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Abstract—Privacy against an adversary (AD) that tries to
detect the underlying privacy-sensitive data distribution is stud-
ied. The original data sequence is assumed to come from one
of the two known distributions, and the privacy leakage is
measured by the probability of error of the binary hypothesis
test carried out by the AD. A management unit (MU) is allowed
to manipulate the original data sequence in an online fashion,
while satisfying an average distortion constraint. The goal of
the MU is to maximize the minimal type II probability of
error subject to a constraint on the type I probability of error
assuming an adversarial Neyman-Pearson test, or to maximize
the minimal error probability assuming an adversarial Bayesian
test. The asymptotic exponents of the maximum minimal type II
probability of error and the maximum minimal error probability
are shown to be characterized by a Kullback-Leibler divergence
rate and a Chernoff information rate, respectively. Privacy
performances of particular management policies, the memoryless
hypothesis-aware policy and the hypothesis-unaware policy with
memory, are compared. The proposed formulation can also model
adversarial example generation with minimal data manipulation
to fool classifiers. Lastly, the results are applied to a smart
meter privacy problem, where the user’s energy consumption
is manipulated by adaptively using a renewable energy source in
order to hide user’s activity from the energy provider.

Index Terms—Neyman-Pearson test, Bayesian test, information
theory, large deviations, privacy-enhancing technology.

I. INTRODUCTION

Developments in information technology have drastically
changed people’s lives, e.g., smart homes, smart grids, and
e-health. Most of these technologies are based on intelligent
algorithms that provide better use of limited resources thanks
to their ability to gather and process more information about
users’ behaviors and preferences. This population-scale col-
lection of personal user data in return of various utilities
is a growing concern, as the collected data can be misused
beyond their intended application. Therefore, guaranteeing
user privacy while continuing to deliver the benefits of such
technologies is a fundamental research challenge that must be
tackled in order to enable the adoption of these technologies
without being concerned about privacy risks.

Privacy has been studied extensively in recent years for
various information systems considering different privacy
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D. Gündüz is with the Department of Electrical and Electronic Engineering,
Imperial College London, London SW7 2BT, United Kingdom (e-mail:
d.gunduz@imperial.ac.uk).

measures [2]–[8]. Differential privacy [2], [9], [10] and mutual
information [7], [11], [12] are probably the most commonly
studied privacy measures. In [13], Fisher information is pro-
posed as a privacy measure, and is shown to be a lower
bound on the mean squared error of an unbiased estimation
on the privacy. Kullback-Leibler divergence is used as a
privacy measure in [14], [15], while total variation distance
is considered in [16], which provides a bound on the privacy
leakage measured by mutual information or maximal leakage
[8].

Privacy is particularly difficult to guarantee against ADs
employing modern data mining techniques, which are capable
of identifying user behavior with large datasets. With such
attacks in mind, we propose a novel formulation of the privacy
leakage problem that can be applied to many information
sharing applications. We assume that the original data is
manipulated by the MU and then shared with a remote entity
in an online manner. Our goals are to guarantee that the
shared data satisfies a certain utility constraint, measured by
the average distortion between the original data sequence and
the shared sequence, and meanwhile to limit the inference
capability of the AD, who might be the legitimate receiver of
the shared data. We assume that the AD performs an optimal
hypothesis test based on the shared data sequence (or the
adversarial observation sequence) and tries to determine a
privacy-sensitive underlying hypothesis. Hypothesis test has
previously been considered in the privacy context [17]–[21].
However, different from these previous works, in which the
goal is to increase the reliability of the hypothesis test while
guaranteeing privacy, we measure the privacy risk by the error
probability of the corresponding adversarial hypothesis testing
problem.

Our problem formulation can also be considered as a model
for generating adversarial examples to attack classifiers, which
is a very popular research area due to the increasing adoption
of machine learning techniques in all domains [22]–[25].
These attacks consist of generating examples that can fool a
classifier, despite being very similar to the true distribution of
the data that has been used to train the classifier. Deep neural
networks are particularly vulnerable to such attacks [26]. In
our setting, the AD can be considered as the classifier, and
we are aiming at generating adversarial observation sequences
that are similar to the original data sequence under a given
distortion constraint, yet will make the detection of the AD as
unreliable as possible.

A similar adversarial signal processing problem is studied
in [27]–[29], which also considers independent identically dis-
tributed (i.i.d.) original data sequences, distortion-constrained
data manipulation, and hypothesis test based on manipulated
sequences. However, the results in this paper and in [27]–[29]
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do not imply each other due to the following fundamental
differences: i) We consider an MU to degrade the hypothesis
testing accuracy of a passive but informed AD, and formulate
the problems as worst-case analyses; while [27]–[29] consider
an active attacker to degrade the hypothesis testing accuracy of
a defender and formulate the problem as a zero-sum game; ii)
we assume the AD to always perform an optimal hypothesis
test without the restriction that the hypothesis test has to be
based on the type of the manipulated data sequence as imposed
in [27]–[29]; iii) we also study the scenario in which the MU
does not know the hypothesis a priori.

We study the privacy performance by focusing on the
asymptotic error exponent in two different settings. We con-
sider i) the asymptotic exponent of the maximum minimal
type II probability of error assuming an adversarial Neyman-
Pearson test setting, and ii) the asymptotic exponent of the
maximum minimal error probability assuming an adversarial
Bayesian test setting. We show that the asymptotic error ex-
ponent can be characterized by a Kullback-Leibler divergence
rate in the first setting, and by a Chernoff information rate in
the second. In particular, we prove that the asymptotic error
exponent achieved by the optimal memoryless hypothesis-
aware policy reduces to a single-letter Kullback-Leibler di-
vergence, or a single-letter Chernoff information. We also
consider the hypothesis-unaware policies with memory, and
show for both settings that, the asymptotic error exponent
achieved by the optimal memoryless hypothesis-aware policy
is an upper bound on the exponent achieved by the optimal
hypothesis-unaware policy with memory. Here, we generalize
the privacy problem model we introduced in [1], present the
omitted proofs of Lemma 1, Lemma 2, Theorem 3, Theorem 4,
and modify the proof of Theorem 1. Additionally, we analyze
here the adversarial Bayesian hypothesis test setting.

As an application of the presented theoretical framework,
we will consider a smart meter that reports the energy supply
data to an energy provider (EP) at regular time intervals. The
EP, which is the legitimate receiver of the smart meter data,
can be considered as the AD in this setting, that tries to mine
the smart meter data beyond the intended utility application,
e.g., to infer the privacy-sensitive user behavior information:
presence at home, or electrical appliance usage patterns.
Various privacy-preserving techniques have been developed
for the smart meter privacy problem in recent years, that can
be classified into two groups [30]: The methods in the first
group modify the smart meter readings in order to confuse
the EP; while the second group of methods directly modify
the energy supply pattern to achieve the same goal [7], [9],
[10], [14], [31]–[34]. The advantage of the second approach
is that the smart meters report truthful readings; therefore, the
EP can reliably use their readings for energy provisioning.
Both approaches can be formulated in the general framework
proposed in this paper.

In the following, unless otherwise specified, we will denote
a random variable by a capital letter, e.g., X , its realization
by the lower-case letter, e.g., x, and its alphabet by the
calligraphic letter, e.g., X . Let Xk

t , xkt , and X kt denote a
random sequence (Xt, . . . , Xk), its realization (xt, . . . , xk),
and its alphabet Xt×· · ·×Xk, respectively. For simplification,

Xi MU
Yih0/h1 AD h0/h1

Fig. 1. The privacy problem model. The original data sequence {Xi} is
i.i.d. generated under the privacy hypothesis h0 or h1. The management
unit (MU) follows a policy to determine the random adversarial observation
sequence {Yi} that has to satisfy a long-term average distortion constraint.
The informed adversary (AD) makes an optimal hypothesis test on the privacy
based on the observations.

Xk, xk, and X k are used when t = 1. We use D(·||·) to
denote Kullback-Leibler divergence, Dτ (·||·) to denote τ -th
order Rényi divergence, C(·, ·) to denote Chernoff information,
and | · | to denote set cardinality.

II. SYSTEM MODEL

The considered privacy problem is illustrated in Fig. 1. The
original data sequence {Xi} is assumed to come from one
of two possible distributions depending on the binary privacy
hypothesis H , which can be h0 or h1. Let p0 and p1 denote the
prior probabilities of hypotheses h0 and h1, respectively, and
without loss of generality, we assume 0 < p0 ≤ p1 < 1.
In the following, we use the notation ·|hj for ·|H = hj ,
j ∈ {0, 1}, to denote a random variable under hypothesis
hj . Under hypothesis h0 (resp. h1), the data Xi at time slot
i is i.i.d. generated according to pX|h0

(resp. pX|h1
) where

pX|h0
and pX|h1

are defined on the same finite alphabet X
and satisfy X ⊂ R, −∞ < minX < maxX < ∞, and
0 < D(pX|h0

||pX|h1
) <∞.

