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Abstract—Delay constrained linear transmission (LT) strate-
gies are considered for the transmission of composite Gaussian
measurements over an additive white Gaussian noise fading
channel under an average power constraint. If the channel state
information (CSI) is known by both the encoder and decoder,
the optimal LT scheme in terms of the average mean-square
error distortion is characterized under a strict delay constraint,
and a graphical interpretation of the optimal power allocation
strategy is presented. Then, for general delay constraints, two
LT strategies are proposed based on the solution to a par-
ticular multiple measurements-parallel channels scenario. It is
shown that the distortion decreases as the delay constraint is
relaxed, and when the delay constraint is completely removed,
both strategies achieve the optimal performance under certain
matching conditions. If the CSI is known only by the decoder, the
optimal LT strategy is derived under a strict delay constraint.
The extension to general delay constraints is elusive. As a first
step towards understanding the structure of the optimal scheme
in this case, it is shown that for the multiple measurements-
parallel channels scenario, any LT scheme that uses only a one-
to-one linear mapping between measurements and channels is
suboptimal in general.

Index Terms—Linear transmission, delay constraint, compos-
ite of Gaussians, fading channel, water filling, wireless sensor
networks.

I. INTRODUCTION

Near real-time monitoring of a physical phenomena is

of great significance to many emerging network applica-

tions, such as monitoring of voltage, current magnitudes,

active/reactive power values in smart grids (SGs) [1], or

temperature and humidity in forest fire detection networks [2].

To this end, wireless sensors are deployed throughout the

physical network and the sensor measurements are delivered

to a control center (CC) over wireless links. For the robust,

reliable and efficient management of the underlying physical

networks, near real-time and accurate reconstruction of the

measurements at the CC becomes necessary. For example, in

conventional state estimation for the electricity grid, measure-

ments are collected once every two to four seconds and the

state is updated once every few minutes [3]. However, more

frequent state measurements and estimations are required for

modern SGs, which inevitably imposes strict delay constraints
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on the transmission of measurements. As a further example, in

forest fire detection networks [4], measurements of smoke and

gas sensors along with camera images are used to detect fire,

and the delay inevitably becomes a major constraint for the

transmission. Thus, zero-delay linear transmission (LT), rather

than advanced compression and channel coding techniques

that span large codewords, is an attractive strategy for the

transmission of sensor measurements in intelligent networks.

This is because LT reduces both the delay and encoding

complexity significantly; and accordingly limits the cost and

energy requirements of the sensors.

LT of Gaussian sources has been extensively studied in

the literature. Goblick showed in [5] that zero-delay LT of

a Gaussian source over an additive white Gaussian noise

(AWGN) channel achieves the optimal mean-square error

(MSE) distortion. In [6], the optimal LT scheme that matches

an r-dimensional Gaussian signal to a k-dimensional AWGN

vector channel is characterized. It is shown that the optimal

LT performance can be achieved by mapping ordered sources

to ordered channels in a one-to-one fashion. LT of a Gaussian

source over a fading AWGN channel is studied in [7]. It is

shown that the optimal LT performance can be achieved by

symbol-by-symbol processing, and increasing the block length

does not provide any gain, as opposed to nonlinear coding

schemes. In [8], LT of noisy vector measurements over a

fading AWGN channel is studied under diagonal and general

observation matrices. LT of vector Gaussian sources over static

and fading multi-antenna channels is studied in [9] and [10],

respectively.

We consider a wireless sensor node that collects measure-

ments from J Gaussian parameters. We discretize time into

time slots (TSs), and assume that the CC asks for a measure-

ment of a particular parameter from the sensor at each TS. The

sensor takes one sample of the requested parameter at each

TS, and transmits these samples to the CC over an AWGN

fading channel under a given delay constraint. Note that, in

contrast to multi-dimensional Gaussian source models studied

in [6], [10], [11], where the sensor has the measurements of

all the J Gaussian parameters at the beginning of a TS, we

assume that only one measurement is taken from the requested

parameter at each TS.

We assume that each measurement must be delivered within

d TSs. Thereby, after each transmission, the CC estimates



the measurement whose deadline is just about to expire. We

assume that the channel gain from the sensor to the CC is

independent and identically distributed (i.i.d.) over TSs. We

consider two different scenarios regarding the channel state

information (CSI) : In the first scenario, the CSI is assumed

to be available to both the encoder and decoder, while in the

second scenario, only the decoder has CSI. Our goal is to

estimate all the requested measurements at the CC within their

delay constraints with the minimum MSE distortion.

