RB. Since the RB capacity is finite, the battery energy at TSE _ Z [9%' (K _ E)2 . 9)TiYiCi}

i must satisfy P

%

BiéZTj'(Yj*X]’)SBmaza i=1,...,N, (4) Jri)‘i(ZTj(Xij))
=1

j=1 —
j=1
which assure that the difference between the cumulativeggne N i N
drawn from the grid and the cumulative energy demand of the + Z i (( Z 7 (Y; — Xj)) — Bmax> — Z v;Y;, (6)
i=1 j=1 i=1

1our framework can be easily adapted to consider a timenaryarget
energy profile,{E;}X,. This more general model could allow the usewhere \; > 0, u; > 0 andwv; > 0,4 = 1,...,N, are
to emulate a completely different energy consumption @dfil confuse an tha Lagrange multipliers, and the complementary slackness
intruder. In the paper we have not specified how the targeieval is chosen .
by the user, and for the simulations we have considdieds the average conditions are
power demand of the appliances. While we have observedghroumerical i
simulations that, this value provides sufficient flexililio the EMU, we think ) ) v _ .
that the determination of the target valfig or the target sequem{e@i}g\;l, Ai ( Z Tj (XJ YJ)) =0, i=1,...,N, (7)
is an interesting future research problem. Jj=1



the first white rectangle, while the second power demand
is given asX, = 2522252 The optimal values of the power
withdrawn from the grid)Y;", are illustrated as the height of
the filled areas abov€);, leading to the water levelg* + C;,
Vi.

We can see in Fig. 3 that unlike the classical water-filling
solution, in our model the water level does not have to be
constant. Instead, it changes from one TS to the next. This is
because we have multiple constraints in (3) and (4), which
should be satisfied at each TS as opposed to the classical
water-filling problem, in which there is a single constrdimt
Fig. 3. lllustration of an example of the optimal EM policyrdigh water- TS 7. As seen in Fig 3Y1* is sufficient to satisfy the first
filling f =2. ' ' .
fing for IV = 2 power demand(; as well as part o, denoted byX}, which

_ is first stored in the RB. Following (11), the water level ireth
i _ 2 _

Mt((ZTJ(}/j—X])) _B'rna;c) :O7 izl,...,N, (8) first TS is found to bé/1*+01: Z()\jfuj) /29+E

i1 j=1
’ Y5 satisfies part of demand,, i.e., X/, and the rest is stored
in the RB, i.e.,Y;* — XJ. From (11), the water level in the

Applying the Karush Kuhn Tucker (KKT) necessary condisecond TS is given by + Co = (A2 — u12) /260 + E, different

vY; =0, i=1,...,N. 9)

tions, we obtain, foi =1,..., N: from the water level in the first TS.

Next, we identify some properties of the optimal EM
or ) N policy based on the KKT conditions in (7)-(10), which are
W 20T; (YZ—* — E) +(1-0)7rCi+7 Z(uj — Aj) —v;, both necessary and sufficient due to the convexity of the

g j=i optimization problem in (5).
= 0. (10)

Lemma 1. In the optimal EM policy, givery; > 0 Vi,

Then the optimal values far; are found as whenever the water level, i.&; + C;, jncreases (decrgases)
from TSi to TSi + 1, ie., Y, + C; < Yy + Ciq

(Y; + C; > Yii1 + Ciy1), the RB must be full (empty) at

+ TS i, i.e.,, B; = Bpa: (B; = 0). Moreover, if the RB is
. Vi, (11) neither empty nor full at TS, i.e.,, 0 < B; < Bz, then
the water level does not change from 7% TS + 1, i.e.,

Y4+ C; = Yis1 + Ciga.

M=z

v =

> (A5 — 15)
j=i - A

where [z]T is equal tox if 2 > 0, and0 otherwise, and the

weighted cost level’; is defined as Proof. From the slackness conditions in (7) and (8), we can
argue that the RB is full whenevey; = 0 and u; > 0, and
A (1=0)0; . the RB is empty whenevek; > 0 and p; = 0. Note that

Ci = Y I vi. (12) A; and p; cannot be positive simultaneously. From (11), we

Sge thatY; + C; < Yiy1 + Ciyy implies \; = 0 and p; >
water-filling solution [27], whereY;* + C; corresponds to Ur @ndYi + Ci > Yigq + Ciyy implies A; > 0 and p; =
the water levelin TS i, and one can interpret the optimap' Therefore, we can conclude that whenever the water level

EM policy as pouring water over TSs. The classical watefcreases (decreases) from 78 TS: + 1, the RB must be
filing solution is encountered in various problems in th{!l (EMPty) at TSi. Moreover, if the RB is neither empty nor

literature, most notably, the optimal power allocation agio TUll at TS, i.e.,0 < B; < Binas, thei-th constraints in (3)
parallel Gaussian channels under a sum power constraintd§l (4) are satisfied with strict inequality. This impliesrfr
as to maximize the capacity [27]. In the classical wateingll tN€ Slackness conditions in (7) and (8) that= 0 andu; = 0.
solution, the water level is constant, and adjusted thraugH ™©mM (11), we can conclude that, if the RB is neither empty
constant Lagrangian multiplier, which is chosen to sattefy O full at TSi, the water level does not change from 7®
sum power constraint in the above example. TSi+1,1e.Y+Ci =Y + Cipr. =

In our problem, “water” corresponds to the energy allocated ) . ) o
to each TS. To clarify how it differs from the classical€Mma 2. In the optimal EM policy, giver¥;” > 0 i, if
water-filling solution, and to provide some intuition foreth e RB is never full from T$to TSN, i.e., B; < Bias for
constraints in (3) and (4), we next provide an example éf= ¢+ 1,.... N, then the optimum water levels from TS
the optimal EM policy through water-filling fov = 2 in  © TSN, i.e, Y+, for j =40+ 1,..., N, must satisfy
Fig. 3. The heights of the white rectangles correspond to the + Ci = £. If the RB is neither empty nor full from TS
weighted cost levels};’s, while their widths correspond to the® TSN, i.€,,0 < Bj < By, for j =i,i+1,..., N, then
TS durationsz;’s, for i = 1,2. The first power demand; is the optimum water levels from T:So TSV should be equal

given as the height of the corresponding filled area on top G £» -6, Y} + C; = E, forj =i,i+1,...,N.