At any time slot i, the MU follows a management policy
γi to determine the (random) adversarial observation Yi based
on the data sequence xi, the previous adversarial observations
yi−1, and the true hypothesis h as Yi = γi(x

i, yi−1, h), which
can also be represented by the corresponding conditional pmf
pYi|Xi,Y i−1,H . Let Y denote the finite adversarial observation
alphabet at any time slot, which satisfies Y ⊂ R and −∞ <
minY ≤ maxY < ∞. Let γn , {γi}ni=1 : Xn × H → Yn
denote a management policy over an n-slot time horizon. The
following average distortion constraint is further imposed:

E

[
1

n

n∑
i=1

d(Xi, Yi)

∣∣∣∣∣hj
]
≤ s, j = 0, 1, (1)

where d(·, ·) : X ×Y → R+ is an additive distortion measure.
A management policy that satisfies (1) over an n-slot time
horizon is denoted by γn(s). The distortion constraint may be
imposed either to guarantee a utility requirement from the data,
or due to the availability of limited resources to manipulate
the data sequence {Xi}, e.g., smart meter privacy exploiting
physical energy sources [33].

We consider that an AD has access to the observations
yn, and is fully informed about the prior probabilities of the
hypotheses, the original data statistics, as well as the adopted
management policy, i.e., the AD knows p0, p1, pXn|h0

, pXn|h1
,

γn(s), and hence the resulting adversarial observation statistics
pY n|h0

, pY n|h1
. In this work, the informed AD is assumed

to make an optimal hypothesis test on the binary privacy
hypothesis, and the privacy risk is measured by the probability
of error of this adversarial hypothesis test. In the following,



3

we will study the privacy leakage as a Neyman-Pearson
hypothesis testing problem and a Bayesian hypothesis testing
problem. The corresponding optimal privacy performances
will be characterized in the asymptotic regime.

III. PRIVACY-PRESERVING DATA MANAGEMENT AGAINST
A NEYMAN-PEARSON HYPOTHESIS TESTING ADVERSARY

In this section, the privacy leakage is modeled as a Neyman-
Pearson hypothesis test performed by the informed AD. We
assume that the AD has a maximum tolerance towards false
positives, imposed by a maximum type I probability of error,
and its goal is to minimize the type II probability of error
under this constraint. Given a management policy γn(s) and
the resulting pY n|h0

, pY n|h1
, we define the minimal type II

probability of error of the AD under an upper bound on the
type I probability of error as

β(n, ε, γn(s)) , min
An⊆Yn

{pY n|h1
(An)|pY n|h0

(Acn) ≤ ε},

where An and Acn denote the decision regions for h0 and
h1 of the AD, respectively. On the other hand, the privacy-
preserving design objective of the MU is to maximize the
probability of error of the AD. More specifically, for a given
constraint s on the average distortion that can be introduced,
the MU uses the optimal management policy to achieve the
maximum minimal type II probability of error subject to a type
I probability of error constraint ε, which, with slight abuse of
notation, is denoted by β(n, ε, s) as

β(n, ε, s) , max
γn(s)
{β(n, ε, γn(s))}. (2)

Remark 1. Different from the game theoretic formulation
in [27]–[29], we take a worst-case analysis approach by
assuming an informed AD who always performs the optimal
hypothesis test. This is more appropriate for the privacy
problem studied here and will lead to a privacy guarantee
independent of the knowledge of the AD about the system.

In the following, the optimal privacy-preserving policy is
characterized in the asymptotic regime as n→∞, by focusing
on the asymptotic exponent of the maximum minimal type II
probability of error subject to a type I probability of error
constraint.

We define the Kullback-Leibler divergence rate θ(s) as

θ(s) , inf
k,γk(s)

{
1

k
D(pY k|h0

||pY k|h1
)

}
, (3)

where the infimum is taken over all k ∈ Z+, and for each k,
over all management policies that satisfy the average distortion
constraint over a k-slot time horizon.

Lemma 1.

θ(s) = lim
k→∞

inf
γk(s)

{
1

k
D(pY k|h0

||pY k|h1
)

}
.

Proof: We first show that the following sequence{
infγk(s)

{
D(pY k|h0

||pY k|h1
)
}}

k∈Z+
is subadditive. Given

any n, l ∈ Z+, let (γn(s), γl(s)) denote a management
policy, which uses γn(s) over the first n slots, and γl(s) over

the remaining l slots. Therefore, (γn(s), γl(s)) satisfies the
average distortion constraint over an (n+ l)-slot time horizon.
We have

inf
γn+l(s)

{
D(pY n+l|h0

||pY n+l|h1
)
}

≤ inf
(γn(s),γl(s))

{
D(pY n+l|h0

||pY n+l|h1
)
}

= inf
γn(s)

{
D(pY n|h0

||pY n|h1
)
}

+ inf
γl(s)

{
D(pY l|h0

||pY l|h1
)
}
,

where the equality follows from the chain rule for the
Kullback-Leibler divergence. Then, it follows from Fekete’s
Lemma [35, Lemma 11.2] that

θ(s) = inf
k,γk(s)

{
1

k
D(pY k|h0

||pY k|h1
)

}
= lim
k→∞

inf
γk(s)

{
1

k
D(pY k|h0

||pY k|h1
)

}
.

The following theorem characterizes the operational mean-
ing of the Kullback-Leibler divergence rate θ(s) in the asymp-
totic assessment of the optimal privacy performance assuming
an adversarial Neyman-Pearson hypothesis test.

Theorem 1. Given s > 0,

lim sup
n→∞

1

n
log

1

β(n, ε, s)
≤ θ(s), ∀ε ∈ (0, 1), (4)

and
lim
ε→1

lim inf
n→∞

1

n
log

1

β(n, ε, s)
≥ θ(s). (5)

Proof: Given any k ∈ Z+, γk(s), and the resulting
pY k|h0

, pY k|h1
, let γkl(s) denote a management policy which

repeatedly uses γk(s) for l times. From the definition in (2)
and Stein’s Lemma [36, Theorem 11.8.3], it follows that

lim sup
l→∞

1

kl
log

1

β(kl, ε, s)
≤ lim
l→∞

1

kl
log

1

β(kl, ε, γkl(s))

=
1

k
D(pY k|h0

||pY k|h1
),

for all ε ∈ (0, 1). For k(l − 1) < n ≤ kl, we have

β(kl, ε, s) ≤ β(n, ε, s) ≤ β(k(l − 1), ε, s).

It follows that

lim sup
n→∞

1

n
log

1

β(n, ε, s)
≤ lim sup

l→∞

kl

k(l − 1)

1

kl
log

1

β(kl, ε, s)

= lim sup
l→∞

1

kl
log

1

β(kl, ε, s)

≤ 1

k
D(pY k|h0

||pY k|h1
),

for all ε ∈ (0, 1), k ∈ Z+, and γk(s). Therefore, we have the
upper bound

lim sup
n→∞

1

n
log

1

β(n, ε, s)
≤ θ(s), ∀ε ∈ (0, 1).

Given 0 < δ′ <∞ and for all n ∈ Z+, let ε′(n) ,

sup
γn(s)

pY n|h0

{
yn
∣∣∣∣log

pY n|h0
(yn)

pY n|h1
(yn)

< D(pY n|h0
||pY n|h1

)− δ′
}
,
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and let ε(n) ,

sup
γn(s)

pY n|h0

{
yn
∣∣∣∣log

pY n|h0
(yn)

pY n|h1
(yn)

≤ D(pY n|h0
||pY n|h1

)− δ′
}
.

Note that ε′(n) ≤ ε(n). We further have ε(n) < 1 since
ε(n) = 1 will lead to the contradiction D(pY n|h0

||pY n|h1
) ≤

D(pY n|h0
||pY n|h1

)−δ′. It follows that ε′(n) < 1. Suppose that
γn∗(s) leads to p∗Y n|h0

, p∗Y n|h1
, and achieves β(n, ε′(n), s).

If the AD uses the following hypothesis testing strategy

An =

{
yn

∣∣∣∣∣ 1n log
p∗Y n|h0

(yn)

p∗Y n|h1
(yn)

≥ t(n)

}
, (6)

with the test threshold

t(n) =
1

n
D(p∗Y n|h0

||p∗Y n|h1
)− δ′

n
, (7)

from the definition of ε′(n), the corresponding type I proba-
bility of error satisfies the upper bound constraint

p∗Y n|h0
(Acn) ≤ ε′(n).

Since the hypothesis testing strategy in (6) is not necessarily
optimal for the AD, the definition of the maximum minimal
type II probability of error implies that

β(n, ε′(n), s) ≤ p∗Y n|h1
(An). (8)

In [37, Lemma 4.1.1], it has been shown that

p∗Y n|h1
(An) ≤ exp(−nt(n)). (9)

The inequalities (8) and (9) jointly lead to

β(n, ε′(n), s) ≤ exp(−nt(n))

≤ exp

(
−n
(

inf
γn(s)

{
1

n
D(pY n|h0

||pY n|h1
)

}
− δ′

n

))
,

i.e., for all n ∈ Z+,

1

n
log

1

β(n, ε′(n), s)
≥ inf
γn(s)

{
1

n
D(pY n|h0

||pY n|h1
)

}
− δ′

n
.