We focus explicitly on LT strategies. Assuming that the CSI

is known by both the encoder and decoder, we first derive the

optimal LT strategy under a strict delay constraint (d = 1), and

show that the optimal power allocation and the corresponding

distortion can be interpreted as water-filling reflected on a

reciprocal mirror. Exploiting the results of [6], we also derive

the optimal LT strategy under a strict delay constraint for a

particular scenario in which the sensor transmits the measure-

ment vector over parallel AWGN fading channels at each TS.

Then, building on our previous works [12], [13], and exploiting

the optimal LT strategy derived for multiple measurements-

parallel channels scenario above, we propose two LT strategies

for general delay constraints. In both strategies, measurements

are first collected and stored in a buffer whose size depends on

the delay constraint, and then, are transmitted to the CC over

multiple channel accesses within the delay constraint. The two

strategies consider different measurement selection criterias,

which are used to select the appropriate stored measurement

to be transmitted at each channel access. We then derive the

theoretical lower bound (TLB) and the LT lower bound (LLB)

on the achievable MSE distortion. We characterize the MSE

distortion achieved by the proposed LT schemes, as well as the

TLB and the LLB under various power and delay constraints.

We show that the MSE distortion diminishes as the delay

constraint is relaxed if the sensor is capable of measuring

more than one system parameter, i.e., J > 1. However, if

J = 1, then relaxing the delay constraint does not provide

any improvement in LT performance as argued in [6]. When

the fading channel follows a discrete distribution and the delay

constraint is completely removed, we show that the proposed

LT strategies meet the TLB under certain matching conditions

between the channel states and the paramater variances; and

hence, achieve the optimal performance.

When the CSI is known only by the decoder, we first derive

the optimal LT strategy under a strict delay constraint. Then,

we consider the multiple measurements-parallel channels sce-

nario under a strict delay constraint and J > 1 assumption,

and show that the optimal LT performance cannot be achieved

by an LT scheme that is constrained to use only a one-to-

one linear mapping between measurements and channels, as

opposed to the J = 1 case [7], and the CSI is known by both

the encoder and decoder [6], respectively. Since the optimal LT

strategy is elusive for J > 1, we do not consider LT strategies

for larger delay constraints. Finally, we derive the TLB on the

achievable MSE distortion.

The rest of the paper is structured as follows. The system

model is presented in Section II. In Sections III to V CSI is

assumed at both the encoder and decoder. In Section III, we

study the optimal LT strategy under a strict delay constraint.
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Fig. 1. The illustration of the transmission model from the perspective of the
sensor with multiple channel accesses.

Two LT strategies are proposed for general delay constraints

in Section IV. In Section V, we characterize the TLB and LLB

on the achievable MSE distortion. In Section VI, the optimal

LT strategy is derived under a strict delay constraint along

with the TLB, when the CSI is known only by the decoder.

Section VII presents extensive numerical results, and finally,

Section VIII concludes the paper.

II. SYSTEM MODEL

We consider a CC that monitors the operation of a system

through a wireless sensor (Fig. 1), which is capable of measur-

ing J distinct system parameters. The jth system parameter is

modelled as a zero-mean Gaussian random variable (r.v.) with

variance σ2
j , i.e., N (0, σ2

j ), for j ∈ [1:J ], where [1:J ] denotes

the set {1, 2, . . . , J}. These system parameters are independent

from each other, and their realizations are i.i.d. over time. In

order to monitor the network operation, the CC requests the

measurement of one system parameter from the sensor at each

TS. The index of the requested system parameter at each TS

is a r.v. denoted by M ∈ [1:J ], with distribution pM (m),
which is also i.i.d. over time. Based on these requests, the

sensor takes one measurement of the requested parameter m
at each TS. Thereby, the model is that of a composite source

introduced in Chapter 6 of [14]. The source S can be described

as a composite source comprised of J distinct components

(subsources), each operating independently of the others. In

our model, each component produces data according to a

Gaussian probability distribution P (·|m) = N (0, σ2
m). The

set G of all subsources comprises the composite source. In

our case,

G =
{

N (0, σ2
1),N (0, σ2

2), . . . ,N (0, σ2
J)
}

. (1)

The index of the requested system parameter m gener-

ates the sequence of positions assumed by the switch in

Fig. 1. In our model both the encoder and the decoder

possess the exact knowledge of this sequence. Notice that,

in the particular case in which the encoder and decoder

are uninformed about this sequence, the composite source

is equivalent to a mixture of Gaussian distributions, i.e.,

PS(s) =
∑J

m=1 PM (m)PS|M (s|m).
We assume that the CC imposes a maximum delay con-

straint of d ∈ Z
+ on the measurements, that is, the mea-

surement requested in a TS needs to be transmitted within

the following d TSs; otherwise, it becomes stale. The col-

lected sensor measurements are transmitted to the CC over

a fading channel with zero-mean and unit variance AWGN.