We note that the solution in (11) resembles the classi



Proof. If the RB is never full from TSi to TSN, i.e., B; < B. Backward Water-Filling Algorithm

By forj =i,i+1,..., N, the constraints in (4) are satisfied q he af ioned implicati f

with strict inequality. It follows from the slackness cotidins Based on the aforementioned implications © Lemm_a_ 1

in (8) thaty; = 0, for j — i,i + 1 N. From (11), this and Lemma 2, we next describe the backward water-filling
J = y —_ 3 g0 ey . L

implies thaty’* +C; > £, and we can conclude that, if the RBI90Mthm through an example in Fig. 4. The heights of the
is never full ]from TSi to TS N, the optimum water levels white rectangles correspond to the weighted cost levéls,

from TS i to TS N should satisfyY + C; > E, for j = while their widths (_:orrespond to the T_S durqti_oans, for
ii+1,....N. If the RB is neither eJmpty nor full from TS z = 1_,2,3. We also flxatgrget consumption valfEllustrated

t0 TSN, i.e., 0 < B; < Buaa, for j = i,i +1,..., N, the in _F|g. 4. Fig. .4(a) depicts the power dgmands,, as the
constraints in (3) and (4) are satisfied with strict inegyali he'g,thf of the filled areas on top of the Wh'tef rectanglessyhu
It follows from (7) and (8) thath; = 11; = 0, for j = ,i + the |n|t|§1l yvg_ter levels are given h¥; —i—Ci,.Vz. Qbserve that
1,...,N. From (11), this implies that” + C; = E, and we the RB is initially empty at every TS. Considering the exampl

can conclude that, if the RB is neither empty nor full from Tg' Eig. 4(a), in _Fig._ 4(b) and Fig. 4(c) we iI_Ius_tr_ate the “’“’“’_" .
ito TSN, the optimum water levels from T&o TS N should offine EM policy in the presence of an infinite and a finite

be equal taf, i.e.,Y; +C; = B, for j =i,i+1,...,N. O capacity RB, respectively. -
In the infinite RB case, the first demaid is satisfied from

the grid within the first TS, as seen in the first plot in Fig. (b

A. Implications of the Lemmas The demand in the second TS, can be satisfied during the

For clarity, we first consider the solution for an infinite RBfirst and second TSs. The algorithm decides how much power
If Byae is infinite, the RB is never full and the constraintd0 draw in the first and second TSs, applying the water-filling
in (4) are never satisfied with equality, i.e., = 0, V. Then, Solution in (11), where we us€, + X, instead ofC'.
it follows from Lemma 1 that the water level is monotonically Since the electricity price is more expensive in the second
decreasing from one TS to the next. This is because thS, part ofX, is drawn within the first TS, and stored in the
water (energy) can only flow backwards in our model, i.eRB (see the second plot in Fig. 4(b)). The restgfis drawn
energy requested at a TS can be requested from the grid dvef the grid within the second TS. Hencs,, is fulfilled
earlier TSs, but not the future ones. Accordingly, whenev&iem both the RB and the grid. Observe that the RB is not
the constraint in (3) is not satisfied with equality at $.e., €mpty at the end of the first TS; and hence, the water level
\; = 0, then some energy for future use is drawn in advan€@es not change from the first TS to the second as argued in
within current TSi. Hence, in the optimal EM policy, if some Lemma 1.
drawn power is transferred from future TSs to the current one The demand in the third TS can be drawn from the grid in
the water level remains the same from the current TS to ttiee first three TSs (see the third plot in Fig. 4(b)). Obsenat t
next. Conversely, when there is a water level decrease fré@ RB is not empty at the end of first and second TSs; and
the current TS to the next, that is ¥f > 0, no drawn power is hence, all water levels are equalized as argued in Lemma 1.
allocated from future TSs to the current, i.e., the RB is gmpOn the other hand, the RB is empty at the end of the third
at TS, as argued in Lemma 1. Moreover, from Lemma ZI'S. If the current water levels satisfy the conditions atjue
we can conclude that all optimal water levels must satisfp Lemma 2 in this step, the algorithm leads to the optimal
Y + C; > E, Vi, since the RB is never full. solution. As depicted in the third plot in Fig. 4(b), all wate

If Bae is finite, the amount of energy drawn for futurdevels are smaller than the target valtipand hence, Lemma 2
use within TS is limited by the remaining RB capacity atis not satisfied. To remedy this, the algorithm allocatethfer
TS, i.e., Byae — Bi. When the energy demand of future TSgrid energy to all three TSs. Accordingly, all water levels a
that is requested from the grid in the current one is less thegised up toE' as seen in the fourth plot in Fig. 4(b), leading
Bumaz — Bi, the constraints in (3) and (4) are satisfied witto the optimal values of the power drawn from the gAg;,
strict inequality, i.e.,\; = p; = 0, and the water level doesas the height of the filled areas abavg Vi. Observe that the
not change from TS to TS + 1, as argued in Lemma 1. optimal power withdrawn from the grid in the first TS,
Conversely, when there is a water level increase from T depends on the user’s demand and the weighted cost levels
TSi+1, thatis, if \; = 0 andx; > 0, the amount of energy in the following TSs as well. FoiV TSs, the optimal power
demand for future TSs satisfied in the current one is equalvalues withdrawn from the grid can be obtained by+ 1
Binae — B;, which implies that the RB is full at TS If the RB  iterations of the backward water-filling algorithm.
is full in the current TS, then no future energy demand can beFig. 4(c) depicts the optimal backward water-filling saduti
satisfied in the current and previous TSs anymore due to #ed the optimal values of the power withdrawn from the grid,
RB capacity limitation. When there is a water level decread€*, in the presence of a finite capacity RR; is satisfied
from TSito TSi+1, thatis, if \; > 0 andu; = 0, no future from the grid within the first TS, and the RB is empty at the
energy demand is satisfied in the current TS, i.e., the RBéad of the first TS (see the first plot in Fig. 4(c)). In contrast
empty at TS, as argued in Lemma 1. If the RB is never fulto the infinite capacity RB case, the portion of the user’altot
from TSito TSN, i.e., Bj < By, for j =4,i+1,...,N, load, X, drawn in advance within the first TS is limited by
we can conclude from Lemma 2 that the optimum water levelse RB capacityB,,.... (see the second plot in Fig. 4(c)). In
from TS to TS IV, must satisfyY" + C; > E, for j = other words, the part of the demand in the second TS that is
,i+1,...,N. drawn from the grid in the first TS is equal 18),,,.., and the