In the asymptotic regime as n→∞, it follows that

lim inf
n→∞

1

n
log

1

β(n, ε′(n), s)

≥ lim
n→∞

inf
γn(s)

{
1

n
D(pY n|h0

||pY n|h1
)

}
− lim
n→∞

δ′

n
= θ(s),

where the equality follows from Lemma 1. Note that
lim infn→∞

1
n log 1

β(n,ε,s) is a monotone non-decreasing func-
tion of ε. Then the lower bound holds:

lim
ε→1

lim inf
n→∞

1

n
log

1

β(n, ε, s)
≥ lim inf

n→∞

1

n
log

1

β(n, ε′(n), s)

≥θ(s).
(10)

When ε is close to one, the bounds on the asymptotic
exponent of the maximum minimal type II probability of
error are tight, which is made more concrete in the following
corollary.

Corollary 1. Given s > 0,

lim
ε→1

lim
n→∞

1

n
log

1

β(n, ε, s)
= θ(s).

Remark 2. Given s > 0, the case ε→ 1 represents the worst
privacy leakage scenario assuming the adversarial Neyman-
Pearson hypothesis test, i.e., θ(s) is a privacy guarantee.

In the following, we characterize the asymptotic privacy
performances of two particular management policies in the
worst case scenario, i.e., ε→ 1.

A. Memoryless Hypothesis-Aware Policy

A simple MU might have a limited processing capability,
and at time slot i, applies a memoryless hypothesis-aware
management policy πi, which can be time-variant, to de-
termine the random adversarial observation Yi based on the
current data xi and the true hypothesis h as Yi = πi(xi, h).
Let πn , {πi}ni=1 : Xn × H → Yn denote a memoryless
hypothesis-aware management policy over an n-slot time
horizon. If πn satisfies the average distortion constraint in
(1), it is denoted by πn(s). When the MU adopts the optimal
memoryless hypothesis-aware policy, the maximum minimal
type II probability of error subject to a type I probability of
error upper bound ε is denoted by

βL(n, ε, s) , max
πn(s)
{β(n, ε, πn(s))}. (11)

We similarly define θL(s) as

θL(s) , inf
k,πk(s)

{
1

k
D(pY k|h0

||pY k|h1
)

}
. (12)

Following similar proof steps as in Theorem 1, we can
specify the asymptotic exponent of the maximum minimal
type II probability of error by the Kullback-Leibler divergence
rate θL(s) when the MU adopts the optimal memoryless
hypothesis-aware policy.

Corollary 2. Given s > 0,

lim
ε→1

lim
n→∞

1

n
log

1

βL(n, ε, s)
= θL(s). (13)

We next show that the asymptotic exponent of the maximum
minimal type II probability of error can also be characterized
by a single-letter Kullback-Leibler divergence. To this end,
we first define the following single-letter Kullback-Leibler di-
vergence function of single-slot average distortion constraints
under both hypotheses.

Given s̄, s̃ > 0, we define φ(s̄, s̃) as

φ(s̄, s̃) , min
(pY |X,h0

,pY |X,h1
)∈P(s̄,s̃)

{
D(pY |h0

||pY |h1
)
}
, (14)

where the minimization is over the convex domain

P(s̄, s̃) ,

{
(pY |X,h0

, pY |X,h1
)

∣∣∣∣∣E[d(X,Y )|h0] ≤ s̄
E[d(X,Y )|h1] ≤ s̃

}
.

In the definition of P(s̄, s̃), E[d(X,Y )|h0] ≤ s̄ denotes
the single-slot average distortion constraint under hypothesis
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h0; and E[d(X,Y )|h1] ≤ s̃ denotes the single-slot average
distortion constraint under hypothesis h1.

Lemma 2. φ(s̄, s̃) is a non-increasing, continuous, and jointly
convex function for s̄ > 0 and s̃ > 0.

Proof: The non-increasing property of φ(s̄, s̃) is self-
evident. On the two-dimensional convex open set of s̄ > 0,
s̃ > 0, its continuity will follow from the convexity [38].
Therefore, we only prove its convexity here. Assume that
(p

(1)
Y |X,h0

, p
(1)
Y |X,h1

) leads to φ(s̄1, s̃1) = D(p
(1)
Y |h0
||p(1)

Y |h1
) and

(p
(2)
Y |X,h0

, p
(2)
Y |X,h1

) leads to φ(s̄2, s̃2) = D(p
(2)
Y |h0
||p(2)

Y |h1
). For

all 0 ≤ λ ≤ 1,

λφ(s̄1, s̃1) + (1− λ)φ(s̄2, s̃2)

=λD(p
(1)
Y |h0
||p(1)

Y |h1
) + (1− λ)D(p

(2)
Y |h0
||p(2)

Y |h1
)

≥D(λp
(1)
Y |h0

+ (1− λ)p
(2)
Y |h0
||λp(1)

Y |h1
+ (1− λ)p

(2)
Y |h1

)

≥φ(λs̄1 + (1− λ)s̄2, λs̃1 + (1− λ)s̃2),

where the first inequality follows from the convexity of D(·||·);
and the second follows from the definition of φ(s̄, s̃) in (14).

Theorem 2. Given s > 0,

θL(s) = φ(s, s). (15)

Proof: For any k ∈ Z+, πk(s), and the resulting pY k|h0
,

pY k|h1
, we have

1

k
D
(
pY k|h0

||pY k|h1

)
(a)
=

1

k

k∑
i=1

D
(
pYi|h0

||pYi|h1

)
(b)

≥ 1

k

k∑
i=1

φ (E[d(Xi, Yi)|h0],E[d(Xi, Yi)|h1])

(c)

≥φ

(
E

[
1

k

k∑
i=1

d(Xi, Yi)

∣∣∣∣∣h0

]
,E

[
1

k

k∑
i=1

d(Xi, Yi)

∣∣∣∣∣h1

])
(d)

≥φ(s, s),

where (a) follows since the policy πk(s) leads to pY k|hj
=∏k

i=1 pYi|hj
for j = 0, 1; (b) follows from the definition of

φ(s̄, s̃); (c) and (d) follow from the convexity and the non-
increasing property of φ(s̄, s̃), respectively.

Therefore, we have

θL(s) = inf
k,πk(s)

{
1

k
D(pY k|h0

||pY k|h1
)

}
≥ φ(s, s). (16)

The proof of the opposite direction is straightforward. Let
(p∗Y |X,h0

, p∗Y |X,h1
) be the optimizer which achieves φ(s, s).

It can be seen as a single-slot memoryless hypothesis-aware
policy π1(s). From the definition of θL(s) in (12), it follows
that

θL(s) ≤ φ(s, s). (17)

Alternatively, the inequality (17) follows since φ(s, s) is the
asymptotic exponent of the minimal type II probability of error

achieved by a memoryless hypothesis-aware policy by using
the single-slot policy (p∗Y |X,h0

, p∗Y |X,h1
) at all slots.

The inequalities (16) and (17) jointly lead to Theorem 2.

Remark 3. Given s > 0, the asymptotic exponent
of the maximum minimal type II probability of error,
limε→1 limn→∞

1
n log 1

βL(n,ε,s) , can be achieved by a memory-
less hypothesis-aware policy which uses the single-slot policy
(p∗Y |X,h0

, p∗Y |X,h1
) corresponding to the optimizer of φ(s, s)

at all time slots.

B. Hypothesis-Unaware Policy with Memory

We now consider an MU which does not have access to
the true hypothesis but has a large memory storage and a
powerful processing capability. At time slot i, the MU follows
a hypothesis-unaware management policy with memory, de-
noted by ρi, to determine the random adversarial observation
Yi based on the data sequence xi and the past adversarial
observations yi−1 as Yi = ρi(x

i, yi−1). Let ρn , {ρi}ni=1 :
Xn → Yn denote a hypothesis-unaware management policy
with memory over an n-slot time horizon. If ρn satisfies the
average distortion constraint in (1), it is denoted by ρn(s).
When the MU uses the optimal privacy-preserving hypothesis-
unaware policy with memory, the achieved maximum minimal
type II probability of error subject to a type I probability of
error upper bound ε is denoted by

βM(n, ε, s) , max
ρn(s)
{β(n, ε, ρn(s))}. (18)

Similarly, we define a Kullback-Leibler divergence rate
θM(s) as

θM(s) , inf
k,ρk(s)

{
1

k
D(pY k|h0

||pY k|h1
)

}
. (19)

As specified in the following corollary, the asymptotic expo-
nent of the maximum minimal type II probability of error can
be characterized by the Kullback-Leibler divergence rate θM(s)
when the MU uses the optimal privacy-preserving hypothesis-
unaware policy with memory.

Corollary 3. Given s > 0,

lim
ε→1

lim
n→∞

1

n
log

1

βM(n, ε, s)
= θM(s). (20)

Compared with the memoryless hypothesis-aware policy,
the hypothesis-unaware policy with memory has all the past
data and adversarial observations while it does not know
the true hypothesis. We next compare the asymptotic privacy
performances of the two policies.