The channel output at TS i is given by yi = hixi + zi,
where xi is the channel input, zi is the additive noise with

Z ∼ N (0, 1), and hi is the fading state of the channel. We

consider a fading channel model, and assume that the fading

coefficient Hi ∈ R is modelled as a r.v. i.i.d. over time with

probability distribution pH(h).

We define ml
i = [mi,mi+1, . . . ,ml] as the sequence of

indices of requested parameters at TSs [i:l] for i ≤ l. The

measurement sequence is defined similarly as sli = [si, . . . , sl],
where the i-th entry si is the measured value of the requested

parameter mi at TS i. Therefore, the sequence sli has inde-

pendent entries, where the i-th entry comes from a Gaussian

distribution with variance σ2
mi

. Note that in our composite

Gaussian measurements model, conditioned on the requested

parameter index, which is known by both the encoder and

decoder, the source samples follow Gaussian distributions with

different variance values.

The channel state and the output sequences at TSs [i:l] are

similarly defined as hl
i = [hi, . . . , hl] and yl

i = [yi, . . . , yl],
respectively. We assume that both the encoder and decoder at

TS i know all the past channel states, hi−1
1 , and the indices

of requested parameters, mi
1, as well as the statistics of the

measured parameters, σ2
m, the parameter requests, pM (m),

and the channel, pH(h). In the first part of the paper we

assume that both the encoder and decoder know the current

channel state, hi. Note that this assumption might be hard to

realize for a fast fading channel model; on the other hand, our

system model can be considered as instances of a slow fading

channel. Typically, there will be a large number of sensors in

the system, and each sensor is going to be scheduled only once

in a while; and hence, each TS in our system model can be

considered as one instance of a slow fading channel when a

particular sensor is scheduled to transmit. Since these instances

are separated from each other due to the transmission of other

sensors, corresponding channel states are modeled as i.i.d., and

are assumed to be known by both the encoder and decoder,

as channel estimation and CSI feedback can be carried out

between two transmissions of the same sensor. In Section VI

we will consider the scenario in which the CSI is known only

by the decoder.

1) Encoding Function: The encoding function f̂i : Ri ×
R

i × R
i → R, maps si1, hi

1, and mi
1 to a channel input xi

at each TS i, i.e., xi = f̂i(s
i
1,h

i
1,m

i
1). An average power

constraint of P is imposed on the encoding function :

P̄ , lim
n→∞

1

n

n
∑

i=1

EM,H,S

[

|Xi|2
]

≤ P,

where EM,H,S [·] denotes the expectation over M , H and S.

For any generic transmission policy, the encoding function f̂i,
at TS i, may consider to use any combination of si1, hi

1, and

mi
1 to generate xi. This gives rise to a time-varying encoding

scheme.

2) Decoding Function: At the end of TS i, the goal of

the CC is to estimate with the minimum MSE distortion, the

measurement si−d+1, which has been requested exactly d− 1
TSs ago, and is about to expire. The decoding function ĝi :
R

i × R
i × R

i → R, estimates ŝi−d+1 based on yi
1, hi

1, and

mi
1, i.e., ŝi−d+1 = ĝi(y

i
1,h

i
1,m

i
1). The MSE distortion is

given by :

D̄ , lim
n→∞

1

n

n
∑

i=d

EM,H,S,Z

[

|Si−d+1 − Ŝi−d+1|2
]

.

The decoding function ĝi, at TS i, reconstructs the measure-

ment using yi
1, hi

1, and mi
1. Hence, similarly to the encoder,

the decoder may be time-varying.

