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Abstract—Demand-side energy management (EM) is studied
from a privacy-cost trade-offperspective, considering time-of-use
pricing and the presence of an energy storage unit. Privacy is
measured as the variation of the power withdrawn from the grid
from a fixed target value. Assuming non-causal knowledge of the
household’s aggregate power demand profile and the electricity
prices at the energy management unit (EMU), the privacy-cost
trade-off is formulated as a convex optimization problem, and
a low-complexity backward water-filling algorithmis proposed to
compute the optimal EM policy. The problem is studied also in
the online setting assuming that the power demand profile is
known to the EMU only causally, and the optimal EM policy is
obtained numerically through dynamic programming (DP). Due
to the high computational cost of DP, a low-complexity heuristic
EM policy with a performance close to the optimal online solution
is also proposed, exploiting the water-filling algorithm obtained
in the offline setting. As an alternative, information theoretic
leakage rate is also evaluated, and shown to follow a similar
trend as the load variance, which supports the validity of the
load variance as a measure of privacy. Finally, the privacy-cost
trade-off, and the impact of the size of the storage unit on this
trade-off are studied through numerical simulations using real
smart meter data in both the offline and online settings.

Index Terms—Smart meter, privacy, demand-side manage-
ment, energy storage, home energy management.

I. I NTRODUCTION

Smart meters (SMs) are key components for demand-side
management in smart grids. SMs measure power consumption
of users and transmit their readings to the utility provider(UP)
in almost real-time. This allows the UPs to closely monitor the
grid, improving its reliability, robustness and efficiency[1].
For example, the UPs can support time-of-use electricity
pricing based on fine-grained SM readings and encourage
consumers to shift their demands to off-peak hours with the
promise of reduced energy costs. Despite many potential ben-
efits, the possible misuse of SM data by third parties, as well
as the UP, raises serious privacy concerns [2]. Intruders can
analyze SM readings [3], [4], and extract private information
regarding user activities, such as residential occupancy,sleep
schedule, meal time [5], and appliance usage patterns [6].

Privacy can be achieved by modifying SM readings before
being reported to the UP. For example, by compressing SM
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Fig. 1. A smart meter (SM) system diagram with an energy management
unit (EMU) and a rechargeable battery (RB) at the user’s household. The
EMU manages the power flows (solid lines) among the power grid, the
appliances and the RB. SM reports its readings to the UP at certain time
instants, illustrated by the dashed line.

readings [7], by adding random noise [8], or by sending
the aggregated energy consumption of a group of users [9].
However, tampering with SM readings also reduces their
relevance and value as control signals. Alternatively, privacy
can also be provided by demand-side management utilizing
storage units, such as rechargeable batteries (RBs) [10]–[19],
and alternative energy sources, such as a renewable energy
source like a solar panel [10], [11], [20]. In [10] user’s
privacy is protected by using a RB and a renewable energy
source from an information theoretic perspective. Heuristic
algorithms are proposed in [13]–[15]. The joint optimization
of privacy and energy cost with a RB is addressed in [17]–
[19]. The authors in [17] and [18] propose online algorithms
based on stochastic dynamic programming (DP) and Lyapunov
optimization techniques, respectively. The authors in [19], [21]
and [22] study a stochastic control model, formulated as a
partially observeable Markov decision process. Characterizing
the optimal strategy is computationally challenging due tothe
continuous state-action space; while approximate solutions can
be obtained numerically through discretization, or upper and
lower bounds can be derived.

In this paper, we consider the SM system depicted in Fig. 1.
The energy flow is managed by the energy management unit
(EMU), which satisfies the power demands of the appliances,
Xi, from the power grid and the RB. We do not allow any
outages or shifting of user demands. The SM measures the
power withdrawn from the grid,Yi, and reports it to the UP
at certain time instants without any tampering. Assuming that
the electricity price is time-dependent, the EMU utilizes the
RB both to reduce the energy cost, and to mask the energy
consumption profile of the user. One can argue that perfect
privacy is achieved if a constant SM reading is reported to the



UP over time [13]. Consequently, we measure user privacy in
terms of the variation of the power withdrawn from the grid,
Yi, from a constant target consumption value over the period of
interest [12]. In addition to the load variance, we also evaluate
the information leakage rate, which is defined as the mutual
information rate between the aggregated power demands of the
appliances and the SM readings. Mutual information, which
takes into account the statistics of the user’s demand has
been previously considered as a measure of privacy for SM
systems [7], [10], [11], [14]–[16], [19]–[21], [23]. On theother
hand, the energy cost is measured with a time-varying time-of-
use electricity pricing model. Our goal here is to design energy
management (EM) policies that jointly increase the privacyof
the user and reduce the energy cost over a given period of
time under a RB capacity constraint.

Building upon our previous work [12], we first characterize
the optimal offline EM policy, assuming that the energy
demands and electricity prices are known non-causally by the
EMU over the period of interest. We formulate the privacy-cost
trade-off as a convex optimization problem, and identify the
structure of the optimal policy. Exploiting this structure, we
provide abackward water-filling algorithm, which efficiently
finds the optimal EM policy.

Next, we study the online optimization problem considering
only causal knowledge of the energy demands at the EMU,
that is, the EMU learns only the energy demand at the current
time slot (TS). We characterize the optimal online policy using
DP. Due to the continuous state space, DP algorithms with
good approximation to the optimal solution are prohibitively
complex; and therefore, we propose a simple heuristic online
algorithm, which exploits the backward water-filling algorithm
obtained in the offline setting. Finally, we numerically evaluate
the load variance as well as the information leakage rate,
and characterize the trade-off between the privacy and cost.
The operating points on this trade-off can be chosen based on
user’s preferences. We also investigate the impact of the RB
capacity on the performance. Our main contributions can be
summarized as follows:

• We consider the SM system illustrated in Fig. 1, and study
the design of EM policies that aim at minimizing a joint
privacy-cost objective.

• We formulate the optimal privacy-cost trade-off in the
offline setting as a convex optimization problem. We
identify the structure of the optimal solution, and provide
a low-complexity backward water-filling algorithm for
computing it.

• We solve the online optimization problem by first dis-
cretizing the continuous state space, and then applying
DP. Alternatively, we provide an efficient heuristic algo-
rithm that exploits the optimal offline algorithm to solve
a particular subproblem constructed at each iteration.

• The information leakage rate between the user’s demand
profile and the SM readings is also evaluated. Comparison
with the load variance indicate that the two privacy
measures exhibit similar trends.