Theorem 3. Given s > 0,

θM(s) ≤ θL(s) = φ(s, s). (21)

To prove Theorem 3, we will construct a two-phase
hypothesis-unaware policy with memory, which first learns
the hypothesis, and then we bound its privacy performance
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by θM(s) and φ(s, s). The complete proof is given in the
appendix.

Remark 4. The optimal privacy-preserving memoryless
hypothesis-aware policy cannot outperform the optimal
privacy-preserving hypothesis-unaware policy with memory.
This is because the MU can learn the hypothesis with an arbi-
trarily small probability of error after observing a sufficiently
long sequence of the original data.

IV. PRIVACY-PRESERVING DATA MANAGEMENT AGAINST
A BAYESIAN HYPOTHESIS TESTING ADVERSARY

In this section, we consider an adversarial Bayesian hypoth-
esis testing formulation for the privacy problem. A particular
Bayesian risk used here is the error probability of the AD.
Thus, the minimal error probability of the AD measures
the privacy leakage. The asymptotic privacy performance
is studied under the adversarial Bayesian hypothesis testing
framework.

The informed AD is assumed to use the optimal hypothesis
testing strategy to achieve the minimal error probability as

α(n, γn(s)) , min
An⊆Yn

{
p0 · pY n|h0

(Acn) + p1 · pY n|h1
(An)

}
,

where p0, p1 denote the prior probabilities of hypotheses h0,
h1; and An, Acn denote the decision regions for h0, h1 of the
AD. Correspondingly, the MU uses the optimal management
policy that maximizes the minimal error probability of the AD
as

α(n, s) , max
γn(s)

{α(n, γn(s))} . (22)

We will characterize the optimal privacy performance in the
asymptotic regime as n → ∞ by focusing on the asymptotic
exponent of the maximum minimal error probability. To this
end, we first introduce the Chernoff information. The Chernoff
information of a probability distribution P (Z) from another
distribution Q(Z) is defined as

C(P (Z), Q(Z)) , max
0≤τ≤1

{Cτ (P (Z), Q(Z))} ,

where

Cτ (P (Z), Q(Z)) , − log

(∑
z∈Z

P τ (z)Q1−τ (z)

)
.

The convexity of Chernoff information is shown in the fol-
lowing propositions.

Proposition 1. Given 0 ≤ τ ≤ 1, the function
Cτ (P (Z), Q(Z)) is jointly convex in P (Z) and Q(Z).

Proof: Given 0 ≤ τ < 1, the function Cτ (P (Z), Q(Z))
is related to the Rényi divergence Dτ (P (Z)||Q(Z)) as

Cτ (P (Z), Q(Z)) = (1− τ) · Dτ (P (Z)||Q(Z)).

The convexity of Cτ (P (Z), Q(Z)) follows from the convexity
of Rényi divergence [39, Theorem 11] since 1−τ is a positive
scalar.

If τ = 1, we have

C1(P (Z), Q(Z)) =− log (P ({z ∈ Z|Q(z) > 0}))
=D0(Q(Z)||P (Z)).

In this case, the convexity of C1(P (Z), Q(Z)) follows from
the convexity of D0(Q(Z)||P (Z)).

Proposition 2. The Chernoff information C(P (Z), Q(Z)) is
jointly convex in P (Z) and Q(Z).

The convexity of C(P (Z), Q(Z)) follows from the convex-
ity of Cτ (P (Z), Q(Z)) for all 0 ≤ τ ≤ 1 and the fact that
pointwise maximum preserves convexity [40, Section 3.2.3].

We define the Chernoff information rate µ(s) as follows:

µ(s) , inf
k,γk(s)

{
1

k
C(pY k|h0

, pY k|h1
)

}
. (23)

The following lemma shows that the infimum over k ∈ Z+ in
the definition of the Chernoff information rate µ(s) is taken
at the limit.

Lemma 3.

µ(s) = lim
k→∞

inf
γk(s)

{
1

k
C(pY k|h0

, pY k|h1
)

}
.

Proof: Given any n, l ∈ Z+, as defined before,
(γn(s), γl(s)) is a management policy satisfying the average
distortion constraint over an (n+l)-slot time horizon. We have

inf
γn+l(s)

{
C(pY n+l|h0

, pY n+l|h1
)
}

≤ inf
(γn(s),γl(s))

{
C(pY n+l|h0

, pY n+l|h1
)
}

(a)
= inf

(γn(s),γl(s))
{ max

0≤τ≤1
{Cτ (pY n|h0

, pY n|h1
)

+ Cτ (pY l|h0
, pY l|h1

)}}
≤ inf

(γn(s),γl(s))
{ max

0≤κ≤1
{Cκ(pY n|h0

, pY n|h1
)}

+ max
0≤σ≤1

{Cσ(pY l|h0
, pY l|h1

)}}

= inf
γn(s)

{
C(pY n|h0

, pY n|h1
)
}

+ inf
γl(s)

{
C(pY l|h0

, pY l|h1
)
}
,

where (a) follows from the independence property pY n+l|hj
=

pY n|hj
· pY l|hj

, j = 0, 1, satisfied by the man-
agement policy (γn(s), γl(s)). Therefore, the sequence{

infγk(s)

{
C(pY k|h0

, pY k|h1
)
}}

k∈Z+
is subadditive. Then,

Lemma 3 follows from Fekete’s Lemma.
Next, we show that the asymptotic exponent of the maxi-

mum minimal error probability is characterized by the Cher-
noff information rate µ(s).

Theorem 4. Given s > 0,

lim
n→∞

1

n
log

1

α(n, s)
= µ(s). (24)

Proof: Given any k ∈ Z+, γk(s), and the resulting
pY k|h0

, pY k|h1
, as defined before, γkl(s) is a management

policy which repeatedly uses γk(s) for l times and satisfies
the average distortion constraint over a kl-slot time horizon.
From the optimality in the definition (22) and the theorem [36,
Theorem 11.9.1], it follows that

lim sup
l→∞

1

kl
log

1

α(kl, s)
≤ lim
l→∞

1

kl
log

1

α(kl, γkl(s))

=
1

k
C(pY k|h0

, pY k|h1
).
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For k(l − 1) < n ≤ kl, we have

α(kl, s) ≤ α(n, s) ≤ α(k(l − 1), s).

It follows that

lim sup
n→∞

1

n
log

1

α(n, s)
≤ lim sup

l→∞

kl

k(l − 1)

1

kl
log

1

α(kl, s)

= lim sup
l→∞

1

kl
log

1

α(kl, s)

≤ 1

k
C(pY k|h0

, pY k|h1
),

for all k ∈ Z+ and γk(s). Therefore, we have the upper bound

lim sup
n→∞

1

n
log

1

α(n, s)
≤ µ(s). (25)

Given any n ∈ Z+, suppose that γn∗(s) leads to p∗Y n|h0
,

p∗Y n|h1
, and achieves α(n, s). An optimal hypothesis testing

strategy of the AD is a deterministic likelihood-ratio test [41]
given by

A∗n =

{
yn

∣∣∣∣∣p
∗
Y n|h0

(yn)

p∗Y n|h1
(yn)

≥ p1

p0

}
.

Based on the optimal strategy of the AD, we can then rewrite
the maximum minimal error probability α(n, s), and derive
upper bounds on it as follows. For all 0 ≤ τ ≤ 1,

α(n, s) =
∑
Yn

min
{
p0 · p∗Y n|h0

(yn), p1 · p∗Y n|h1
(yn)

}
(a)

≤
∑
Yn

pτ0 · p∗τY n|h0
(yn) · p1−τ

1 · p∗1−τY n|h1
(yn)

≤
∑
Yn

p∗τY n|h0
(yn)p∗1−τY n|h1

(yn),

where the inequality (a) follows from [36, (11.244)]. There-
fore, we have

1

n
log

1

α(n, s)

≥ 1

n
max

0≤τ≤1

{
− log

(∑
Yn

p∗τY n|h0
(yn)p∗1−τY n|h1

(yn)

)}

=
1

n
C(p∗Y n|h0

, p∗Y n|h1
)

≥ inf
γn(s)

{
1

n
C(pY n|h0

, pY n|h1
)

}
.

In the asymptotic regime, as n→∞, we have

lim inf
n→∞

1

n
log

1

α(n, s)
≥ lim
n→∞

inf
γn(s)

{
1

n
C(pY n|h0

, pY n|h1
)

}
=µ(s),

(26)
where the final equality follows from Lemma 3.

The inequalities (25) and (26) jointly lead to Theorem 4.

Remark 5. Over a finite time horizon, the prior distribution
of the hypothesis determines the test threshold of the optimal
likelihood-ratio test of the AD, and further determines the
exponent of the maximum minimal error probability. However,
as shown in Theorem 4, the asymptotic exponent of the

maximum minimal error probability does not depend on the
prior distribution.

In the following, we characterize the privacy-preserving
managements for the two particular cases, the memoryless
hypothesis-aware policy and the hypothesis-unaware policy
with memory, under the adversarial Bayesian hypothesis test-
ing framework.