We are interested only in LT policies in which f̂i’s are

restricted to be linear functions of the sensor measurements,

si’s, i.e., f̂i(s
i
1,h

i
1,m

i
1) , fi(h

i
1,m

i
1)s

i
1, where fi(h

i
1,m

i
1) is

a vector. Under this linearity constraint, the optimal estimators

at the receiver, ĝi’s, are also linear functions of the channel

outputs, yi’s, i.e., ĝi(y
i
1,h

i
1,m

i
1) , gi(h

i
1,m

i
1)y

i
1, where

gi(h
i
1,m

i
1) is a vector. Hereafter, we will refer to fi and gi

for the encoding and decoding functions at TS i, respectively.

III. STRICT DELAY CONSTRAINT

We first derive the optimal LT strategy under a strict delay

constraint (d = 1), and characterize the minimum achievable

MSE distortion. In this scenario, optimal LT performance is

achieved by transmitting only the most recent measurement

since all the previous measurements have expired, and trans-

mitting an expired measurement cannot help the estimation of

the current measurement since the measurements are indepen-

dent. Then the encoding function fi(hi,mi) at TS i is a scalar.

Given the encoding function, the decoding function gi(hi,mi)
that minimizes the MSE for Gaussian r.v.s is the linear MMSE

estimator [15], and is also a scalar.

In particular, for a measurement si with variance σ2
mi

, and

channel output yi = hifi(hi,mi)si+ zi at TS i, the decoding

function can be written explicitly as :

gi(hi,mi) =
ES,Z[SiYi]

ES,Z [Y 2
i ]

=
|hi|fi(hi,mi)σ

2
mi

|hi|2fi(hi,mi)2σ2
mi

+ 1
. (2)

In the following lemma we show that there is no loss

of optimality by limiting the encoding function to be time-

invariant.

Lemma 1. Under a strict delay constraint there is no loss

of optimality by considering only time-invariant encoding

functions, i.e., fi(hi,mi) = f(hi,mi) ∀i.
Proof.

D̄ = lim
n→∞

1

n

n
∑

i=1

EM,H,S,Z

[

|Si − Ŝi|2
]

,

= lim
n→∞

1

n

n
∑

i=1

EM,H

[

σ2
m

|h|2fi(h,m)2σ2
m + 1

]

, (3)

≥ EM,H

[

σ2
m

|h|2f(h,m)2σ2
m + 1

]

, (4)

where (3) is the average MSE distortion under a strict

delay constraint (d = 1); and defining f(h,m)2 ,

limn→∞
1
n

n
∑

i=1

fi(h,m)2 such that f(h,m) satisfies the aver-

age power constraint P , (4) follows from the convexity of the
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Fig. 2. Water-filling reflected on a reciprocal mirror.

function EM,H

[

σ2
m

|h|2fi(h,m)2σ2
m+1

]

in terms of fi(h,m)2, and

the equality holds iff fi(h,m) = f(h,m) for ∀i and due to

the strict convexity of the aforementioned function. Thus, the

time-invariant encoding function f(h,m), which is a function

of only h and σ2
m, does not lead to any loss in optimality.

The time-invariant encoding function f(h,m) leads to a

time-invariant decoding function g(h,m). In the rest of the

paper, we will consider time-invariant encoding and decoding

functions without loss of optimality. Then, the MSE dis-

tortion, D̄ = EM,H,S,Z[|S − Ŝ|2], and the average power,

P̄ = EM,H,S[|X |2], can be written explicitly as functions of

h and σ2
m, as follows :

D̄ =

J
∑

m=1

pM (m)

∫

R

σ2
m

|h|2f(h,m)2σ2
m + 1

pH(h)dh, (5)

P̄ =

J
∑

m=1

pM (m)

∫

R

f(h,m)2σ2
mpH(h)dh. (6)

The optimal linear encoding function f∗(h,m) is found as

the solution to the convex optimization problem D̄∗ , min
f

D̄,

subject to the average power constraint P̄ ≤ P . From the

Karush-Kuhn-Tucker (KKT) optimality conditions [16], we

obtain :

f∗(h,m) =

√

[

λ∗

|h|σm

− 1

|h|2σ2
m

]+

, (7)

where λ∗ is the optimal Lagrange multiplier, such that P̄ = P .

The optimal power allocation and the corresponding distor-

tion are given by :

P ∗(h,m) =
σm

|h|

[

λ∗ − 1

|h|σm

]+

, (8)

D∗(h,m) =
σm

|h| min

(

1

λ∗
, |h|σm

)

, (9)

where D̄∗ = EM,H [D∗(h,m)] and EM,H [P ∗(h,m)] = P .