T,

Fig. 4. Depiction of the user’s total loads and initial wat@rels (a), and the optimal backward water-filling algaritin the presence of (b) infinite, and (c)
finite capacity RBs, respectively.

RB is full at the end of the first TS. This explains the water IV. ONLINE EM PoLICIES

level increase from the first TS to the second as argued inyn this section, we consider causal (online) knowledge of
Lemma 1.X3 can only be satisfied over the second and thife yser's total load at the EMU, while the electricity pece
TSs since the RB is full at the end of the first TS (see the thitge stjll known in advanée First we provide the optimal
plot in Fig. 4(c)). Part ofX; is drawn within the second TS gpline EM policy by solving the associated DP problem [28].
and stored in the RB. Observe that the RB is neither empig pp quickly becomes computationally intractable with the
nor full at the end of the second TS; and hence, the water leygdreasing size of the state space of the problem, we also
does not change from the second TS to the third as arguegi3pose an efficient heuristic online policy that iteravases
Lemma 1. Similarly to the infinite RB capacity case, if thgne offline backward water-filling algorithm developed ireth
current water levels satisfy the conditions argued in Len@mayevious section. For simplicity in this case, we assumé uni
in this step, the algorithm leads to the optimal solution. Ags qurations, i.e.;; = 1, Vi. Similarly to the offline setting,

seen in the third plot in Fig. 4(c), all water levels are semll e assume that the target valieis a constant parameter and
than £. Observe that the RB is full at the end of the firsfg specified in advance.

TS; and hence, the water level at the first TS cannot be raised
further due to the RB capacity limitation. On the other hand. Optimal Online Policy

the water levels at the second and third TSs do not satisfy therne state of the system at the beginning of T8 deter-
optimality conditions argued in Lemma 2 as the RB is neith@fined by the energy demand,; € X, and the battery state,
empty nor full at the second TS, and empty at the third T$, | ¢ B. while the energy demand and battery state are
Therefore, the algorithm needs to draw further grid enengy ontinuous bounded variables, we discretize both in oroler t
the second and third TSs. As depicted in the fourth plot @pply DP. HenceX and 3 are finite discrete sets generated by
Fig. 4(c), the algorithm allocates the same amount of energicretizing the feasible state spaces of the energy dearahd

to the second and third TSs, and raises water levels, Ieadmgtery state with particular energy quantizers, whichdee

to the optimal values of the power withdrawn from the gridajled in Section VI. LetX| and|B| denote the cardinality of
Y;", vi. Observe that the water levels at the second and thiggtsy and 3, respectively. We assume that the discrete energy
TSs are raised in accordance with Lemma 1 satisfying the RBmand follows a stationary first-order Markov relationthwi

capacity constraint. Since the RB is neither empty nor full ansition probabilities,,, between energy demand statgs

the end of the second TS, the water level does not change from

the second TS to the third. The water levels at the second a}nﬁlr?n-causal knowledgt_ed of thﬁ enerhgy prices by the corr]lsumete?lisltic
H - H or the current smart grids, where the energy prices charegg slowly.

third TSs do not reacli, since the RB gets full at the end OfMorever, the DP formulation and the proposed heuristic rittym can be

the third TS. easily extended to the scenario with causal knowledge oktiezgy prices.



and z,, i.e., gmn = Pr{Xi11 = 2,|X; = x,n}. The online Algorithm 1 Heuristic Online Policy

EM policy at TS4, i.e., mi(X;, B;—1), maps each state to a  Bo < 0 > Initially battery is empty
power value to be drawn from the gri;, that is selected for i=1to Ndo - >TSi
from the finite discrete se¥;, i.e., m; : X x B — ;. The 1. Subproblem Construction:

Set the power demands for two TSs
X1 — [XL — Bi_1]+, X2 — 3E
Set the battery energies for two TSs
B;=B; 1+Y; - X,. (13) Bl — [Bi,1 — Xi]Jr, BQ < Bl
Set the electricity p]([ices for two TSs

battery state at the end of Ti$B;, is given by

Following (13),); can be defined as the set of feasible

decisions for energy deman; and the battery stat8; ; at Ci Gy, Cr = 5 X G

the beginning of TS, i.e.,,; = {Y; e RT|Y; = B;— B;_1 + 2. Subproblem Solution:

X, B; € B}. The EMU is not allowed to waste any energy by  Solve the constructed subproblem by using the backward
limiting the battery statd3; to be lower than3,,,,... Following water-filling algorithm. R

the objective function in (5), we can write the cost function Feed the optimal power withdrawn from the grid;, into

for decisionY; as follows the real timeline.