• Finally, the performances of the proposed offline and
online EM policies are assessed through numerical simu-
lations, using a real SM data set. The privacy-cost trade-
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Fig. 2. Illustration of the timelines for the total power demand of the
household, and the cost per unit energy. The total power demand changes
at time instantstp
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off, and the impact of the RB capacity on this trade-off
are analyzed for the proposed policies.

The remainder of the paper is structured as follows. In
Section II, we describe the system model. In Section III, we
characterize the optimal offline EM policy, and provide the
backward water-filling algorithm. The optimal and heuristic
online EM policies are presented in Section IV. In Section V,
we explain how to characterize the information leakage rate. In
Section VI, extensive numerical results are presented. Finally,
we conclude our paper in Section VII.

II. SYSTEM MODEL

We consider a discrete-time power consumption model in
a household (see Fig. 2(a)). In this model, each appliance
consumes a constant power for an arbitrary duration when
it is active. Appliances can be in the active or inactive state
at any time. Lettp0 = 0 < tp1 < · · · < tp(K−1) < T be the
time instants at which there is a change in the total power
consumption. We denote the total power consumption within
[tp(k−1), t

p
k] by Xp

k (kW) for k = 1, . . . ,K, whereXp
k ≥ 0.

We also consider a time-varying electricity pricing model
in which the cost per unit energy changes over time at certain
time instants, and remains constant in between (see Fig. 2(b)).
Let tc0 = 0 < tc1 < · · · < tc(M−1) < T be the time instants
at which the cost of energy changes. We denote the cost
per unit energy within[tc(m−1), t

c
m] by Cc

m (cent/kWh) for
m = 1, . . . ,M . We can combine the time instants at which the
power consumption or the cost per unit energy changes into a
single time seriest0 = 0 < t1 < · · · < tN−1 < tN = T
(see Fig. 2(c)). The duration of the TS between two con-
secutive time instants is denoted byτi , ti − ti−1 (min),
for i = 1, . . . , N . TSs do not necessarily have the same
duration. We denote the total power consumption and the cost
per unit energy within TSi asXi (kW) andCi (cent/kWh),
respectively, whereXi ≥ 0. Note that for any two consecutive
TSs, either the power demandXi, or the costCi, or both may
change, whereas they remain constant within a TS.

We study the SM model depicted in Fig. 1, whereXi (kW)
denotes the aggregated real power consumption in TSi, while
Yi (kW) denotes the real power drawn from the grid. SM



reports{Yi}
N
i=1 to the UP without any tampering. We assume

that Yi remains constant within each TS. We show later that
this assumption is without loss of optimality. Accordingly,
there is no loss of information by the SM reporting its
measurement once per TS. We integrate a RB with finite
capacityBmax (kWh), and an EMU that manages the energy
flow in the system. The EMU can use both the grid and the
RB to satisfy the energy demandXi, such thatYi = Xi−Pi,
wherePi (kW) is the power charged to (Pi < 0), or discharged
from (Pi > 0) the RB in TSi, andYi ∈ R

+, whereR+ denotes
the set of nonnegative real numbers. By constrainingYi ≥ 0
∀i, we do not allow the user to sell his excess energy back to
the grid.

We can argue that “perfect privacy” is achieved if the power
withdrawn from the grid,Yi, takes a constant valuēE, ∀i.
Ideally, if a user has a flat power demand from the grid,
all individual appliance signatures are filtered out from the
aggregated energy consumption data, and we can assume that
the UP cannot learn anything about her energy consumption
behaviour [13]. Accordingly, the privacy of an EM policy is
measured by theload variance, defined as:

V ,
1

T

N
∑

i=1

τi · (Yi − Ē)2. (1)

Perfect privacy is achieved whenV = 0. The target power
demandĒ is a constant parameter in our model, which is
selected by the user in advance1.

The average energy costof an EM policy is defined as:

C ,
1

T

N
∑

i=1

τi · Yi · Ci. (2)

In our model all the energy demands must be satisfied at
the time of request, i.e., outages or demand shifting are not
allowed. Hence, assuming that the RB is empty att = 0, Yi

have to satisfy the following cumulative constraints:

i
∑

j=1

τj ·Xj ≤

i
∑

j=1

τj · Yj , i = 1, . . . , N, (3)

which assure that a sufficient amount of energy is drawn from
the grid to satisfy the energy demands of the appliances at
each TS. We allow drawing more energy from the grid than
that is requested by the appliances, which is then stored in the
RB. Since the RB capacity is finite, the battery energy at TS
i must satisfy:

Bi ,

i
∑

j=1

τj · (Yj −Xj) ≤ Bmax, i = 1, . . . , N, (4)

which assure that the difference between the cumulative energy
drawn from the grid and the cumulative energy demand of the

1Our framework can be easily adapted to consider a time-varying target
energy profile,{Ēi}

N
i=1

. This more general model could allow the user
to emulate a completely different energy consumption profile to confuse an
intruder. In the paper we have not specified how the target value Ē is chosen
by the user, and for the simulations we have consideredĒ as the average
power demand of the appliances. While we have observed through numerical
simulations that, this value provides sufficient flexibility to the EMU, we think
that the determination of the target valuēE, or the target sequence{Ēi}Ni=1

,
is an interesting future research problem.

appliances up to each TS is not more than the capacity of the
RB. This guarantees that the extra energy drawn from the grid
can be stored for future use, and no energy is wasted due to
battery overflows. The constraint in (4) assumes that energy
cannot be drawn from the grid to be wasted for the sake of
privacy. However, we do not constrain the final battery stateto
be empty; hence, more energy than requested by the appliances
can be drawn to be left in the battery at the end of TSN .

Since both objective functions (1) and (2) are convex, and
the constraints are linear, achievable pairs of(V , C) under
constraints (3) and (4) form a convex region, and the optimal
operating points are characterized by the Pareto boundary of
this region [24]. Hence, we use the weighted average ofV and
C to identify all the points on the Pareto boundary [24]. The
convex optimization problem can be written as:

min
Yi≥0

N
∑

i=1

[

θ · τi ·
(

Yi − Ē
)2

+ (1− θ) · τi · Yi · Ci

]

s.t. (3) and (4), (5)

where 0 < θ ≤ 1 is the parameter that adjusts the trade-
off between the privacy and cost. The value ofθ is set in
advance by the user. Ifθ = 1, the user is interested only
in privacy; while if θ = 0, only in the cost. Since the cost
per unit energy and the user’s total load remain constant over
each TS, it follows from the convexity of the objective function
in (5) that the optimal power drawn from the grid must remain
constant within a TS [25]. Hence, the assumption of having
the SM report only once per TS does not lead to any loss of
information.