In Fig. 2, we present a graphical interpretation of the optimal

power allocation and the corresponding distortion for J = 2
parameters with variances σ2

1 and σ2
2 , which are requested with

probabilities pM (1), pM (2), respectively. We also consider a

discrete fading channel with three states, where the kth state,

ĥk, is observed with probability pH(ĥk), k = 1, 2, 3. Fig. 2

depicts rectangles that are placed upon a mirror surface and

their reciprocally scaled images below. Rectangles represent

all possible source-channel pairs {σm, ĥk}, where lkm ,
1

|ĥk|σm

and wkm , σm

|ĥk|
indicate the height and width of the

rectangles, respectively. The total power is poured above the

level lkm up to the water level λ∗ across the rectangles placed

upon the mirror. The optimal power allocated to the source-

channel pair {σm, ĥk} is given by the shaded area below

the water level and above lkm. The corresponding distortion

values are found by simply looking at the reciprocally scaled

reflections of the rectangles and the water level on the mirror.

If 1
lkm

> 1
λ∗

, distortion is given by the width wkm times the

reciprocal of the water level 1
λ∗

, and if 1
lkm
≤ 1

λ∗
, distortion

is σ2
m, which are illustrated as dashed areas in Fig. 2. We call

this as water-filling reflected on a reciprocal mirror.

A. Multiple Measurements and Parallel Channels

Next, we assume that the CC requests N > 1 measurements

from the sensor at each TS, and the sensor transmits a length-

N measurement vector over N parallel orthogonal AWGN

fading channels under a strict delay constraint (d = 1). For

this scenario, we characterize the optimal LT strategy by gen-

eralizing the results of [6] derived for Gaussian vector sources

to our composite Gaussian measurements model. This scenario

differs from the system model defined in Section II, since we

allow to take N measurements at each TS as opposed to taking

only one measurement at each TS. However, we will exploit

the optimal LT strategy in this setting for the construction of

the proposed transmission strategies in Section IV, as well as

for characterizing the LLB in Section V-B.

Only for this scenario, we define m = [m1, . . . ,mN ] as

the vector of indices of N requested parameters at a particular

TS. Then, the sensor takes the length-N measurement vector

s = [s1, . . . , sN ] according to the parameters indicated by

m, i.e., s1 is the measured value of parameter m1. For a

strict delay constraint (d = 1), the optimal LT performance is

achieved by transmitting only the most recent measurement

vector. We assume that the N channels are i.i.d with dis-

tribution pH(h), and H is defined as the N × N diagonal

channel matrix. The diagonal elements of H are denoted by a

channel vector h = [h1, . . . , hN ] at a particular TS. Similarly

to Lemma 1, the encoding function can be limited to a time-

invariant N×N square matrix Fh,m without loss of optimality,

where subscripts h and m indicate the dependence of the

encoding matrix on the realizations of h and m. The length-

N channel output vector at that particular TS is given by

y = Hx + z, where x is the length-N channel input vector

and z is the length-N additive noise vector with z ∼ N (0, I).
The encoder at any TS maps its measurement vector s, to

a channel input vector x, i.e., x = Fh,ms. An average power

constraint of P is imposed on the encoding function :

P̄ =
1

N
Tr
{

EM,H,S[xx
T ]
}

,

=
1

N
Tr
{

EM,H [Fh,mCsF
T
h,m]

}

≤ P, (10)



where Cs = ES [ss
T ].

Given the encoding function, the decoding function that

minimizes the MSE for a Gaussian random vector is the N×N
linear MMSE estimator matrix Gh,m [15], which is also time-

invariant. Similarly to Fh,m, subscripts h and m indicate the

dependence of the decoding matrix on the realizations of h

and m. For the measurement vector s, and the channel output

vector y, at any TS, we have :

Gh,m = CsyC
−1
y = CsF

T
h,mHTΦ, (11)

where Csy = ES,Z [sy
T ], Cy = ES,Z[yy

T ] and Φ ,

(HFh,mCsF
T
h,mHT + I)−1.