3. Power Decision:

Y; < Y" > Set the power drawn from the grid at &S
g:i(Y;) & [9 (Y5 - E)2 +(1-0)-Y;-Cs|. (14) Bid<_f B+ (Y; - X;) > Update the battery energy

end for

We aim at minimizing the average cost ovatr TSs. The

optimal online policy is a collection of decision functigns ) )
e, = {r}, 7}, ..., 7%}, which leads to the optimal power Observe that the size of the look-up tables, and equivglentl

values to be drawn from the gridl* = 7*(X;, B;,_1), and is the complexity of the DP algorithm, grows very quickly

found as the solution to the following optimization problem With the increasing number of states, which depends on the
quantizer precision. Hence, DP algorithms can easily becom
N computationally intractable with the increasing quantizee-

: cision, which is needed to approximate the optimal solution
mT',DrN Z;E[‘gi(ﬂ-i(Xi, B;i_1)) (15) for the original problem with a continuous state space [28].
st.mi(Xi, Bi1) >0,i=1,...,N, B. Heuristic Online Policy
0<Bi1+m(Xs,Bi-1) = Xi < Bpag, i =1,..., N, Due to the high computational complexity of DP solutions,

ere we propose a low complexity heuristic online algorithm
etailed in Algorithm 1. At each T$, this algorithm creates
two-TS subproblem. Accordingly, each subproblem cosisist
f the power demands, the electricity prices and the battery
states for two TSs, which are denoted(d§,, X»), (C1, ()
and (By, Bs), respectively. In each subproblem, the first TS
is representative for the past and present informationjewhi
Jy(XN,By_1) 2 min gn(Yn), the second TS is representative for future information. The
Yyern (Xn,By-1) parameters for the first TS of the subproblem, i%;, C,
JH(X;, Biy) & min E[gi(Yi) + JZ_*+1(X’L.+1,Bi)i|7 By, are set based on the current information available at the
Yiem(Xi,Bi-1) EMU, such as, the current power demanyd;, the current

where the expectation is taken with respect to the statist
of the user’'s demand distribution. The optimal online pglic
m¥(X;, Bi—1), can be obtained through DP by proceedin
backwards from theV-th TS to the first, namely, backward
induction, as follows

— min {gi(Yi) +> " Gmn i1 (@, Bt + Y — mm)} electricity price,C;, and the battery staté; 1. The algorithm
Yi - sets X; as the part of the current power demand, which
i=N-—1,...,1, (16) can not be satisfied from the available energy in the battery,

[X;—Bi_1]™, By as the remaining energy in the battery after

whereJ; denotes the optimal cost function at T8at assigns satisfying part of the current power demané, ; — X;]*,
to the energy demandy;, and the battery state3;_;, the and C; as the current electricity pric&;;. The parameters
minimum cost.J; (X;, B;_1). We recursively solve (16) to for the second TS of the subproblem, i.&;, Cs, B, are
obtain the optimal policyr} (X;, B;_1), Vi. The EMU records set as follows. The algorithm set§, as three times the
this function as alX| x |B| look-up table. Each entry of target power demardE, C, as the mean electricity price,
the table corresponds to the optimal decision for the powgnd B, as B;. At each step, the algorithm optimally solves
withdrawn from the gridY;*, for state (X;, B;—1). At the the constructed subproblem using the backward watergfillin
end of backward induction, we obtain a look-up table fasigorithm developed in Section 11I-B. The power valuesiags
each TSi. Then, proceeding forwards from the first TS tdrom the optimal solution for the first and second TSs are
the N-th, namely, through forward induction, and using the R -
corresponding look-up tables, the optimal power withdrawn’We setX2 more than the target power demafiiin order to compensate

. . . for future rise in demand. This allows the algorithm to cleatige RB further,
from the grid sequence can be obtained for a particular gne

OFH 9 that a possible peak in demand in future TSs can be tackitubuw
demand realization. diverging much from the targef.



denoted ble* and YQ*, respectively. The algorithm is only Note that the condition (18b) holds when (18a) holds, and
interested in the optimal solution for the first TS, i.éf?lj‘. the power withdrawn from the grid at T§Y;, depends only
Therefore, the algorithm sets the decision for the powereto bn the current load(;, and the previous values of the load and
withdrawn from the gridY; at TSi asY;*. Finally, it updates the power withdrawn from the gridX,_,Y;_1). Under these
the battery stateB;, by usingB;_1, X; andY;. assumptions, we derive an upper bound on the information
The heuristic policy mimics the backward water-fillingeakage rate],, as shown in Appendix. The obtained infor-
algorithm in an online setting. Moreover, the choice of enation leakage rate upper bound will be evaluated numéyical
two-TS subproblem at each iteration allows to reduce tlas a measure of information theoretical privacy leakagéhier
complexity of the heuristic algorithm, and there is no need EM policies derived in Section Il and Section IV.
guantize the state space. While, mimicking the optimalrddfli ~ We note that the condition (b) in Appendix holds with equal-
policy as mentioned above is a reasonable and low-complexty if we assume that the sequence of the power withdrawn
heuristic to replace the optimal DP solution, supported bis from the grid, Y?, is also a stationary first-order Markov
the numerical results in Section VI, we are not able to previgrocess. This assumption has been made in [15] for the
any theoretical performance guarantees. computation of the information leakage rate; however, agldi
this extra Markov assumption together with the initial ones
V. INFORMATION LEAKAGE RATE may not lead to any realistic model or non-trivial EM strateg
In the previous sections, we have considered the loadTo numerically evaluate the mutual information expression
variance as the privacy measure. An alternative informatigor given sequences of the user's total load and the power

theoretic privacy measure is the information leakage ré [ drawn from the grid, we can explicitly write the information
which is defined as the average mutual information betwegiakage ratd,, as follows