A. Memoryless Hypothesis-Aware Policy

When the MU uses the optimal memoryless hypothesis-
aware policy πn∗(s) against the adversarial Bayesian hypoth-
esis test, the achieved maximum minimal error probability is
denoted by

αL(n, s) , max
πn(s)
{α(n, πn(s))}. (27)

We similarly define µL(s) as

µL(s) , inf
k,πk(s)

{
1

k
C(pY k|h0

, pY k|h1
)

}
. (28)

Following similar proof steps as in Theorem 4, we can show
that the asymptotic exponent of the maximum minimal error
probability is specified by the Chernoff information rate µL(s)
when the MU uses the optimal privacy-preserving memoryless
hypothesis-aware policy.

Corollary 4. Given s > 0,

lim
n→∞

1

n
log

1

αL(n, s)
= µL(s). (29)

We next define two single-letter expressions, which charac-
terize upper and lower bounds on the asymptotic exponent of
the maximum minimal error probability. Given s̄, s̃ > 0 and
0 ≤ τ ≤ 1, we define

ντ (s̄, s̃) , min
(pY |X,h0

,pY |X,h1
)∈P(s̄,s̃)

{
Cτ (pY |h0

, pY |h1
)
}
,

(30)
and define the single-letter Chernoff information as

ν(s̄, s̃) , min
(pY |X,h0

,pY |X,h1
)∈P(s̄,s̃)

{
C(pY |h0

, pY |h1
)
}
. (31)

Lemma 4. Given 0 ≤ τ ≤ 1, ντ (s̄, s̃) is a non-increasing and
jointly convex function for s̄ > 0 and s̃ > 0.

Lemma 5. ν(s̄, s̃) is a non-increasing, continuous, and jointly
convex function for s̄ > 0 and s̃ > 0.

The proofs of Lemmas 4 and 5 follow from the same
arguments as in the proof of Lemma 2, and are therefore
omitted.

Lemma 6. Given s > 0, we have

max
0≤τ≤1

{ντ (s, s)} ≤ µL(s) ≤ ν(s, s). (32)
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Proof: Given any 0 ≤ τ ≤ 1, k ∈ Z+, memory-
less hypothesis-aware policy πk(s), and the resulting pY k|h0

,
pY k|h1

, we have

1

k
C(pY k|h0

, pY k|h1
)

=
1

k
max

0≤κ≤1

{
Cκ
(
pY k|h0

, pY k|h1

)}
≥1

k
Cτ
(
pY k|h0

, pY k|h1

)
(a)
=

1

k

k∑
i=1

Cτ
(
pYi|h0

, pYi|h1

)
(b)

≥ 1

k

k∑
i=1

ντ (E[d(Xi, Yi)|h0],E[d(Xi, Yi)|h1])

(c)

≥ντ

(
E

[
1

k

k∑
i=1

d(Xi, Yi)

∣∣∣∣∣h0

]
,E

[
1

k

k∑
i=1

d(Xi, Yi)

∣∣∣∣∣h1

])
(d)

≥ντ (s, s),
(33)

where (a) follows since the policy πk(s) leads to pY k|hj
=∏k

i=1 pYi|hj
for j = 0, 1; (b) follows from the definition of

ντ (s̄, s̃); (c) follows from the convexity of ντ (s̄, s̃); and finally
(d) follows from the non-increasing property of ντ (s̄, s̃).

For any k ∈ Z+, πk(s), and the resulting pY k|h0
, pY k|h1

,
we have

1

k
C(pY k|h0

, pY k|h1
) ≥ max

0≤τ≤1
{ντ (s, s)} ,

since the inequality (33) holds for all 0 ≤ τ ≤ 1. It further
follows that

µL(s) = inf
k,πk(s)

{
1

k
C(pY k|h0

, pY k|h1
)

}
≥ max

0≤τ≤1
{ντ (s, s)} .

The other inequality µL(s) ≤ ν(s, s) in (32) follows from
the definitions of µL(s) and ν(s, s).

Under the adversarial Bayesian hypothesis test setting, we
have obtained a max min single-letter lower bound and a
min max single-letter upper bound on the asymptotic exponent
of the maximum minimal error probability when we focus
on memoryless hypothesis-aware policy. In the following
theorem, we show that the two bounds match each other,
and the asymptotic exponent of the maximum minimal error
probability can be specified by the single-letter Chernoff
information ν(s, s).

Theorem 5. Given s > 0,

µL(s) = ν(s, s). (34)

Proof: Given s > 0, the lower and upper bounds derived
in Lemma 6 can be specified by a max min expression and a
min max expression as follows:

max
0≤τ≤1

{ντ (s, s)}

= max
0≤τ≤1

{
min

(pY |X,h0
,pY |X,h1

)∈P(s,s)

{
Cτ (pY |h0

, pY |h1
)
}}

,

ν(s, s)

= min
(pY |X,h0

,pY |X,h1
)∈P(s,s)

{
max

0≤τ≤1

{
Cτ (pY |h0

, pY |h1
)
}}

.

If τ is fixed, Cτ (pY |h0
, pY |h1

) is a jointly convex function
in pY |X,h0

and pY |X,h1
, which follows from the convexity of

Cτ (·, ·) shown in Proposition 1 and the convexity-preserving
composition rule in [40, Section 3.2.4]. If pY |X,h0

and pY |X,h1

are fixed, pY |h0
and pY |h1

are fixed, and Cτ (pY |h0
, pY |h1

) is
a concave function in τ , which follows from the result [39,
Corollary 2].

From von Neumann’s Minimax Theorem [42], it follows
that

max
0≤τ≤1

{ντ (s, s)} = ν(s, s). (35)

Lemma 6 and (35) jointly lead to Theorem 5.

Remark 6. Given s > 0, the asymptotic exponent of the maxi-
mum minimal error probability, limn→∞

1
n log 1

αL(n,s) , can be
achieved by a memoryless hypothesis-aware policy which uses
the single-slot policy (p∗Y |X,h0

, p∗Y |X,h1
) corresponding to the

optimizer of ν(s, s) at all time slots.

B. Hypothesis-Unaware Policy with Memory

When the MU uses the optimal hypothesis-unaware policy
with memory, the achieved maximum minimal error probabil-
ity is denoted by

αM(n, s) , max
ρn(s)

{α(n, ρn(s))} . (36)

We define the Chernoff information rate µM(s) as

µM(s) , inf
k,ρk(s)

{
1

k
C
(
pY k|h0

, pY k|h1

)}
, (37)

which characterizes the asymptotic exponent of the maximum
minimal error probability as shown in the following corollary.

Corollary 5. Given s > 0,

lim
n→∞

1

n
log

1

αM(n, s)
= µM(s). (38)

Similar to the adversarial Neyman-Pearson hypothesis test-
ing case, the following theorem shows that the optimal
memoryless hypothesis-aware policy cannot outperform the
optimal hypothesis-unaware policy with memory against the
adversarial Bayesian hypothesis test.

Theorem 6. Given s > 0,

µM(s) ≤ µL(s) = ν(s, s). (39)

The proof of Theorem 6 follows similarly to Theorem 3.
We can construct a two-phase hypothesis-unaware policy with
memory, which first learns the hypothesis. Then, we bound
its privacy performance with µM(s) and ν(s, s). The complete
proof is given in the appendix.
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Fig. 2. The smart meter privacy problem in the presence of a renewable
energy source (RES).

V. APPLICATION TO SMART METER PRIVACY PROBLEM

In this section, we consider an application of the theoretical
framework we have introduced above to the smart meter
privacy problem.

A. Smart Meter Privacy Model

The considered smart meter privacy problem is shown in
Fig. 2. The i.i.d. data Xi denotes the non-negative energy
demand at time slot i, from a finite energy demand alphabet
X . The binary hypothesis represents the private user behavior,
e.g., the user is at home or not, or a particular appliance
is being used or not. Assuming that the EP is an AD, the
adversarial observation Yi corresponds in this setting to the
non-negative meter reading, or equivalently the energy supply
from the EP, at time slot i. The finite energy supply alphabet
satisfies Y ⊇ X .

The energy management unit (EMU) is a processor run by
the user that manages the energy supplies to satisfy the energy
demand. At every time slot, the EMU follows an instantaneous
energy management policy to determine Yi. It is assumed that
the rest of the energy demand, Xi − Yi, is satisfied from
the renewable energy source (RES). We impose the following
instantaneous constraint:

pYi|Xi
(yi|xi) = 0, if yi > xi, (40)

i.e., the RES cannot be charged with energy from the EP. We
assume that the RES has a positive average energy genera-
tion rate s and is equipped with a sufficiently large energy
storage. Accordingly, the following average energy constraint
is imposed on the energy management policy over an n-slot
time horizon for the long-term availability of renewable energy
supply:

E

[
1

n

n∑
i=1

(Xi − Yi)

∣∣∣∣∣hj
]
≤ s, j = 0, 1. (41)

The assumptions on the informed AD and the adversarial
hypothesis test are the same as the general problem. Here the
EP is considered as an AD, who has the authority to access
the meter readings of energy supplies from the EP, and has
all the statistical knowledge, but does not have access to the
amount of energy supply from the RES, which is available
locally to the user.