At any TS, the CC estimates the most recent measurement

vector s as ŝ, i.e., ŝ = Gh,my. The MSE distortion is given

by :

D̄ =
1

N
Tr
{

EM,H,S,Z[
(

s − ŝ)(s − ŝ)T
] }

,

=
1

N
Tr
{

EM,H [Cs −CsF
T
h,mHTΦHFh,mCs]

}

. (12)

The optimal linear encoding matrix F∗
h,m, is found as the

solution to the convex optimization problem D̄∗ , min
Fh,m

D̄,

subject to the average power constraint P̄ ≤ P . For a set of

static parallel AWGN channels and Gaussian vector sources,

the optimal linear encoding matrix transmits one measurement

over each channel [6]. The optimal mapping between channels

and measurements is as follows: We first reorder the measure-

ment vector s to obtain s̄ = [s(1), . . . , s(N)], such that σ2
m(1)
≤

σ2
m(2)

≤ · · · ≤ σ2
m(N)

, and reorder the channel vector h to

obtain h̄ =
[

h(1), . . . , h(N)

]

, such that |h(1)| ≤ |h(2)| ≤ · · · ≤
|h(N)|. Then, the optimal linear encoding matrix F∗

h,m is di-

agonal with entries
[

f(1)(h(1),m(1)), . . . , f(N)(h(N),m(N))
]

,

and it maps the ordered measurements to ordered channel

states. In order to find the diagonal entries of F∗
h,m, we can

explicitly rewrite the convex optimization problem by using

the optimal mappings derived in [6], as follows :

D̄∗ , min
f(t)

EM(t),H(t)

[

1

N

N
∑

t=1

σ2
m(t)

|h(t)|2f(t)(h(t),m(t))2σ2
m(t)

+1

]

s.t. EM(t),H(t)

[

1

N

N
∑

t=1

f(t)(h(t),m(t))
2σ2

m(t)

]

≤ P,

(13)

where the expectation is taken over M(t) and H(t) for t ∈
[1:N ]. The t-th smallest entry of the requested parameter vec-

tor m = [m1,m2, . . . ,mN ], is denoted by the r.v. M(t) ∈ [1:J ]
with the order statistics pM(t)

(m). Without loss of generality,

we assume that ordering the entries of m in ascending order,

i.e., m(1) ≤ m(2) ≤ · · · ≤ m(N), implies ordering the

entries of the measurement vector s in ascending variances,

i.e., σ2
m(1)
≤ σ2

m(2)
≤ · · · ≤ σ2

m(N)
. Similarly, the t-th smallest

entry of the channel vector h = [h1, h2, . . . , hN ] is denoted

by the r.v. H(t) ∈ R with the order statistics pH(t)
(h).

The optimal linear encoding matrix F∗
h,m with diagonal

entries f∗
(t)(h(t),m(t)) for t ∈ [1:N ], can be found from the

Lagrange and the KKT conditions as follows :

f∗
(t)(h(t),m(t)) =

√

√

√

√

[

δ∗

|h(t)|σm(t)

− 1

|h(t)|2σ2
m(t)

]+

, (14)

where δ∗ is the optimal Lagrange multiplier, such that P̄ = P
in (13).

Similarly, the optimal power allocation and the correspond-

ing distortion can be found by using the water-filling reflected

on a reciprocal mirror interpretation. The optimal Lagrange

multiplier δ∗ depends on pM(t)
(m) and pH(t)

(h), which can be

found explicitly by using the order statistics. In the following

lemma, we give the t-th order statistics pM(t)
(m) and pH(t)

(h),
for t ∈ [1:N ].

Lemma 2. Let FM (m) and FH(h) denote the cumulative

distribution functions of pM (m) and pH(h), respectively.

Given FM (m), pM (m), FH(h), pH(h) and N , the t-th order

statistics pM(t)
(m) and pH(t)

(h), t ∈ [1:N ], are found as :

pH(t)
(h) = tpH(h)

(

N

t

)

(FH(h))t−1(1 − FH(h))N−t, (15)

pM(t)
(m) =

N
∑

b=t

(

N

b

)

[

FM (m)b(1− FM (m))N−b

− FM (m− 1)b(1− FM (m− 1))N−b
]

. (16)

Proof. The proof is trivial and achieved through the definition

of the cumulative distribution functions of H(t) and M(t).

FH(t)
(h) = Pr{H(t) ≤ h} = Pr{at least t of H’s are ≤ h},

(17)

=

N
∑

b=t

N !

(N − b)!b!
FH(h)b(1− FH(h))N−b, (18)

where (17) implies a binomial distribution with at least t
successes and can be formulated as (18). The t-th order

statistics pH(t)
(h) is found by taking the derivative of (18)

with respect to h. The same proof holds for M(t).