the sequences of the user’s total load and the power drawn
from the grid

[péi[(XN;yN). (17) N<Z Z Z p(Zi, Tim1, Yi, Yie 1)bg%
N =2z, _ 16X£ EX
The information leakage rate can be argued to be a Gio1€Y Ti€Y
more accurate privacy measure as it takes into account . } p(Fio1, i)
the statistical behaviour of the user's total load. Notettha — Y, p($i-1,yi—1)10gm : (19)
the information leakage rate measures the reduction in the =3z, ,ex Pi-1
UP’s uncertainty (entropy) about user’s energy consump- Yi1€Y
tion, XN, after receiving meter reading¥;", as we have We can computd, by estimating all the joint and marginal
I, = & [H(XN) = H(XN|YN)]. As an information theo- distributions in (19). We use empirical distributions a® th

retic privacy measure, the information leakage rate pewidestimates for these distributions, i.e., we count the nurobe
privacy guarantees regardless of the computational poWerjgint or single appearances over all realizations, and atine

the attacker. However, the optimal decision policy in termgem to obtain the corresponding probabilities.
of the information leakage rate is significantly harder to

characterize [21]. Moreover, even whdp = 0, for large
N, it is possible that the SM readings completely reveal
certain portions of the energy consumption profile. Here, we In this section, we provide further insights into the progbs
first provide a computational expression for the informatiooffline and online EM policies through numerical simulagon
leakage rate. In the next section, we will numerically estéu We analyze the trade-off between the user’s privacy andygner
and compare the load variance and the information leakaggst as well as the effect of the RB capacity on this trade-
rate privacy measures, and demonstrate that the two folloff. We consider the real SM readings obtained from [29]
similar trends. with a time resolution on the order of three seconds. For
As a first step towards computing the information leakageur simulations we convert the readings obtained from one
rate, we quantize the vectors of the user's demand and treusehold for a period of one month to a time resolution of
power drawn from the grid. LefX”Y and Y~ denote the one-minute, and use as the load profile. To be consistent with
quantized versions ok ¥ andY™, respectively. The samplesour power consumption model, we assume that the discrete
of XV and Y take values from finite discrete sets and time instants in Fig. 2(a) correspond to the sampling tinfes o
Y, respectively. For simplicity, we assume that the sampleste SM. We set the electricity price in our simulations based
XN and the joint samples ¢X V', Y'V) follow stationary first- on the real pricing tariffs [3Q]the off-peak price i$ cent per
order Markov distributions. Then we can write the distrions  kWh during00:00 to 12:00, the on-peak price i&0 cent per

VI. NUMERICAL RESULTS

of XV and(X",Y") as follows kWh during12:00 to 20:00, and the medium-peak price 18
R N cent per kWh during0:00 to 00:00. For the simulations, we
p(XN) = p(Xy) [ p(Xil Xiza), (18a) considerthe target valug as the average power demand of the

user, i.e .E = T Z 7; - X;, which is assumed to be known in

p(XN,YN) = p(X1, Y1) HP(X'Z-, Y;|X;_1,Yi_1). (18b) advance. To discretize the state space for the online pmble
i=2 we use a 4-bit non-uniform mu-law quantizer [31] for the
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Fig. 6. (a) The load variancé;, versus battery capacit¥3,q., and (b) the
information leakage ratd),, versus battery capacity?mq., for the proposed
offline and online EM policies undet = 1.

Fig. 5. (a) The load variancé/, versus the average energy cast,and (b)
the information leakage raté,, versus the average energy castresulting
from the proposed offline and online EM policies under the Rpacity,
Bmaz = 0.5 KWh.

C, in Fig. 5(b), are formed by varying values. For all the
energy demand, and a 2-bit uniform quantizer for the battePjoPosed policies, the average energy cost increase thiil
state, respectively. For the characterization of the mftion 10ad variance and the information leakage rate diminish as
leakage rate, we discretize the user’s total load sequemte §icréases. According to the user preferences or requirsmen
the sequence of the power drawn from the grid that resuff§the system, the operating point can be chosen anywhere on
from the proposed policies by using a 5-bit non-uniform mdhe trade-off curve. We observe that the load variance aed th
law quantizer. Note that due to the non-uniformly distrégut information leakage rate behave similarly for all the pietc
characteristics of the readings used in the simulatioespém- Based on this observation, we can argue that the load varianc
uniform mu-law quantizer allows us to reduce the quantizati ¢an be used as a reliable privacy measure for SM systems. The

noise [31]. corner points of the trade-off curves for the proposed pesic
in Fig. 5 are given in Table |. Observe that the heuristicrosli

TABLE | policy performs close to the optimal online policy both at

CORNER POINTS OF THE TRADE-OFF CURVES FIG. 5 the maximum privacy and the minimum cost corner points,

while the optimal offline policy outperforms both of them

H:glriicsﬂc Optig;:comi”e OptiFr,';"l"i'COﬁ"”E as expected. Observe in Fig. 5(a) that for average energy
_ Y Y Y costsC = {0.73,0.76,0.78} (euro/day), reductions in the
minV | 0.157 0.139 0.085 load variance from the heuristic to the optimal online pplic
min I, 0.612 0.481 0.19 f d b 9% d 9% ivel hil
p 0.792 0.796 0.801 are found to bel9.5%, 23% and 18.5%, respectively, while
reductions in the load variance from the optimal online ol
Vo o2 0.178 0108 he optimal offline poli found to bEs.5%, 67.9%
I 0.758 0536 0.249 to the optimal offline policy are found to be8.5%, 67.9%
minC | 0.721 0.715 0.702 and64.9%, respectively.