The privacy-preserving energy management is to modify the
energy demand sequence {Xi} into an energy supply sequence
{Yi} by exploiting the RES in an online manner to prevent
the EP from correctly inferring the user behavior.

B. Privacy-Preserving Energy Management

Note that an energy management policy satisfying (40) and
(41) will satisfy the constraint (1) in the general problem.
Therefore, the obtained theoretic results of asymptotic privacy
performance in the general problem can be directly applied
to the smart meter privacy problem. Here, we will focus on
the memoryless hypothesis-aware energy management policy,
which can be easily designed and implemented.

Under the adversarial Neyman-Pearson hypothesis test, and
given a renewable energy generation rate s > 0, it follows
from Corollary 2 and Theorem 2 that the exponent of the
maximum minimal type II probability of error can be charac-
terized by

φ(s, s) = min
(pY |X,h0

,pY |X,h1
)∈PE(s,s)

{
D(pY |h0

||pY |h1
)
}
, (42)

with the convex set

PE(s, s)

,

(pY |X,h0
, pY |X,h1

)

∣∣∣∣∣∣∣∣∣
E[X − Y |h0] ≤ s
E[X − Y |h1] ≤ s

pY |X,h0
(y|x) = 0, if y > x

pY |X,h1
(y|x) = 0, if y > x

 .

While solving the optimization problem in (42) leads to the
optimal privacy performance, the energy supply alphabet Y
can be very large, which means a highly complex optimization
problem. On the other hand, the energy demand alphabet X is
determined by a number of operation modes of the appliances
and is typically finite. We show in the next theorem that the
alphabet Y can be limited to the alphabet X . This result can
greatly simplify the numerical evaluation of φ(s, s) in the
considered smart meter privacy context.

Theorem 7. The energy supply alphabet can be limited to the
energy demand alphabet under both hypotheses without loss
of optimality for the evaluation of φ(s, s).

Proof: Suppose that φ(s, s) = D(p∗Y |h0
||p∗Y |h1

) is
achieved by p∗Y |X,h0

and p∗Y |X,h1
. Let X = {x(1), . . . , x(|X |)}

with x(i) < x(k) if i < k. Consider the following quantization
operation which maps y to ŷ:

ŷ =

{
x(i), if y ∈ (x(i−1), x(i)], i ≥ 2

x(1), if y ∈ [0, x(1)]
.

It can be verified that pŶ |X,h0
, pŶ |X,h1

satisfy the constraints
in the definition of PE(s, s). From the optimality in the
definition of φ(s, s), we have

φ(s, s) = D(p∗Y |h0
||p∗Y |h1

) ≤ D(pŶ |h0
||pŶ |h1

).

In addition, due to the data processing inequality of Kullback-
Leibler divergence [39, Theorem 9], we have

φ(s, s) = D(p∗Y |h0
||p∗Y |h1

) ≥ D(pŶ |h0
||pŶ |h1

).

Therefore,
φ(s, s) = D(pŶ |h0

||pŶ |h1
),

and the energy supply alphabet under both hypotheses can be
constrained to X without loss of optimality.
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Under the adversarial Bayesian hypothesis test, and given
a renewable energy generation rate s > 0, it follows from
Corollary 4 and Theorem 5 that the exponent of the maximum
minimal error probability can be characterized by

ν(s, s) = min
(pY |X,h0

,pY |X,h1
)∈PE(s,s)

{
C(pY |h0

, pY |h1
)
}
. (43)

Similarly, the following theorem shows that the supply alpha-
bet Y can be limited to the demand alphabet X without loss
of optimality for the numerical evaluation of ν(s, s) in the
considered smart meter privacy context.

Theorem 8. The energy supply alphabet can be limited to the
energy demand alphabet under both hypotheses without loss
of optimality for the evaluation of ν(s, s).

Proof: Suppose that ν(s, s) = C(p∗Y |h0
, p∗Y |h1

) is
achieved by p∗Y |X,h0

and p∗Y |X,h1
. We use the same quanti-

zation operation in the proof of Theorem 7 to map y to ŷ.
Therefore, pŶ |X,h0

and pŶ |X,h1
satisfy the constraints in the

definition of PE(s, s). From the optimality in the definition of
ν(s, s), it follows that

ν(s, s) = C(p∗Y |h0
, p∗Y |h1

) ≤ C(pŶ |h0
, pŶ |h1

).

In addition, from the data processing inequality of Rényi
divergence [39, Theorem 9], we have

C(p∗Y |h0
, p∗Y |h1

)

= max
0≤τ≤1

{
Cτ (p∗Y |h0

, p∗Y |h1
)
}

= max{ max
0≤τ<1

{(1− τ)Dτ (p∗Y |h0
||p∗Y |h1

)},D0(p∗Y |h1
||p∗Y |h0

)}

≥max{ max
0≤τ<1

{(1− τ)Dτ (pŶ |h0
||pŶ |h1

)},D0(pŶ |h1
||pŶ |h0

)}

= max
0≤τ≤1

{
Cτ (pŶ |h0

, pŶ |h1
)
}

=C(pŶ |h0
, pŶ |h1

).

Therefore,
ν(s, s) = C(pŶ |h0

, pŶ |h1
),

and the energy supply alphabet under both hypotheses can be
constrained to X without loss of optimality.

We also highlight here the connections and differences of
our result with other smart meter privacy literature. While
Kullback-Leibler divergence can be considered as yet another
statistical similarity measure, our formulation here provides an
operational meaning to its use as the privacy measure. This is
in contrast to some of the other privacy measures considered
in the literature, such as the mutual information used in [7],
[31], [32], which are mainly proposed as distances between the
energy demand data and the smart meter reading. A related
work is [13] in the context of smart meter privacy, which uses
the Fisher information as a privacy measure. The Fisher infor-
mation is an approximation of the Kullback-Leibler divergence
between two similar probability distributions [43]; therefore,
the two privacy measures are closely related. But the authors
in [13] focus on a parameter estimation problem, rather than
a classification problem in our work, and exploit an energy
storage device to provide privacy. It is difficult to compare
our result with [7], [13], [31], [32] because of their different
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Fig. 3. Asymptotic privacy performance φ(s, s) for a binary demand model
with different values of p̄ and p̃.
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Fig. 4. Asymptotic privacy performance ν(s, s) for a binary demand model
with different values of p̄ and p̃.

problem settings, e.g., there is only one energy demand profile
in [7], [13], [31], [32] while there are two energy demand
profiles in our work. The connection between differential
privacy and the minimum mutual information leakage problem
has been revealed in [44]. The differential privacy model in [9],
[10] considers the aggregation of meter readings rather than
a sequence of meter readings in our work; and furthermore,
the constraint of non-negative renewable energy supply in
our work cannot provide the Laplace noise often used in the
differential privacy model.

C. Binary Demand Example

We first present a simple example with binary energy
demand alphabet1 X = {0, 2} for the purpose to numerically
illustrate the main results in this paper. Based on Theorem 7
and Theorem 8, it is sufficient to consider a binary supply
alphabet Y = {0, 2}, as well. Denote pX|h0

(0) by p̄ and
pX|h1

(0) by p̃.
Under the adversarial Neyman-Pearson test setting and

using the optimal memoryless hypothesis-aware policy, the
asymptotic privacy performance φ(s, s) is shown in Fig. 3 for
different values of p̄ and p̃. Confirming the claim in Lemma 2,
it can be observed that φ(s, s) is convex and non-increasing.

1Certain appliances have binary energy demands, e.g., a fridge with “on”
and “sleep” modes.
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TABLE I
OPERATION MODES UNDER EACH HYPOTHESIS.

h

pX|h x [W]
0 200 500 1200

h0 (type A) 0.2528 0.3676 0 0.3796
h1 (type B) 0.1599 0.0579 0.2318 0.5504

When s = 0, Xi = Yi for all i ∈ Z+ under both hypotheses,
and φ(0, 0) = D(pX|h0

||pX|h1
). Intuitively, it is more difficult

for the AD to identify the hypotheses when they lead to more
similar energy demand profiles. It can be observed in Fig. 3
that φ(s, s) decreases as p̃ (resp. p̄) gets closer to the fixed p̄
(resp. p̃). Another interesting observation is that φ(s, s) curves
for different settings of energy demand statistics (p̄, p̃) might
intersect. For instance, to achieve the privacy performance of
0.6, a lower renewable energy generation rate is required for
(p̄ = 0.2, p̃ = 0.75) than that for (p̄ = 0.75, p̃ = 0.2); while
to achieve the privacy performance of 0.3, a higher renewable
energy generation rate is required for (p̄ = 0.2, p̃ = 0.75) than
that for (p̄ = 0.75, p̃ = 0.2).

Under the adversarial Bayesian hypothesis test setting and
using the optimal memoryless hypothesis-aware policy, the
asymptotic privacy performance ν(s, s) is shown in Fig. 4
for different values of p̄ and p̃. Confirming the claim in
Lemma 5, the asymptotic privacy performance ν(s, s) is a
convex and non-increasing function of s. From the same
argument that more similar energy demand profiles make the
AD more difficult to identify the hypotheses, it follows that
ν(s, s) decreases as p̃ gets closer to the fixed p̄. Note that the
“opposite” settings, (p̄ = 0.8, p̃ = 0.2), (p̄ = 0.75, p̃ = 0.2),
and (p̄ = 0.7, p̃ = 0.2), are not presented here since they lead
to the same privacy performances as presented in the figure.