In Section III, we identify theoptimal offline EM policythat
minimizes (5), where all the demands and prices are known by
the EMU in advance att0 = 0. While non-causal knowledge of
the user’s energy consumption may not be realistic for certain
appliances, activity patterns of majority of appliances, such as
refrigerators, heating, programmable washing machines and
dish washers, electrical vehicles, are highly predictableduring
their operation periods [26]. Alternatively, we will studythe
online optimization in Section IV.

III. O PTIMAL OFFLINE EM POLICY

To obtain the optimal offline EM policy for the problem
in (5), we define the Lagrangian function:

L =
N
∑

i=1

[

θτi
(

Yi − Ē
)2

+ (1− θ)τiYiCi

]

+

N
∑

i=1

λi

(

i
∑

j=1

τj(Xj − Yj)
)

+
N
∑

i=1

µi

(

(

i
∑

j=1

τj(Yj −Xj)
)

−Bmax

)

−
N
∑

i=1

viYi, (6)

where λi ≥ 0, µi ≥ 0 and vi ≥ 0, i = 1, . . . , N , are
the Lagrange multipliers, and the complementary slackness
conditions are:

λi

( i
∑

j=1

τj(Xj − Yj)

)

= 0, i = 1, . . . , N, (7)
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Fig. 3. Illustration of an example of the optimal EM policy through water-
filling for N = 2.

µi

(

(

i
∑

j=1

τj(Yj −Xj)
)

−Bmax

)

= 0, i = 1, . . . , N, (8)

viYi = 0, i = 1, . . . , N. (9)

Applying the Karush Kuhn Tucker (KKT) necessary condi-
tions, we obtain, fori = 1, . . . , N :

∂L

∂Yi

= 2θτi
(

Y ∗
i − Ē

)

+ (1− θ)τiCi + τi

N
∑

j=i

(µj − λj)− vi,

= 0. (10)

Then the optimal values forYi are found as:

Y ∗
i =

[(

N
∑

j=i

(λj − µj)

2θ
+ Ē

)

− C̄i

]+

, ∀i, (11)

where [x]+ is equal tox if x ≥ 0, and0 otherwise, and the
weighted cost level, C̄i is defined as:

C̄i ,
(1− θ)Ci

2θ
, ∀i. (12)

We note that the solution in (11) resembles the classical
water-filling solution [27], whereY ∗

i + C̄i corresponds to
the water level in TS i, and one can interpret the optimal
EM policy as pouring water over TSs. The classical water-
filling solution is encountered in various problems in the
literature, most notably, the optimal power allocation among
parallel Gaussian channels under a sum power constraint so
as to maximize the capacity [27]. In the classical water-filling
solution, the water level is constant, and adjusted througha
constant Lagrangian multiplier, which is chosen to satisfythe
sum power constraint in the above example.

In our problem, “water” corresponds to the energy allocated
to each TS. To clarify how it differs from the classical
water-filling solution, and to provide some intuition for the
constraints in (3) and (4), we next provide an example of
the optimal EM policy through water-filling forN = 2 in
Fig. 3. The heights of the white rectangles correspond to the
weighted cost levels,̄Ci’s, while their widths correspond to the
TS durations,τi’s, for i = 1, 2. The first power demandX1 is
given as the height of the corresponding filled area on top of

the first white rectangle, while the second power demandX2

is given asX2 =
τ1X

′

2+τ2X
′′

2

τ2
. The optimal values of the power

withdrawn from the grid,Y ∗
i , are illustrated as the height of

the filled areas abovēCi, leading to the water levelsY ∗
i + C̄i,

∀i.
We can see in Fig. 3 that unlike the classical water-filling

solution, in our model the water level does not have to be
constant. Instead, it changes from one TS to the next. This is
because we have multiple constraints in (3) and (4), which
should be satisfied at each TS as opposed to the classical
water-filling problem, in which there is a single constraintfor
TS N . As seen in Fig. 3,Y ∗

1 is sufficient to satisfy the first
power demandX1 as well as part ofX2, denoted byX ′

2, which
is first stored in the RB. Following (11), the water level in the

first TS is found to beY ∗
1 + C̄1 =

(

2
∑

j=1

(λj − µj)

)

/2θ+ Ē.

Y ∗
2 satisfies part of demandX2, i.e.,X ′′

2 , and the rest is stored
in the RB, i.e.,Y ∗

2 − X ′′
2 . From (11), the water level in the

second TS is given byY ∗
2 + C̄2 = (λ2−µ2)/2θ+ Ē, different

from the water level in the first TS.
Next, we identify some properties of the optimal EM

policy based on the KKT conditions in (7)-(10), which are
both necessary and sufficient due to the convexity of the
optimization problem in (5).

Lemma 1. In the optimal EM policy, givenYi > 0 ∀i,
whenever the water level, i.e.,Yi + C̄i, increases (decreases)
from TS i to TS i + 1, i.e., Yi + C̄i < Yi+1 + C̄i+1

(Yi + C̄i > Yi+1 + C̄i+1), the RB must be full (empty) at
TS i, i.e., Bi = Bmax (Bi = 0). Moreover, if the RB is
neither empty nor full at TSi, i.e., 0 < Bi < Bmax, then
the water level does not change from TSi to TS i + 1, i.e.,
Yi + C̄i = Yi+1 + C̄i+1.

Proof. From the slackness conditions in (7) and (8), we can
argue that the RB is full wheneverλi = 0 andµi > 0, and
the RB is empty wheneverλi > 0 and µi = 0. Note that
λi andµi cannot be positive simultaneously. From (11), we
see thatYi + C̄i < Yi+1 + C̄i+1 implies λi = 0 and µi >
0, and Yi + C̄i > Yi+1 + C̄i+1 implies λi > 0 and µi =
0. Therefore, we can conclude that whenever the water level
increases (decreases) from TSi to TS i + 1, the RB must be
full (empty) at TSi. Moreover, if the RB is neither empty nor
full at TS i, i.e., 0 < Bi < Bmax, the i-th constraints in (3)
and (4) are satisfied with strict inequality. This implies from
the slackness conditions in (7) and (8) thatλi = 0 andµi = 0.
From (11), we can conclude that, if the RB is neither empty
nor full at TSi, the water level does not change from TSi to
TS i+ 1, i.e.,Yi + C̄i = Yi+1 + C̄i+1.

Lemma 2. In the optimal EM policy, givenY ∗
i > 0 ∀i, if

the RB is never full from TSi to TSN , i.e.,Bj < Bmax for
j = i, i + 1, . . . , N , then the optimum water levels from TSi
to TSN , i.e., Y ∗

j + C̄j , for j = i, i + 1, . . . , N , must satisfy
Y ∗
j + C̄j ≥ Ē. If the RB is neither empty nor full from TSi

to TSN , i.e., 0 < Bj < Bmax, for j = i, i + 1, . . . , N , then
the optimum water levels from TSi to TSN should be equal
to Ē, i.e.,Y ∗

j + C̄j = Ē, for j = i, i+ 1, . . . , N .