Next, we investigate the effect of the battery capacity an th
maximum privacy and the minimum cost. We plot the load
In Fig. 5, we illustrate the trade-offs between the privacyariance,V, versusB,,.. in Fig. 6(a), and the information

and cost resulting from the proposed EM policies with a REakage rate/,, versusB,,q, in Fig. 6(b) ford = 1. Observe
capacity B,.. = 0.5 kWh. The Pareto optimal trade-offthat both the load variance and the information leakage rate
curves between the load variandg, and the average energydiminish as RB capacity increases. Similar behaviours ef th
cost, C, in Fig. 5(a), and the trade-off curves between thiead variance and the information leakage rate with resfoect
information leakage rate/,, and the average energy costthe RB capacity further consolidates the argument thatthe |
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variance can be used as a proxy for the information Ieakeiz'5
rate in SM systems. When there is no RB in the system, i. ‘g I
B = 0, the proposed offline and online policies behav 2 1.5
identically. This also corresponds to a naive algorithmtth 4
ignores the RB, and draws the necessary energy to satisfy
demand at each T&from the grid, i.e,Y;* = X;, Vi. In this N ‘ » : -
case, the UP knows the user’s total load sequence perfec 0 2 4 6 8 10 12 “l2 16 18 20 22 0
and the load variance is found to be = 0.259, while the T”“e(g‘o“r)
information leakage rate reduces to the entropy rate of tne
user’s total load sequence, which is found tolhe= 0.952.  Fig. 8. Comparison of the user's total load profile with thefiie of the

Observe that the information leakage rates achieved by #faer v_vi;hdra\{vn from the grid rgsulting from the proposefiiré and online

. . . - . 2 EM policies with a RB of capacityBmaq. = 1.5 KWh, for (a) 8 = 1, (b)
optimal offline and online policies drop very quickly withy'Z (501, respeciively.
even a small RB capacity. While the information leakage rate
achieved by the optimal offline policy quickly saturatest®o i
minimum value, those achieved by the optimal and heurifer any RB capacity, and performs very close to the optimal
tic online policies decrease smoothly with the RB capacitgnline policy. A battery with capacity 1 (kwh) provides 1%5
Observe that the heuristic online policy performs reastynalreduction in the average energy cost of the heuristic online
close the optimal online policy for both privacy measuregolicy, and 15.9% and 19.6% reductions in that of the optimal
The gain on the performances of the proposed policies candidine and offline policies, respectively. Whe#,,.., = 1.5
achieved by virtue of the degree-of-freedom provided by tl{eWh), the average energy cost of the heuristic online polic
RB. For example, the heuristic online policy outperforme this found to beC = 0.624 (euro/day), and that of the optimal
naive algorithm that does not exploit the battery for any-noonline and offline policies are found to Be= 0.61 (euro/day)
zero capacity. A battery with capacity 1 (kWh) provides 52.4 andC = 0.57 (euro/day), respectively. We see that the user can
reduction in the load variance of the heuristic online policreduce his/her energy consumption cost significantly with t
and 58 and 81.7 reductions in that of the optimal onlineproposed policies in the presence of a moderate capacity RB.
and offline policies, respectively. Whel, ., = 1.5 (kWh), Finally, we compare the user’s total load profile with the
the information leakage rate of the heuristic online pol&y profile of the power withdrawn from the grid resulting from
found to bel, = 0.49, and that of the optimal online andthe proposed offline and online EM policies wii),,.,, = 1.5
offline policies are found to bé, = 0.354 andI,, = 0.141, kWh, for § = 1 and # = 0.001, in Fig. 8(a) and (b),
respectively. These results show that a moderate RB cgpaeédspectively. Wher = 1, the goal is to maximize the privacy,
leads to a significant reduction in the information leakag@at is, to generate a smooth power profile for the energy
rate. For RB capacities beyond5 kWh, we do not expect withdrawn from the grid. Observe in Fig. 8(a) that the optima
a significant privacy gain. We also expect that the inforomati offline policy generates quite a smooth profile showing off
leakage rate of the heuristic policy approaches to the @btinmost of the peaks in the demand profile. Particularly, if we
online policy as the RB capacity becomes sufficiently largefocus on the peak power of the original load profile between

Fig. 7 illustrates the average cosi, versus B,,,, for 20.00 and 22.00, we can see that the optimal offline policy
6 = 0.001, which corresponds to the scenario in which thenasks most of the peak signal, while the optimal and hearisti
consumer is more interested in minimizing the cost of energyline policies still retain significant peaks. On the othand,
rather than privacy. The highest value for the average gnetfey both perform well in masking the peak values at other
cost isC = 0.778 (euro/day), achieved foB,,,, = 0. The times of the day.
heuristic online policy again outperforms the naive altjoni When# = 0.001, the proposed policies intend to minimize

T R e




the energy cost of the user. As seen in Fig. 8(b), the proposed APPENDIX

policies store extra energy in the RB during the off-peakeri  Here we derive an upper bound on the information leakage
period, and satisfy the demand of the peak period from the RBe.

in order to reduce the cost. In the peak period between 12.00

and 20.00, the optimal offline policy draws nearly constanj — i[(j(N;f/N)
power from the grid, and satisfies the rest of the deman N

from the RB; on the other hand, the optimal and heuristic _ i(H(X’N) +H{YN) H(X’N,YN)>,
online policies satisfy the demand more from the RB between NV

12.00 and 16.00, and more from the grid between 16.00 and ,, 1 X . i
20.00. We can envision that as the RB capacity increases, the= 77 (H(X,-|X )+ HY;[Y'")

)

optimal and heuristic online policies can store more enéigy i=1
the battery to be used in the peak period, which would reduce _ H(X- ~,|Xi—1 571‘-1))
the average costs. oo ’ ’
® 1 & - o
253 (HEEIR) + )
VII. CONCLUSIONS i=1
We studied demand-side EM policies from a privacy-energy - H(X;, Yl X, Yil))’
cost trade-off perspective for a SM system with a finite- N

capacity energy storage unit. We considered a discree-tim © 1 (H(Xi|Xi1> — H(X;, Xi1|Y;, Y1)
energy consumption model, in which both the power consump- N < ’ ’

tion of the consumer and the electricity prices vary overetim . .