From the numerical results, the renewable energy generation
rate that can guarantee a certain privacy performance can be
determined.

D. Numerical Experiment

Here we present a numerical experiment with energy data
from the REDD dataset [45] to illustrate the practical value of
our theoretic results. We consider a kitchen with a dishwasher,
which can be type A (h0) or type B (h1). From the energy
data, we can identify four operation modes of a dishwasher.
Table I shows the operation modes and the corresponding
statistics obtained through training under the assumption of
i.i.d. energy demands. We consider three renewable energy
generation rates: s = 0, 4000, 5000 [W]. Given a value of
s and under the adversarial Neyman-Pearson test setting, the
optimal memoryless hypothesis-aware policy is implemented
on the real energy demand data under each hypothesis. The
resulting energy supplies under each hypothesis are shown in
Fig. 5. When s = 0 [W], the energy supplies exactly follow
the energy demands and it is easy for the AD to identify the
hypothesis from the energy supply data. When s = 4000 [W],
the optimal policy enforces that every operation mode under
hypothesis h0 and the same operation mode under hypothesis
h1 are statistically similar. When s = 5000 [W], most energy
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Fig. 5. Energy supplies under each hypothesis for different renewable energy
generation rates when the optimal memoryless hypothesis-aware policy is
used.

demands are satisfied from the RES, and it becomes very
difficult for the AD to identify the hypothesis from the energy
supply data.

VI. CONCLUSIONS

We have proposed novel formulations for privacy prob-
lem as adversarial hypothesis tests, where the fully-informed
adversary makes an optimal hypothesis test on the privacy
based on the adversarial observations; and the management
unit manipulates the original data sequence into adversarial
observations under an average distortion constraint to degrade
the adversarial hypothesis testing accuracy. The privacy per-
formance is evaluated by an asymptotic error exponent of the
fully-informed adversary.

In the adversarial Neyman-Pearson hypothesis test setting,
an asymptotically optimal privacy performance is shown to be
characterized by a Kullback-Leibler divergence rate. Focusing
on the worst case scenario, in which the type I probability of
error upper bound approaches one, the asymptotic exponent of
the maximum minimal type II probability of error achieved by
the optimal memoryless hypothesis-aware policy is character-
ized by a single-letter Kullback-Leibler divergence; and it is
also shown that the optimal memoryless hypothesis-aware pol-
icy cannot asymptotically outperform the optimal hypothesis-
unaware policy with memory, since the management unit can
learn the true hypothesis with an arbitrarily small probability
of error from a sufficiently long sequence of original data. In
the adversarial Bayesian hypothesis test setting, the informed
adversary is assumed to have access to the prior knowledge
on the hypotheses, and the privacy leakage is measured by
the minimal error probability of the adversary. Asymptotic
results are derived on the optimal privacy performance similar
to the adversarial Neyman-Pearson hypothesis test setting
by substituting Kullback-Leibler divergence with Chernoff
information. These theoretic results can be directly applied
to the smart meter privacy problem, where the energy supply
alphabet can be constrained to the energy demand alphabet
without loss of optimality for the evaluation of the single-
letter privacy performances in both adversarial hypothesis test
settings.

The asymptotic privacy performances derived in this work
provide fundamental limits on any practical management pol-
icy and they therefore serve as references/benchmarks useful
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for the performance assessment of any practical policy. The
optimal memoryless hypothesis-aware policy is an i.i.d. policy,
which can be easily designed and implemented in practice.

APPENDIX

A. Proof of Theorem 3

Proof: Let o(n) , blog nc, c(n) , o(n) + 1, q(n) , n−
o(n), and dmax , maxx∈X ,y∈Y d(x, y). We choose any δ ∈
(0, s), ω ∈ (0, s), and type I probability of error upper bound
ε′ ∈ (max{0, 1−min{D(pX|h0

||pX|h1
), δ
dmax
}}, 1). Then set

ξ = 1−ε′ and ψ = δ−dmax ·ξ. It can be verified that 0 < ξ <
D(pX|h0

||pX|h1
) and 0 < ψ ≤ δ. We use these parameters

to construct a hypothesis-unaware policy with memory, ρnp ,
over an n-slot time horizon, which consists of two successive
phases.
o(n)-slot learning phase. The goal of the MU is to learn the

true hypothesis at the end of the first phase. To prevent privacy
leakage during the learning phase, identical instantaneous
policies are used at all time slots as:

yi = ρi(xi) = minY, ∀i ≤ o(n), ∀xi ∈ X .

Based on the observations of original data xo(n), the MU
makes a decision Ĥ:

Ĥ =

{
h0, if xo(n) ∈ Ao(n)

ξ (pX|h0
||pX|h1

)

h1, otherwise
,

where Ao(n)
ξ (pX|h0

||pX|h1
) denotes a relative entropy typ-

ical set as defined in [36], and any sequence xo(n) ∈
Ao(n)
ξ (pX|h0

||pX|h1
) satisfies∣∣∣∣∣ 1

o(n)
log

pXo(n)|h0

(
xo(n)

)
pXo(n)|h1

(
xo(n)

) − D(pX|h0
||pX|h1

)

∣∣∣∣∣ ≤ ξ.
The MU can make a wrong decision. Let pē = 1 −
pXo(n)|h0

(Ao(n)
ξ (pX|h0

||pX|h1
)) denote the type I probability

of error and pẽ = pXo(n)|h1
(Ao(n)

ξ (pX|h0
||pX|h1

)) denote the
type II probability of error for the MU.
q(n)-slot privacy-preserving phase. Depending on the deci-

sion Ĥ in the learning phase, identical instantaneous policies
are used at all slots of the second phase as follows.
If Ĥ = h0 (resp. Ĥ = h1) and for all i ∈ {c(n), . . . , n},
ρi : pYi|Xi

corresponds to the optimizer p∗Y |X,h0
(resp.

p∗Y |X,h1
) of φ(s− δ, s− ω).

Next, we check the average distortion constraint. Under
hypothesis h0 (resp. h1), if a correct decision is made at
the end of the learning phase, the instantaneous management
policies used in the privacy-preserving phase guarantee that the
single-slot average distortion upper bound s− δ (resp. s− ω)
is satisfied at all time slots of this phase; otherwise, bounded
violation of the single-slot average distortion constraint might
happen at all time slots of the privacy-preserving phase. When

n is sufficiently large, we have

E

[
1

n

n∑
i=1

d(Xi, Yi)

∣∣∣∣∣h0

]

≤o(n)

n
dmax + E

 1

n

n∑
i=c(n)

d(Xi, Yi)

∣∣∣∣∣∣h0


(a)

≤ o(n)

n
dmax +

q(n)

n
(s− δ + dmax · ξ)

≤s− δ + dmax · ξ +
o(n)

n
dmax

=s− (ψ − o(n)

n
dmax)

(b)

≤s,
and

E

[
1

n

n∑
i=1

d(Xi, Yi)

∣∣∣∣∣h1

]

≤o(n)

n
dmax + E

 1

n

n∑
i=c(n)

d(Xi, Yi)

∣∣∣∣∣∣h1


≤o(n)

n
dmax +

q(n)

n
(s− ω + dmax · pẽ)

(c)

≤s+ dmax · e−o(n)·(D(pX|h0
||pX|h1

)−ξ) +
o(n)

n
dmax − ω︸ ︷︷ ︸

∆(n)

(d)

≤s,

where (a) follows since pē < ξ when o(n) is sufficiently
large [36, Theorem 11.8.2]; (b) follows since ψ− o(n)

n dmax ≥
0 when n is sufficiently large; (c) follows since pẽ <
e−o(n)·(D(pX|h0

||pX|h1
)−ξ) [36, Theorem 11.8.2]; and (d) fol-

lows since ∆(n) ≤ 0 when n is sufficiently large.
Therefore, ρnp is a management policy which satisfies the

average distortion constraint in (1) when n is sufficiently large.
Then, we have

lim inf
n→∞

1

q(n)
log

1

β(n, ε′, ρnp )
≥ lim inf

n→∞

1

n
log

1

β(n, ε′, ρnp )

≥ lim inf
n→∞

1

n
log

1

βM(n, ε′, s)
,

(44)
where the first inequality follows from q(n) ≤ n; and the
second inequality follows since the constructed management
policy ρnp is not necessarily optimal for all sufficiently large
n.