Proof. If the RB is never full from TSi to TSN , i.e.,Bj <
Bmax for j = i, i+1, . . . , N , the constraints in (4) are satisfied
with strict inequality. It follows from the slackness conditions
in (8) that µj = 0, for j = i, i + 1, . . . , N . From (11), this
implies thatY ∗

j +C̄j ≥ Ē, and we can conclude that, if the RB
is never full from TSi to TS N , the optimum water levels
from TS i to TS N should satisfyY ∗

j + C̄j ≥ Ē, for j =
i, i+ 1, . . . , N . If the RB is neither empty nor full from TSi
to TS N , i.e., 0 < Bj < Bmax, for j = i, i + 1, . . . , N , the
constraints in (3) and (4) are satisfied with strict inequality.
It follows from (7) and (8) thatλj = µj = 0, for j = i, i +
1, . . . , N . From (11), this implies thatY ∗

j + C̄j = Ē, and we
can conclude that, if the RB is neither empty nor full from TS
i to TSN , the optimum water levels from TSi to TSN should
be equal toĒ, i.e.,Y ∗

j + C̄j = Ē, for j = i, i+1, . . . , N .

A. Implications of the Lemmas

For clarity, we first consider the solution for an infinite RB.
If Bmax is infinite, the RB is never full and the constraints
in (4) are never satisfied with equality, i.e.,µi = 0, ∀i. Then,
it follows from Lemma 1 that the water level is monotonically
decreasing from one TS to the next. This is because the
water (energy) can only flow backwards in our model, i.e.,
energy requested at a TS can be requested from the grid over
earlier TSs, but not the future ones. Accordingly, whenever
the constraint in (3) is not satisfied with equality at TSi, i.e.,
λi = 0, then some energy for future use is drawn in advance
within current TSi. Hence, in the optimal EM policy, if some
drawn power is transferred from future TSs to the current one,
the water level remains the same from the current TS to the
next. Conversely, when there is a water level decrease from
the current TS to the next, that is, ifλi > 0, no drawn power is
allocated from future TSs to the current, i.e., the RB is empty
at TS i, as argued in Lemma 1. Moreover, from Lemma 2,
we can conclude that all optimal water levels must satisfy
Y ∗
i + C̄i ≥ Ē, ∀i, since the RB is never full.
If Bmax is finite, the amount of energy drawn for future

use within TSi is limited by the remaining RB capacity at
TS i, i.e.,Bmax−Bi. When the energy demand of future TSs
that is requested from the grid in the current one is less than
Bmax − Bi, the constraints in (3) and (4) are satisfied with
strict inequality, i.e.,λi = µi = 0, and the water level does
not change from TSi to TS i + 1, as argued in Lemma 1.
Conversely, when there is a water level increase from TSi to
TS i+ 1, that is, ifλi = 0 andµi > 0, the amount of energy
demand for future TSs satisfied in the current one is equal to
Bmax−Bi, which implies that the RB is full at TSi. If the RB
is full in the current TS, then no future energy demand can be
satisfied in the current and previous TSs anymore due to the
RB capacity limitation. When there is a water level decrease
from TS i to TS i+1, that is, ifλi > 0 andµi = 0, no future
energy demand is satisfied in the current TS, i.e., the RB is
empty at TSi, as argued in Lemma 1. If the RB is never full
from TS i to TSN , i.e.,Bj < Bmax for j = i, i+ 1, . . . , N ,
we can conclude from Lemma 2 that the optimum water levels
from TS i to TS N , must satisfyY ∗

j + C̄j ≥ Ē, for j =
i, i+ 1, . . . , N .

B. Backward Water-Filling Algorithm

Based on the aforementioned implications of Lemma 1
and Lemma 2, we next describe the backward water-filling
algorithm through an example in Fig. 4. The heights of the
white rectangles correspond to the weighted cost levels,C̄i’s,
while their widths correspond to the TS durations,τi’s, for
i = 1, 2, 3. We also fix a target consumption valuēE illustrated
in Fig. 4. Fig. 4(a) depicts the power demands,Xi, as the
heights of the filled areas on top of the white rectangles. Thus,
the initial water levels are given byXi + C̄i, ∀i. Observe that
the RB is initially empty at every TS. Considering the example
in Fig. 4(a), in Fig. 4(b) and Fig. 4(c) we illustrate the optimal
offline EM policy in the presence of an infinite and a finite
capacity RB, respectively.

In the infinite RB case, the first demandX1 is satisfied from
the grid within the first TS, as seen in the first plot in Fig. 4(b).
The demand in the second TS,X2, can be satisfied during the
first and second TSs. The algorithm decides how much power
to draw in the first and second TSs, applying the water-filling
solution in (11), where we usēC1 +X1 instead ofC̄1.

Since the electricity price is more expensive in the second
TS, part ofX2 is drawn within the first TS, and stored in the
RB (see the second plot in Fig. 4(b)). The rest ofX2 is drawn
from the grid within the second TS. Hence,X2 is fulfilled
from both the RB and the grid. Observe that the RB is not
empty at the end of the first TS; and hence, the water level
does not change from the first TS to the second as argued in
Lemma 1.

The demand in the third TS can be drawn from the grid in
the first three TSs (see the third plot in Fig. 4(b)). Observe that
the RB is not empty at the end of first and second TSs; and
hence, all water levels are equalized as argued in Lemma 1.
On the other hand, the RB is empty at the end of the third
TS. If the current water levels satisfy the conditions argued
in Lemma 2 in this step, the algorithm leads to the optimal
solution. As depicted in the third plot in Fig. 4(b), all water
levels are smaller than the target valueĒ; and hence, Lemma 2
is not satisfied. To remedy this, the algorithm allocates further
grid energy to all three TSs. Accordingly, all water levels are
raised up toĒ as seen in the fourth plot in Fig. 4(b), leading
to the optimal values of the power drawn from the grid,Y ∗

i ,
as the height of the filled areas aboveC̄i, ∀i. Observe that the
optimal power withdrawn from the grid in the first TS,Y ∗

1 ,
depends on the user’s demand and the weighted cost levels
in the following TSs as well. ForN TSs, the optimal power
values withdrawn from the grid can be obtained byN + 1
iterations of the backward water-filling algorithm.