We considered the variance of the power withdrawn from the + H(X,-_1|Y,-_1)),

grid around a predetermined constant target value as a negeasu N
of privacy for the consumer. First, assuming that the user's @ i(z H(X X D) - H(X X 1|Y- v 1))
energy demand profile and the electricity prices are known N \ & v e
non-causally, we formulated the optimal offline privacysto N

trade-off as a convex optimization problem, and charamteri _ Z H(X; ) — H(Xi1|ﬁ1)>>,
various properties of the optimal policy. Then, we proposed =1
a low-complexity backward water-filling algorithm which-ef 1 ~
ficiently computes the optimal offline EM policy. © N <<H(X1) — H(X1|Y1))

Next, assuming that the user’'s power consumption profile
is known only causally, we characterized the optimal online N - .- -
policy using DP. We also proposed a low-complexity hewgisti + Z (H(X'i’ Xi1) = H(Xi, Xia [V, Yi—l))
online algorithm, and showed through numerical simulation =2
that it performs close to the optimal online solution. In didd _ (H(X’l) _ H(X’1|Y1)>
to the load variance, we also characterized the information

leakage rate between the sequences of the user’s total load N . - -

and the power drawn from the grid. -> (H(Xz'l) - H(XZ-1|YZ-1)>>,
Extensive numerical simulations have been presented using =3 N

real SM consumption data to illustrate the trade-offs betwe 1 S ~ - ~ ~

privacy and enefgy cost resulting from the proposed offline g N ZI(Xi’Xi‘l;n’}/i‘l) - ZI(Xi‘l;}/i—l)>’

and online policies. Our results indicate that the privaogt =2 . =3

trade-offs for the load variance and the information leakad’here (a) follows from the chain rule of entropy; (b) follows

rate have similar behaviours. We also showed that most of #@m the first-order Markov assumption fof; and (X;,Y;)

privacy gains can be obtained with a relatively small cagaci (18) and the fact that conditioning reduces entropy; (c),
RB. (d) and (e) also follow from the chain rule of entropy, and

plying the necessary cancellations; and (f) follows fitin
finition of the mutual information.

N

As future extensions of the current work, various practicgp
issues, such as storage inefficiencies, battery leakaglgsemi €
power constraints, can be considered with a slightly more REFERENCES
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and assess its impact on the achieved privacy-cost trdde-of



(5]

(6]

(7]

(8]

(9

(20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

A. Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and Dwith;
“Private memoirs of a smart meter,” iRroc. 2nd ACM Workshop
Embedded Sens. Syst. Energy-Efficiency Building (Bujldsich,
Switzerland, 2010, pp. 61-66.

U. Greveler, P. Glosekotter, B. Justus, and D. Loehr, ltvhedia content
identification through smart meter power usage profiles,Pioc. Int.
Conf. Inform. and Knowledge End-as Vegas, NV, July 2012.

L. Sankar, S. R. Rajagopalan, S. Mohajer, and H. V. Pd@mart meter
privacy: A theoretical frameworkJEEE Trans. Smart Grigvol. 4, no. 2,
pp. 837-846, Jun. 2013.

S. Wang, L. Cui, J. Que, D. H. Choi, X. Jiang, S. Cheng, anKie,
“A randomized response model for privacy preserving smaatenng,”
IEEE Trans. Smart Gridvol. 3, no. 3, pp. 1317-1324, Sep. 2012.
J.-M. Bohli, C. Sorge, and O. Ugus, “A privacy model for arn
metering,” in Proc. |IEEE Int. Comm. ConfCapetown, South Africa,
May 2010, pp. 1-5.

O. Tan, D. Gunduz, and H. V. Poor, “Increasing smartenerivacy
through energy harvesting and storage devicédEEE Journal on
Selected Areas in Comm. (J-SA@pl. 31, no. 7, pp. 1331-1341, Jul.
2013.

D. Gunduz, J. Gomez-Vilardebd, O. Tan, and H. V. Pdtnforma-
tion theoretic privacy for smart meters,” ifroc. Inform. Theory and
Applications Wkshp. (ITASan Diego, CA, Feb. 2013, pp. 1-7.

O. Tan, D. Gindiz, and J. Gomez-Vilardebd, “Optinpaivacy-cost
trade-off in demand-side management with storage,Pioc. |IEEE
Int. Wrkshp. Signal Process. Advances in Wireless CommAWSR
Stockholm, Sweden, Jun.-Jul. 2015, pp. 370-374.

G. Kalogridis, C. Efthymiou, S. Denic, T. A. Lewis, and Repeda,
“Privacy for smart meters: Towards undetectable applidned signa-
tures,” inProc. IEEE Smart Grid Comm. Conf3aithersburg, MD, Oct.
2010, pp. 232-237.

S. McLaughlin, P. McDaniel, and W. Aiello, “Protectingonsumer
privacy from electric load monitoring,” irfProc. 18th ACM Conf. on
Computer and Commun. Securighicago, IL, Oct. 2011, pp. 87-98.
W. Yang, N. Li, Y. Qi, W. Qardaji, S. McLaughlin, and P. BDaniel,
“Minimizing private data disclosures in the smart grid,” fioc. ACM
Conf. Comput. Commun. Sec¢uURaleigh, NC, Oct. 2012, pp. 415-427.
D. Varodayan and A. Khisti, “Smart meter privacy usingeghargeable
battery: Minimizing the rate of information leakage,” Rroc. IEEE Int.
Conf. Acoust. Speech Signal Proced$3tague, Czech Republic, May
2011, pp. 1932-1935.

J. Koo, X. Lin, and S. Bagchi, “PRIVATUS: Wallet-friehd privacy

protection for smart meters,” ifProc. 17th Eur. Symp. Res. Comp.

Security Pisa, Italy, Sept. 2012, pp. 343-360.

L. Yang, X. Chen, J. Zhang, and H. V. Poor, “Cost-effeetand privacy-
preserving energy management for smart meté&EE Trans. on Smart
Grids, vol. 6, no. 1, pp. 486—495, Jan. 2015.