IV. LT STRATEGIES

In this section, we propose two LT strategies for general

delay constraints d ≥ 1. The block diagram of the proposed LT

strategies is illustrated in Fig. 3. Both strategies are composed

of two main blocks, namely, storage and transmission blocks.

There are two buffers of size d̄ measurements, namely, the

measurement buffer (MB) and the transmission buffer (TB).

Here, we present these two schemes for an odd delay con-

straint, i.e., d ∈ {1, 3, 5, . . .}, but they can be easily adapted

to the case when d is even. In the storage block, given a delay

constraint of d = 2d̄ − 1 for d̄ ∈ [1:∞], the sensor collects

a block of d̄ consecutive measurements after d̄ consecutive

TSs, and stores them in the MB. The consecutive blocks

of d̄ measurements, taken over successive time intervals, are

indexed by k̄ = {1, 2, . . .}. Then, the k̄-th block consists of

the measurements taken within TSs [(1 + (k̄ − 1)d̄):k̄d̄], i.e.,
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Fig. 3. The block diagram illustration of the proposed LT strategies.

sk̄d̄
(1+(k̄−1)d̄)

. When the MB gets full with the d̄ measurements

of the k̄-th block, the sensor removes sk̄d̄
(1+(k̄−1)d̄)

from the MB

and loads them into the TB. Then, for the next consecutive d̄
TSs [k̄d̄:((k̄ + 1)d̄− 1)], the sensor accesses the channel and

transmits a linear function of the measurements in the TB, i.e.,

sk̄d̄
(1+(k̄−1)d̄)

, over the channel states h
((k̄+1)d̄−1)

k̄d̄
satisfying the

delay constraint d. The specifics of these linear functions will

be explained below.

Note that, while the sensor transmits the measurements in

the TB, it starts refilling the MB with new measurements

s
(k̄d̄+d̄)

(k̄d̄+1)
. After d̄ channel accesses within TSs [k̄d̄:((k̄+1)d̄−

1)], the MB gets full again and its new d̄ measurements are

transferred to the TB for transmission over the next d̄ TSs.

The proposed transmission strategies consist of two sub-

blocks, namely, the measurement selection and scaling sub-

blocks. This division is motivated by the results of [6] pre-

sented in Section III-A, in which N ordered measurements

are mapped one-to-one to N ordered channels, and each

measurement is transmitted over its corresponding channel.

Hence, we assume that, at each channel access, the sensor

selects only one measurement and scales it to a channel input

value. However, in this case, we cannot directly use the optimal

LT scheme in [6] and guarantee that the selected measurement

and the channel state satisfy the optimal matching. This is

because even though d̄ measurements are available in the TB

in advance, the states of the next d̄ channels are not available

to the transmitter as in the parallel channel model of [6]; and

instead, they become available over time. The two proposed

LT strategies differ in the way they choose the measurement

to be transmitted at each TS.

A. Linear Transmission Scheme with Hard Matching (LTHM)

This transmission scheme has the following measurement

selection criteria. Assume, without loss of generality, that pa-

rameters are ordered such that σ2
1 > σ2

2 > · · · > σ2
J . We divide

the channel magnitude space (R+) into J ordered channel

intervals as, Hm = [H ′
m, H ′

(m−1)), where H ′
m < H ′

(m−1)

for m ∈ [1:J ]. The boundary values are chosen as H ′
0 = ∞,

H ′
J = 0 and H ′

m = F−1
H (1−

m
∑

j=1

pM (j)), for m ∈ [1:(J−1)],

Algorithm 1 LTHM and LTSM

Initialization :
Load measurements of MB, sk̄d̄

(1+(k̄−1)d̄)
, into TB and

update b.

1: for i = k̄d̄ to (k̄ + 1)d̄− 1 do ⊲ TSs, d̄ channel accesses

2: if |hi| ∈ Hm and bm 6= 0 then ⊲ LTHM and LTSM

Measurement selection :
Select one measurement of parameter m from TB.

Scaling :
Transmit the measurement over |hi| with an allocated

power of Eqn. (19).

bm ← bm − 1 ⊲ update b

3: else if |hi| ∈ Hm and bm = 0 then ⊲ only LTSM

Find ς by solving min
bς 6=0

∣

∣|hi| − h′
ς

∣

∣ .

Measurement selection :
Select one measurement of parameter ς from TB.