Fig. 4(c) depicts the optimal backward water-filling solution
and the optimal values of the power withdrawn from the grid,
Y ∗
i , in the presence of a finite capacity RB.X1 is satisfied

from the grid within the first TS, and the RB is empty at the
end of the first TS (see the first plot in Fig. 4(c)). In contrast
to the infinite capacity RB case, the portion of the user’s total
load,X2, drawn in advance within the first TS is limited by
the RB capacityBmax (see the second plot in Fig. 4(c)). In
other words, the part of the demand in the second TS that is
drawn from the grid in the first TS is equal toBmax, and the
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Fig. 4. Depiction of the user’s total loads and initial waterlevels (a), and the optimal backward water-filling algorithm in the presence of (b) infinite, and (c)
finite capacity RBs, respectively.

RB is full at the end of the first TS. This explains the water
level increase from the first TS to the second as argued in
Lemma 1.X3 can only be satisfied over the second and third
TSs since the RB is full at the end of the first TS (see the third
plot in Fig. 4(c)). Part ofX3 is drawn within the second TS
and stored in the RB. Observe that the RB is neither empty
nor full at the end of the second TS; and hence, the water level
does not change from the second TS to the third as argued in
Lemma 1. Similarly to the infinite RB capacity case, if the
current water levels satisfy the conditions argued in Lemma2
in this step, the algorithm leads to the optimal solution. As
seen in the third plot in Fig. 4(c), all water levels are smaller
than Ē. Observe that the RB is full at the end of the first
TS; and hence, the water level at the first TS cannot be raised
further due to the RB capacity limitation. On the other hand,
the water levels at the second and third TSs do not satisfy the
optimality conditions argued in Lemma 2 as the RB is neither
empty nor full at the second TS, and empty at the third TS.
Therefore, the algorithm needs to draw further grid energy in
the second and third TSs. As depicted in the fourth plot in
Fig. 4(c), the algorithm allocates the same amount of energy
to the second and third TSs, and raises water levels, leading
to the optimal values of the power withdrawn from the grid,
Y ∗
i , ∀i. Observe that the water levels at the second and third

TSs are raised in accordance with Lemma 1 satisfying the RB
capacity constraint. Since the RB is neither empty nor full at
the end of the second TS, the water level does not change from
the second TS to the third. The water levels at the second and
third TSs do not reach̄E, since the RB gets full at the end of
the third TS.

IV. ONLINE EM POLICIES

In this section, we consider causal (online) knowledge of
the user’s total load at the EMU, while the electricity prices
are still known in advance2. First we provide the optimal
online EM policy by solving the associated DP problem [28].
As DP quickly becomes computationally intractable with the
increasing size of the state space of the problem, we also
propose an efficient heuristic online policy that iteratively uses
the offline backward water-filling algorithm developed in the
previous section. For simplicity in this case, we assume unit
TS durations, i.e.,τi = 1, ∀i. Similarly to the offline setting,
we assume that the target valueĒ is a constant parameter and
is specified in advance.

A. Optimal Online Policy

The state of the system at the beginning of TSi is deter-
mined by the energy demand,Xi ∈ X , and the battery state,
Bi−1 ∈ B. While the energy demand and battery state are
continuous bounded variables, we discretize both in order to
apply DP. Hence,X andB are finite discrete sets generated by
discretizing the feasible state spaces of the energy demandand
battery state with particular energy quantizers, which arede-
tailed in Section VI. Let|X | and|B| denote the cardinality of
setsX andB, respectively. We assume that the discrete energy
demand follows a stationary first-order Markov relation, with
transition probabilitiesqmn between energy demand statesxm

2Non-causal knowledge of the energy prices by the consumers is realistic
for the current smart grids, where the energy prices change very slowly.
Morever, the DP formulation and the proposed heuristic algorithm can be
easily extended to the scenario with causal knowledge of theenergy prices.



and xn, i.e., qmn = Pr{Xi+1 = xn|Xi = xm}. The online
EM policy at TS i, i.e., πi(Xi, Bi−1), maps each state to a
power value to be drawn from the grid,Yi, that is selected
from the finite discrete setYi, i.e., πi : X × B → Yi. The
battery state at the end of TSi, Bi, is given by:

Bi = Bi−1 + Yi −Xi. (13)

Following (13), Yi can be defined as the set of feasible
decisions for energy demandXi and the battery stateBi−1 at
the beginning of TSi, i.e.,Yi = {Yi ∈ R

+|Yi = Bi−Bi−1+
Xi, Bi ∈ B}. The EMU is not allowed to waste any energy by
limiting the battery stateBi to be lower thanBmax. Following
the objective function in (5), we can write the cost function
for decisionYi as follows:

gi(Yi) ,
[

θ ·
(

Yi − Ē
)2

+ (1− θ) · Yi · Ci

]

. (14)

We aim at minimizing the average cost overN TSs. The
optimal online policy is a collection of decision functions,
i.e.,π∗ = {π∗

1 , π
∗
2 , . . . , π

∗
N}, which leads to the optimal power

values to be drawn from the gridY ∗
i = π∗

i (Xi, Bi−1), and is
found as the solution to the following optimization problem:

min
π1,...,πN

N
∑

i=1

E
[

gi(πi(Xi, Bi−1))
]

s.t. πi(Xi, Bi−1) ≥ 0, i = 1, . . . , N,

0 ≤ Bi−1 + πi(Xi, Bi−1)−Xi ≤ Bmax, i = 1, . . . , N,

(15)

where the expectation is taken with respect to the statistics
of the user’s demand distribution. The optimal online policy,
π∗
i (Xi, Bi−1), can be obtained through DP by proceeding

backwards from theN -th TS to the first, namely, backward
induction, as follows:

J∗
N (XN , BN−1) , min

YN∈πN (XN ,BN−1)
gN (YN ),

J∗
i (Xi, Bi−1) , min

Yi∈πi(Xi,Bi−1)
E
[

gi(Yi) + J∗
i+1(Xi+1, Bi)

]

,

= min
Yi

{

gi(Yi) +
∑

n

qmnJ
∗
i+1(xn, Bi−1 + Yi − xm)

}

,

i = N − 1, . . . , 1, (16)

whereJ∗
i denotes the optimal cost function at TSi that assigns

to the energy demand,Xi, and the battery state,Bi−1, the
minimum costJ∗

i (Xi, Bi−1). We recursively solve (16) to
obtain the optimal policyπ∗

i (Xi, Bi−1), ∀i. The EMU records
this function as a|X | × |B| look-up table. Each entry of
the table corresponds to the optimal decision for the power
withdrawn from the gridY ∗

i , for state (Xi, Bi−1). At the
end of backward induction, we obtain a look-up table for
each TSi. Then, proceeding forwards from the first TS to
the N-th, namely, through forward induction, and using the
corresponding look-up tables, the optimal power withdrawn
from the grid sequence can be obtained for a particular energy
demand realization.