J. Yao and P. Venkitasubramaniam, “On the privacy-tesdeoff of an
in-home power storage mechanism,”Rmoc. Allerton Conf. Communi-
cation, Control, and Computindvonticello, IL, Oct. 2013, pp. 115-122.
J. Gbmez-Vilardeb6 and D. Gunduz, “Smart metevamy for multiple
users in the presence of an alternative energy soutB&E Trans.

Inform. Forensics and Securjtyol. 10, no. 1, pp. 132-141, Jan. 2015.

S. Li, A. Khisti, and A. Mahajan, “Privacy-optimal stemies for
smart metering systems with a rechargeable battery,” ableilat arxiv
“http://bit.ly/20m8RxN".

G. Giaconi and D. Gunduz, “Smart meter privacy witheaable energy
and a finite capacity battery,” iRroc. IEEE Int. Wrkshp. Signal Process.
Advances in Wireless Comm. (SPAWE(inburgh, UK, Jul. 2016.

L. Sankar, S. R. Rajagopalan, and H. V. Poor, “Utilityvacy tradeoffs
in databases: An information-theoretic approadEEE Trans. Inform.
Forensics and Securityol. 8, no. 6, pp. 838-852, Jun. 2013.

O. Grodzevich and O. Romanko, “Normalization and othepics
in multi-objective optimization,” inProc. Fields MITACS Ind. Prob.
Wrkshp, Toronto, Canada, Aug. 2006, pp. 89-101.

M. A. Zafer and E. Modiano, “A calculus approach to eneedficient
data transmission with quality-of-service constraintEEE/ACM Trans.
Networking vol. 17, no. 3, pp. 898-911, Jun. 2009.

A. Reinhardt, D. Christin, and S. S. Kanhere, “Predigtthe power con-
sumption of electric appliances through time series patteatching,”
in Proc. 5th ACM Wkshp. Embedded Syst. Energy-Efficient Bgsdi
(BuildSys) Rome, Italy, Nov. 2013, pp. 1-2.

T. Cover and J. Thomaglements of Information Theary Hoboken,
NJ, USA: Wiley, 1991.

D. P. BertsekasPynamic programming and optimal control Athena
Scientific, 2007.

[29] J. Z. Kolter and M. J. Johnson, “REDD: A public data set émergy
disaggregation research,” iRroc. Wkshp. Data Mining Applications
Sustainability (SustKDD)San Diego, CA, Aug. 2011.

[30] Eurostat, “European Comission energy price statis{®013),” available
at “http://bit.ly/1AigKSR”".

[31] C. Brokish and M. LewisA-Law and mu-Law Companding Implemen-
tations Using the TMS320C54x Digital Signal Processing Solutions,
Texas Instruments, 1997.

Onur Tan received the B.S. degree in Electrical
and Electronics Engineering from the Middle East
Technical University (METU), Turkey in June 2007,
the M.S. degree in Electrical and Electronics En-
gineering from Bilkent University, Turkey in June
2010, and the Ph.D. degree, with "Excellent Cum
Laude” distinction, in Signal Theory and Communi-
cations Department from the Universitat Politecnica
de Catalunya (UPC), Spain in July 2016, respec-
tively. From November 2011 to July 2016, he was
a researcher at the Centre Tecnologic de Telecomu-
nicacions de Catalunya (CTTC), Barcelona, Spain. Frome®gper 2013 to
February 2014, and from October 2014 to January 2015, he wasiting
researcher at the Department of Electrical and Electromigirieering, the
Intelligent Systems and Networks Research Group, Imp@adlege London,
UK. The current research interests of Dr. Tan lie in the amfamachine
learning, signal processing, data privacy, data analgtickbig data problems.

Jess @mez-Vilardebd received his M.Sc. and
Ph.D. degrees in Telecommunication Engineering
from the Universitat Politécnica de Catalunya (UPC)
in October 2003 and July 2009, respectively. In
September 2005, he was granted by the Centre Tec-
nologic de Telecomunicacions de Catalunya (CTTC)
to obtain the Ph.D. on Signal Theory and Commu-
nications at the UPC. He is now with the CTTC
holding a Research Associate position. His cur-
rent research interests include information theory,
stochastic signal processing, and their applications
in wireless multi-user communications and informatiorvgcy.

ﬁ“

Deniz Gundiz [S'03-M'08-SM’'13] received the
B.S. degree in electrical and electronics engineer-
ing from METU, Turkey in 2002, and the M.S.
and Ph.D. degrees in electrical engineering from
NYU Polytechnic School of Engineering in 2004
and 2007, respectively. After his PhD, he served
as a postdoctoral research associate at Princeton
University, and as a consulting assistant professor
at Stanford University. He was a research associate
at CTTC in Barcelona, Spain until September 2012,
when he joined the Electrical and Electronic Engi-
neering Department of Imperial College London, UK, as a went Currently

he is a Reader in the same department.

His research interests lie in the areas of communicationisiraiormation
theory with special emphasis on joint source-channel epdmulti-user
networks, energy efficient communications and privacy imetyphysical
systems. Dr. Gunduz is an Editor of the IEEE TRANSACTIONNE OOM-
MUNICATIONS, and the IEEE TRANSACTIONS ON GREEN COMMUNI-
CATIONS AND NETWORKING. He is the recipient of a Starting Gtaf the
European Research Council (ERC) in 2016, IEEE CommunitatBociety
Best Young Researcher Award for the Europe, Middle EastAdrida Region
in 2014, Best Paper Award at the 2016 IEEE Wireless Commtioicaand
Networking Conference (WCNC), and the Best Student Papeardwat the
2007 IEEE International Symposium on Information TheoB{Tl). He served
as the General Co-chair of the 2016 IEEE Information TheooyR&hop, and
a Co-chair of the PHY and Fundamentals Track of the 2017 IERtEI¥gs
Communications and Networking Conference.