From the point of view of the informed AD, the observations
yo(n) in the learning phase do not reveal any information about
the hypothesis. Therefore, the strategy of the AD only depends
on the observation statistics in the privacy-preserving phase
pY n

c(n)
|h0

and pY n
c(n)
|h1

. Then, the term 1
q(n) log 1

β(n,ε′,ρnp ) in
(44) represents the exponent of the minimal type II probability
of error in the privacy-preserving phase. With the management
policy ρnp specified above, the sequence of adversarial obser-
vations in the privacy-preserving phase is a mixture of the i.i.d.
sequences Y nc(n)|Ĥ = h0, H = h0 and Y nc(n)|Ĥ = h1, H = h0
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under hypothesis h0, or a mixture of the i.i.d. sequences
Y nc(n)|Ĥ = h1, H = h1 and Y nc(n)|Ĥ = h0, H = h1 under
hypothesis h1. The probability distributions are

pY n
c(n)
|h0

(
ync(n)

)
=(1− pē) · pY n

c(n)
|Ĥ=h0,H=h0

(
ync(n)

)
+ pē · pY n

c(n)
|Ĥ=h1,H=h0

(
ync(n)

)
,

pY n
c(n)
|h1

(
ync(n)

)
=(1− pẽ) · pY n

c(n)
|Ĥ=h1,H=h1

(
ync(n)

)
+ pẽ · pY n

c(n)
|Ĥ=h0,H=h1

(
ync(n)

)
.

We define

B(R,n) ,

ync(n)

∣∣∣∣∣∣ 1

q(n)
log

pY n
c(n)
|h0

(
ync(n)

)
pY n

c(n)
|h1

(
ync(n)

) ≤ R
 ,

and
K(R) , lim sup

n→∞
pY n

c(n)
|h0

(B(R,n)) .

Based on the information-spectrum results [46, Theorem 1],
[37, Theorem 4.2.1], we have

sup{R|K(R) ≤ ε′} ≥ lim inf
n→∞

1

q(n)
log

1

β(n, ε′, ρnp )
. (45)

In the asymptotic regime as n → ∞, Y nc(n)|h1 reduces
to the i.i.d. sequence Y nc(n)|Ĥ = h1, H = h1 since
limn→∞ pẽ ≤ limn→∞ e−o(n)·(D(pX|h0

||pX|h1
)−ξ) = 0. Based

on the case study [37, Example 4.2.1], the upper bound
sup{R|K(R) ≤ ε′} is characterized by the Kullback-Leibler
divergences D1 = D(pY |Ĥ=h0,H=h0

||pY |Ĥ=h1,H=h1
) and

D2 = D(pY |Ĥ=h1,H=h0
||pY |Ĥ=h1,H=h1

) as follows.
If D1 ≥ D2, we have

D(pY |Ĥ=h0,H=h0
||pY |Ĥ=h1,H=h1

) ≥ sup{R|K(R) ≤ ε′};

otherwise, since 1− pē > 1− ξ = ε′ as n→∞, we have

D(pY |Ĥ=h0,H=h0
||pY |Ĥ=h1,H=h1

) = sup{R|K(R) ≤ ε′}.

Then, it follows that

φ(s− δ, s− ω) =D(pY |Ĥ=h0,H=h0
||pY |Ĥ=h1,H=h1

)

≥ sup{R|K(R) ≤ ε′}.
(46)

The inequalities (44), (45), and (46) jointly lead to

φ(s− δ, s− ω) ≥ lim inf
n→∞

1

n
log

1

βM(n, ε′, s)
. (47)

Given δ, ω ∈ (0, s), the inequality (47) holds for
all type I probability of error upper bounds ε′ ∈
(max {0, 1−min{D(pX|h0

||pX|h1
), δ
dmax
}}, 1). Therefore,

φ(s− δ, s− ω) ≥ lim
ε→1

lim inf
n→∞

1

n
log

1

βM(n, ε, s)
= θM(s).

(48)
Since the inequality (48) holds for all δ, ω ∈ (0, s), we further
have

φ(s, s) = inf
δ,ω∈(0,s)

{φ(s− δ, s− ω)} ≥ θM(s),

where the equality follows from the non-increasing and con-
tinuous properties of φ(s̄, s̃).

B. Proof of Theorem 6

Proof: Let o(n) , blog nc, c(n) , o(n) + 1, q(n) , n−
o(n), dmax , maxx∈X ,y∈Y d(x, y). We choose any δ ∈ (0, s),
ω ∈ (0, s), and ξ ∈

(
0,min

{
D(pX|h0

||pX|h1
), δ
dmax

})
. Then

set ψ = δ − dmax · ξ. It can be verified that 0 < ψ < δ.
We use these parameters to construct a hypothesis-unaware
management policy with memory, ρnq , over an n-slot time
horizon, which similarly has two phases as ρnp .
o(n)-slot learning phase. This phase is the same as the

learning phase of ρnp : Identical instantaneous privacy-unaware
policies are independently used at all slots and always output
an adversarial observation sequence of minY regardless of
the sequence of original data; and the learning decision at the
end of this phase is Ĥ = 0 if the sequence xo(n) is in the
relative entropy typical set Ao(n)

ξ

(
pX|h0

||pX|h1

)
or is Ĥ = 1

otherwise. Again, we denote the type I probability of learning
error by pē and the type II probability of learning error by pẽ.
q(n)-slot privacy-preserving phase. Depending on the de-

cision Ĥ in the learning phase, identical instantaneous man-
agement policies are used at all slots of the second phase as
follows.
If Ĥ = h0 (resp. Ĥ = h1) and for all i ∈ {c(n), . . . , n},
ρi : pYi|Xi

corresponds to the optimizer p∗Y |X,h0
(resp.

p∗Y |X,h1
) of ν(s− δ, s− ω).

It follows from the same analysis on ρnp that the policy
ρnq satisfies the average distortion constraint in (1) when n is
sufficiently large. Similar to (44), we have

lim inf
n→∞

1

q(n)
log

1

α(n, ρnq )
≥ lim inf

n→∞

1

n
log

1

α(n, ρnq )

≥ lim
n→∞

1

n
log

1

αM(n, s)
= µM(s).

(49)
Since yo(n) in the learning phase is a deterministic sequence

of minY , the strategy of the AD only depends on the obser-
vation statistics in the privacy-preserving phase pY n

c(n)
|h0

and
pY n

c(n)
|h1

. Then, the term 1
q(n) log 1

α(n,ρnq ) in (49) represents
the exponent of the minimal error probability in the privacy-
preserving phase. With the management policy ρnq specified
above, the sequence of adversarial observations in the privacy-
preserving phase is a mixture of the i.i.d. sequences Y nc(n)|Ĥ =

h0, H = h0 with a probability 1−pē and Y nc(n)|Ĥ = h1, H =
h0 with a probability pē under hypothesis h0, or a mixture of
the i.i.d. sequences Y nc(n)|Ĥ = h1, H = h1 with a probability
1−pẽ and Y nc(n)|Ĥ = h0, H = h1 with a probability pẽ under
hypothesis h1. In the asymptotic regime as n→∞, Y nc(n)|h1

can be seen as the i.i.d. sequence Y nc(n)|Ĥ = h1, H = h1 since
limn→∞ pẽ ≤ limn→∞ e−o(n)·(D(pX|h0

||pX|h1
)−ξ) = 0. Then,

we have

lim inf
n→∞

1

q(n)
log

1

α(n, ρnq )

=C(pY |Ĥ=h0,H=h0
, pY |Ĥ=h1,H=h1

) + ∆(ξ)

=ν(s− δ, s− ω) + ∆(ξ),

(50)

where ν(s−δ, s−ω) corresponds to the asymptotic exponent of
the minimal error probability in the privacy-preserving phase
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if pē = 0; and the term ∆(ξ) denotes the impact of the i.i.d.
sequence Y nc(n)|Ĥ = h1, H = h0 with a probability pē under
hypothesis h0. The inequalities (49) and (50) jointly lead to

µM(s) ≤ ν(s− δ, s− ω) + ∆(ξ). (51)

Since lim supn→∞ pē ≤ ξ, the term ∆(ξ) satisfies

lim
ξ→0

∆(ξ) = 0. (52)

Given δ, ω ∈ (0, s), the inequality (51) holds for all ξ ∈(
0,min

{
D(pX|h0

||pX|h1
), δ
dmax

})
. Therefore,

µM(s) ≤ ν(s− δ, s−ω) + lim
ξ→0

∆(ξ) = ν(s− δ, s−ω). (53)

Since (53) holds for all δ, ω ∈ (0, s), we further have

µM(s) ≤ inf
δ,ω∈(0,s)

{ν(s− δ, s− ω)} = ν(s, s), (54)

where the equality follows from the non-increasing and con-
tinuous properties of ν(s̄, s̃).
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[3] D. Rebollo-Monedero, J. Forné, and J. Domingo-Ferrer, “From t-
closeness-like privacy to postrandomization via information theory,”
IEEE Transactions on Knowledge and Data Engineering, vol. 22, no. 11,
pp. 1623–1636, 2010.

[4] F. P. Calmon and N. Fawaz, “Privacy against statistical inference,” in
Proceedings of Allerton 2012, pp. 1401–1408.
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[7] J. Gómez-Vilardebó and D. Gündüz, “Smart meter privacy for multiple
users in the presence of an alternative energy source,” IEEE Transactions
on Information Forensics and Security, vol. 10, no. 1, pp. 132–141, 2015.

[8] I. Issa, S. Kamath, and A. B. Wagner, “An operational measure of
information leakage,” in Proceedings of CISS 2016, pp. 234–239.
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