Algorithm 1 Heuristic Online Policy
B0 ← 0 ⊲ Initially battery is empty
for i = 1 to N do ⊲ TS i
1. Subproblem Construction:
Set the power demands for two TSs
X̂1 ← [Xi −Bi−1]

+, X̂2 ← 3Ē
Set the battery energies for two TSs
B̂1 ← [Bi−1 −Xi]

+, B̂2 ← B̂1

Set the electricity prices for two TSs

Ĉ1 ← Ci, Ĉ2 ←
1
N

N
∑

i=1

Ci

2. Subproblem Solution:
Solve the constructed subproblem by using the backward
water-filling algorithm.
Feed the optimal power withdrawn from the grid,Ŷ ∗

1 , into
the real timeline.
3. Power Decision:
Yi ← Ŷ ∗

1 ⊲ Set the power drawn from the grid at TSi
Bi ← Bi−1 + (Yi −Xi) ⊲ Update the battery energy
end for

Observe that the size of the look-up tables, and equivalently,
the complexity of the DP algorithm, grows very quickly
with the increasing number of states, which depends on the
quantizer precision. Hence, DP algorithms can easily become
computationally intractable with the increasing quantizer pre-
cision, which is needed to approximate the optimal solution
for the original problem with a continuous state space [28].

B. Heuristic Online Policy

Due to the high computational complexity of DP solutions,
here we propose a low complexity heuristic online algorithm,
detailed in Algorithm 1. At each TSi, this algorithm creates
a two-TS subproblem. Accordingly, each subproblem consists
of the power demands, the electricity prices and the battery
states for two TSs, which are denoted as(X̂1, X̂2), (Ĉ1, Ĉ2)
and (B̂1, B̂2), respectively. In each subproblem, the first TS
is representative for the past and present information, while
the second TS is representative for future information. The
parameters for the first TS of the subproblem, i.e.,X̂1, Ĉ1,
B̂1, are set based on the current information available at the
EMU, such as, the current power demand,Xi, the current
electricity price,Ci, and the battery state,Bi−1. The algorithm
setsX̂1 as the part of the current power demand,Xi, which
can not be satisfied from the available energy in the battery,
[Xi−Bi−1]

+, B̂1 as the remaining energy in the battery after
satisfying part of the current power demand,[Bi−1 − Xi]

+,
and Ĉ1 as the current electricity price,Ci. The parameters
for the second TS of the subproblem, i.e.,X̂2, Ĉ2, B̂2, are
set as follows. The algorithm setŝX2 as three times the
target power demand3 Ē, Ĉ2 as the mean electricity price,
and B̂2 as B̂1. At each step, the algorithm optimally solves
the constructed subproblem using the backward water-filling
algorithm developed in Section III-B. The power values arising
from the optimal solution for the first and second TSs are

3We setX̂2 more than the target power demand̄E in order to compensate
for future rise in demand. This allows the algorithm to charge the RB further,
so that a possible peak in demand in future TSs can be tackled without
diverging much from the target̄E.



denoted byŶ ∗
1 and Ŷ ∗

2 , respectively. The algorithm is only
interested in the optimal solution for the first TS, i.e.,Ŷ ∗

1 .
Therefore, the algorithm sets the decision for the power to be
withdrawn from the gridYi at TS i as Ŷ ∗

1 . Finally, it updates
the battery state,Bi, by usingBi−1, Xi andYi.

The heuristic policy mimics the backward water-filling
algorithm in an online setting. Moreover, the choice of a
two-TS subproblem at each iteration allows to reduce the
complexity of the heuristic algorithm, and there is no need to
quantize the state space. While, mimicking the optimal offline
policy as mentioned above is a reasonable and low-complexity
heuristic to replace the optimal DP solution, supported also by
the numerical results in Section VI, we are not able to provide
any theoretical performance guarantees.

V. I NFORMATION LEAKAGE RATE

In the previous sections, we have considered the load
variance as the privacy measure. An alternative information
theoretic privacy measure is the information leakage rate [10],
which is defined as the average mutual information between
the sequences of the user’s total load and the power drawn
from the grid:

Ip ,
1

N
I(XN ;Y N ). (17)

The information leakage rate can be argued to be a
more accurate privacy measure as it takes into account
the statistical behaviour of the user’s total load. Note that
the information leakage rate measures the reduction in the
UP’s uncertainty (entropy) about user’s energy consump-
tion, XN , after receiving meter readings,Y N , as we have
Ip = 1

N

[

H(XN)−H(XN |Y N )
]

. As an information theo-
retic privacy measure, the information leakage rate provides
privacy guarantees regardless of the computational power of
the attacker. However, the optimal decision policy in terms
of the information leakage rate is significantly harder to
characterize [21]. Moreover, even whenIp = 0, for large
N , it is possible that the SM readings completely reveal
certain portions of the energy consumption profile. Here, we
first provide a computational expression for the information
leakage rate. In the next section, we will numerically evaluate
and compare the load variance and the information leakage
rate privacy measures, and demonstrate that the two follow
similar trends.

As a first step towards computing the information leakage
rate, we quantize the vectors of the user’s demand and the
power drawn from the grid. LetX̃N and Ỹ N denote the
quantized versions ofXN andY N , respectively. The samples
of X̃N and Ỹ N take values from finite discrete sets̃X and
Ỹ, respectively. For simplicity, we assume that the samples of
X̃N and the joint samples of(X̃N , Ỹ N ) follow stationary first-
order Markov distributions. Then we can write the distributions
of X̃N and (X̃N , Ỹ N ) as follows:

p(X̃N) = p(X̃1)
N
∏

i=2

p(X̃i|X̃i−1), (18a)

p(X̃N , Ỹ N ) = p(X̃1, Ỹ1)
N
∏

i=2

p(X̃i, Ỹi|X̃i−1, Ỹi−1). (18b)

Note that the condition (18b) holds when (18a) holds, and
the power withdrawn from the grid at TSi, Yi, depends only
on the current loadXi, and the previous values of the load and
the power withdrawn from the grid,(Xi−1, Yi−1). Under these
assumptions, we derive an upper bound on the information
leakage rate,Ip, as shown in Appendix. The obtained infor-
mation leakage rate upper bound will be evaluated numerically
as a measure of information theoretical privacy leakage forthe
EM policies derived in Section III and Section IV.

We note that the condition (b) in Appendix holds with equal-
ity if we assume that the sequence of the power withdrawn
from the grid, Ỹ N , is also a stationary first-order Markov
process. This assumption has been made in [15] for the
computation of the information leakage rate; however, adding
this extra Markov assumption together with the initial ones
may not lead to any realistic model or non-trivial EM strategy.

To numerically evaluate the mutual information expressions
for given sequences of the user’s total load and the power
drawn from the grid, we can explicitly write the information
leakage rateIp, as follows:

1

N

(

N
∑

i=2

∑

x̃i−1∈X̃

ỹi−1∈Ỹ

∑

x̃i∈X̃

ỹi∈Ỹ

p(x̃i, x̃i−1, ỹi, ỹi−1) log
p(x̃i,x̃i−1,ỹi,ỹi−1)

p(x̃i,x̃i−1)p(ỹi,ỹi−1)

−

N
∑

i=3

∑

x̃i−1∈X̃

ỹi−1∈Ỹ

p(x̃i−1, ỹi−1) log
p(x̃i−1, ỹi−1)

p(x̃i−1)p(ỹi−1)

)

. (19)

We can computeIp by estimating all the joint and marginal
distributions in (19). We use empirical distributions as the
estimates for these distributions, i.e., we count the number of
joint or single appearances over all realizations, and normalize
them to obtain the corresponding probabilities.

VI. N UMERICAL RESULTS

In this section, we provide further insights into the proposed
offline and online EM policies through numerical simulations.
We analyze the trade-off between the user’s privacy and energy
cost as well as the effect of the RB capacity on this trade-
off. We consider the real SM readings obtained from [29]
with a time resolution on the order of three seconds. For
our simulations we convert the readings obtained from one
household for a period of one month to a time resolution of
one-minute, and use as the load profile. To be consistent with
our power consumption model, we assume that the discrete
time instants in Fig. 2(a) correspond to the sampling times of
the SM. We set the electricity price in our simulations based
on the real pricing tariffs [30]: the off-peak price is5 cent per
kWh during00:00 to 12:00, the on-peak price is20 cent per
kWh during12:00 to 20:00, and the medium-peak price is10
cent per kWh during20:00 to 00:00. For the simulations, we
consider the target valuēE as the average power demand of the

user, i.e.,Ē = 1
T

N
∑

i=1

τi ·Xi, which is assumed to be known in

advance. To discretize the state space for the online problem,
we use a 4-bit non-uniform mu-law quantizer [31] for the



0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Average Energy Cost - C (euro/day)

L
oa

d
V
ar
ia
n
ce

-
V

(k
W

)2

 

 Heuristic Online Policy

Optimal Online Policy

Optimal Offline Policy

increasing θ

(a)

19.5%

78.5%

23%

18.5%

64.9%67.9%

0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Average Energy Cost - C (euro/day)

In
fo
rm

at
io
n
L
ea
ka
ge

R
at
e
-
I p

 

 Heuristic Online Policy

Optimal Online Policy

Optimal Offline Policy

(b)

Fig. 5. (a) The load variance,V , versus the average energy cost,C, and (b)
the information leakage rate,Ip, versus the average energy cost,C, resulting
from the proposed offline and online EM policies under the RB capacity,
Bmax = 0.5 kWh.

energy demand, and a 2-bit uniform quantizer for the battery
state, respectively. For the characterization of the information
leakage rate, we discretize the user’s total load sequence and
the sequence of the power drawn from the grid that results
from the proposed policies by using a 5-bit non-uniform mu-
law quantizer. Note that due to the non-uniformly distributed
characteristics of the readings used in the simulations, the non-
uniform mu-law quantizer allows us to reduce the quantization
noise [31].

TABLE I
CORNER POINTS OF THE TRADE-OFF CURVESIN FIG. 5

Heuristic Optimal Online Optimal Offline
Policy Policy Policy

minV 0.157 0.139 0.085
min Ip 0.612 0.481 0.19
C 0.792 0.796 0.801

V 0.204 0.178 0.103
Ip 0.758 0.536 0.249

min C 0.721 0.715 0.702

In Fig. 5, we illustrate the trade-offs between the privacy
and cost resulting from the proposed EM policies with a RB
capacity Bmax = 0.5 kWh. The Pareto optimal trade-off
curves between the load variance,V , and the average energy
cost, C, in Fig. 5(a), and the trade-off curves between the
information leakage rate,Ip, and the average energy cost,
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Fig. 6. (a) The load variance,V , versus battery capacity,Bmax, and (b) the
information leakage rate,Ip, versus battery capacity,Bmax, for the proposed
offline and online EM policies underθ = 1.

C, in Fig. 5(b), are formed by varyingθ values. For all the
proposed policies, the average energy cost increases, while the
load variance and the information leakage rate diminish asθ
increases. According to the user preferences or requirements
of the system, the operating point can be chosen anywhere on
the trade-off curve. We observe that the load variance and the
information leakage rate behave similarly for all the policies.
Based on this observation, we can argue that the load variance
can be used as a reliable privacy measure for SM systems. The
corner points of the trade-off curves for the proposed policies
in Fig. 5 are given in Table I. Observe that the heuristic online
policy performs close to the optimal online policy both at
the maximum privacy and the minimum cost corner points,
while the optimal offline policy outperforms both of them
as expected. Observe in Fig. 5(a) that for average energy
costs C = {0.73, 0.76, 0.78} (euro/day), reductions in the
load variance from the heuristic to the optimal online policy
are found to be19.5%, 23% and 18.5%, respectively, while
reductions in the load variance from the optimal online policy
to the optimal offline policy are found to be78.5%, 67.9%
and64.9%, respectively.

Next, we investigate the effect of the battery capacity on the
maximum privacy and the minimum cost. We plot the load
variance,V , versusBmax in Fig. 6(a), and the information
leakage rate,Ip, versusBmax in Fig. 6(b) forθ = 1. Observe
that both the load variance and the information leakage rate
diminish as RB capacity increases. Similar behaviours of the
load variance and the information leakage rate with respectto
the RB capacity further consolidates the argument that the load
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Fig. 7. The average energy cost,C, versus battery capacity,Bmax, resulting
from the proposed offline and online EM policies underθ = 0.001.

variance can be used as a proxy for the information leakage
rate in SM systems. When there is no RB in the system, i.e.,
Bmax = 0, the proposed offline and online policies behave
identically. This also corresponds to a naive algorithm that
ignores the RB, and draws the necessary energy to satisfy the
demand at each TSi from the grid, i.e,Y ∗

i = Xi, ∀i. In this
case, the UP knows the user’s total load sequence perfectly,
and the load variance is found to beV = 0.259, while the
information leakage rate reduces to the entropy rate of the
user’s total load sequence, which is found to beIp = 0.952.

Observe that the information leakage rates achieved by the
optimal offline and online policies drop very quickly with
even a small RB capacity. While the information leakage rate
achieved by the optimal offline policy quickly saturates to its
minimum value, those achieved by the optimal and heuris-
tic online policies decrease smoothly with the RB capacity.
Observe that the heuristic online policy performs reasonably
close the optimal online policy for both privacy measures.
The gain on the performances of the proposed policies can be
achieved by virtue of the degree-of-freedom provided by the
RB. For example, the heuristic online policy outperforms the
naive algorithm that does not exploit the battery for any non-
zero capacity. A battery with capacity 1 (kWh) provides 52.4%
reduction in the load variance of the heuristic online policy,
and 58% and 81.7% reductions in that of the optimal online
and offline policies, respectively. WhenBmax = 1.5 (kWh),
the information leakage rate of the heuristic online policyis
found to beIp = 0.49, and that of the optimal online and
offline policies are found to beIp = 0.354 and Ip = 0.141,
respectively. These results show that a moderate RB capacity
leads to a significant reduction in the information leakage
rate. For RB capacities beyond1.5 kWh, we do not expect
a significant privacy gain. We also expect that the information
leakage rate of the heuristic policy approaches to the optimal
online policy as the RB capacity becomes sufficiently large.

Fig. 7 illustrates the average cost,C, versusBmax for
θ = 0.001, which corresponds to the scenario in which the
consumer is more interested in minimizing the cost of energy
rather than privacy. The highest value for the average energy
cost isC = 0.778 (euro/day), achieved forBmax = 0. The
heuristic online policy again outperforms the naive algorithm
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Fig. 8. Comparison of the user’s total load profile with the profile of the
power withdrawn from the grid resulting from the proposed offline and online
EM policies with a RB of capacity,Bmax = 1.5 kWh, for (a) θ = 1, (b)
θ = 0.001, respectively.

for any RB capacity, and performs very close to the optimal
online policy. A battery with capacity 1 (kWh) provides 13.5%
reduction in the average energy cost of the heuristic online
policy, and 15.9% and 19.6% reductions in that of the optimal
online and offline policies, respectively. WhenBmax = 1.5
(kWh), the average energy cost of the heuristic online policy
is found to beC = 0.624 (euro/day), and that of the optimal
online and offline policies are found to beC = 0.61 (euro/day)
andC = 0.57 (euro/day), respectively. We see that the user can
reduce his/her energy consumption cost significantly with the
proposed policies in the presence of a moderate capacity RB.

Finally, we compare the user’s total load profile with the
profile of the power withdrawn from the grid resulting from
the proposed offline and online EM policies withBmax = 1.5
kWh, for θ = 1 and θ = 0.001, in Fig. 8(a) and (b),
respectively. Whenθ = 1, the goal is to maximize the privacy,
that is, to generate a smooth power profile for the energy
withdrawn from the grid. Observe in Fig. 8(a) that the optimal
offline policy generates quite a smooth profile showing off
most of the peaks in the demand profile. Particularly, if we
focus on the peak power of the original load profile between
20.00 and 22.00, we can see that the optimal offline policy
masks most of the peak signal, while the optimal and heuristic
online policies still retain significant peaks. On the otherhand,
they both perform well in masking the peak values at other
times of the day.

Whenθ = 0.001, the proposed policies intend to minimize



the energy cost of the user. As seen in Fig. 8(b), the proposed
policies store extra energy in the RB during the off-peak price
period, and satisfy the demand of the peak period from the RB
in order to reduce the cost. In the peak period between 12.00
and 20.00, the optimal offline policy draws nearly constant
power from the grid, and satisfies the rest of the demand
from the RB; on the other hand, the optimal and heuristic
online policies satisfy the demand more from the RB between
12.00 and 16.00, and more from the grid between 16.00 and
20.00. We can envision that as the RB capacity increases, the
optimal and heuristic online policies can store more energyin
the battery to be used in the peak period, which would reduce
the average costs.

VII. C ONCLUSIONS

We studied demand-side EM policies from a privacy-energy
cost trade-off perspective for a SM system with a finite-
capacity energy storage unit. We considered a discrete-time
energy consumption model, in which both the power consump-
tion of the consumer and the electricity prices vary over time.
We considered the variance of the power withdrawn from the
grid around a predetermined constant target value as a measure
of privacy for the consumer. First, assuming that the user’s
energy demand profile and the electricity prices are known
non-causally, we formulated the optimal offline privacy-cost
trade-off as a convex optimization problem, and characterized
various properties of the optimal policy. Then, we proposed
a low-complexity backward water-filling algorithm which ef-
ficiently computes the optimal offline EM policy.

Next, assuming that the user’s power consumption profile
is known only causally, we characterized the optimal online
policy using DP. We also proposed a low-complexity heuristic
online algorithm, and showed through numerical simulations
that it performs close to the optimal online solution. In addition
to the load variance, we also characterized the information
leakage rate between the sequences of the user’s total load
and the power drawn from the grid.

Extensive numerical simulations have been presented using
real SM consumption data to illustrate the trade-offs between
privacy and energy cost resulting from the proposed offline
and online policies. Our results indicate that the privacy-cost
trade-offs for the load variance and the information leakage
rate have similar behaviours. We also showed that most of the
privacy gains can be obtained with a relatively small capacity
RB.

As future extensions of the current work, various practical
issues, such as storage inefficiencies, battery leakages and peak
power constraints, can be considered with a slightly more
complex model and analysis. Also, in this work, we consider
SMs that only report the real power consumption of the user;
whereas, SMs can report other relevant information, such as
the reactive power, the power factor or various harmonics,
which can also be used to make deductions about the users’
energy consumption behaviours. These variables can be in-
cluded in the analysis. Another interesting extension would
be to allow the user to sell the surplus energy back to the UP,
and assess its impact on the achieved privacy-cost trade-off.

APPENDIX

Here we derive an upper bound on the information leakage
rate.
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)

−

N
∑

i=3

(

H(X̃i−1)−H(X̃i−1|Ỹi−1)

)

)

,

(f)
=

1

N

(

N
∑

i=2

I(X̃i, X̃i−1; Ỹi, Ỹi−1)−
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where (a) follows from the chain rule of entropy; (b) follows
from the first-order Markov assumption for̃Xi and (X̃i, Ỹi)
in (18) and the fact that conditioning reduces entropy; (c),
(d) and (e) also follow from the chain rule of entropy, and
applying the necessary cancellations; and (f) follows fromthe
definition of the mutual information.
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