Scaling :
Transmit the measurement over |hi| with an allocated

power of Eqn. (19).

bm ← bm − 1 ⊲ update b

4: end if

5: end for

k̄ ← k̄ + 1 and go to Initialization

where F−1
H (·) denotes the inverse of the cumulative distribu-

tion function of the channel magnitude |h|, FH(|h|). Observe

that according to this choice, the probability of the channel

magnitude belonging to Hm is Pr{|h| ∈ Hm} = pM (m).1

The algorithmic description of LTHM is given in Algo-

rithm 1. Let b = [b1, b2, . . . , bJ ] be a J-length vector,

where the m-th entry, bm ∈ [0:d̄], denotes the number of

measurements of parameter m in the TB, for m ∈ [1:J ].
At each channel access, if |h| ∈ Hm and bm 6= 0, then

the sensor selects one measurement of the parameter type m
from the TB and feeds it to the scaling sub-block. If there

are multiple measurements of the same parameter type m in

the TB, i.e., bm > 1, then the sensor selects one of them

randomly. The selected measurement is removed from the

TB and b is updated by reducing the m-th entry, bm, by

one. Thereby, each measurement is transmitted only once. On

the other hand, if |h| ∈ Hm and bm = 0, no measurement

is transmitted in that TS. Hence, LTHM considers a hard

matching condition for selecting measurements, in which each

1If channel fading follows a discrete distribution, we define sets of channel
states as opposed to intervals. With abuse of notation, we denote the mth set
as Hm, for m ∈ [1:J ]. Suppose that the discrete channel states are ordered

as |ĥ1| > |ĥ2| > |ĥ3| > · · · . We allocate the discrete states into J sets such
that the probability of channel state falling into set Hm is pM (m). However,
it may be possible that the channel states cannot be grouped to satisfy this
equality exactly for all m. In that case we create virtual states to satisfy these
equalities, as explained below.

Let j be the minimum index for which
∑j

i=1
pH (|h| = ĥi) > pM (1).

Define p1
M

= pM (1) −
∑j−1

i=1
pH(|h| = ĥi). We define a new virtual

channel state ĥ1

j , whose gain is equivalent to ĥj . Whenever the real channel

state is ĥj , we randomly assign the channel state to ĥ1

j with probability

p1M/pH(ĥj). We let H1 = {ĥ1, . . . , ĥj−1, ĥ1

j}. We repeat the same process

for pM (2), starting with channel state ĥj whose probability is now pH(ĥj)−
p1
M

.



parameter has a corresponding interval of channel states, and

only measurements of that parameter can be transmitted over

a channel state from that interval. Note that, since the channel

state is known at the receiver, it also knows which type of

measurement is transmitted at each TS.

For the scaling sub-block we use the power allocation

strategy derived in Section III. Thus, the selected measurement

of the parameter type m is transmitted at the current channel

state |h| ∈ Hm, for m ∈ [1:J ], by allocating power P (h,m),
leading to distortion D(h,m) :

P (h,m) =







[

µσm

|h| − 1
|h|2

]+

, if hard matching holds,

0, otherwise.
(19)

D(h,m) =

{

σ2
m

|h|2P (h,m)+1 , if hard matching holds,

σ2
m, otherwise,

(20)

where µ is chosen such that the average power constraint is

satisfied.

After every transmission, the CC estimates the transmitted

measurement s by using the channel output y. It is noteworthy

that after d̄ channel accesses, we may have untransmitted

measurements in the TB. TB is emptied anyway since these

measurements have expired, and they are estimated with

the maximum distortion σ2
m. As we show next, the average

number of untransmitted measurements decreases with the

increasing delay constraint d. However, for a finite delay con-

straint the untransmitted measurements dominate the distortion

even for a high average transmission power constraint. In order

to combat this drawback, we propose an alternative LT scheme.

B. Linear Transmission Scheme with Soft Matching (LTSM)

The algorithmic description of LTSM is given in Algo-

rithm 1. The LTSM retains the hard matching condition

of LTHM, i.e., at each channel access, if |h| ∈ Hm and

bm 6= 0 for m ∈ [1:J ], LTSM selects one measurement of the

parameter type m from the TB. Hence, LTSM also gives the

highest selection priority to the measurement of the parameter

type that satisfies the hard matching condition with the channel

state. However, if |h| ∈ Hm and bm = 0, LTSM does not

waste the channel state; and instead, selects one measurement

based on the following measurement selection criteria :
Assume that each interval Hm is further divided into two

equally probable intervals by the boundary value h′
m =

F−1
H

(

FH (H′

(m−1))+FH(H′

m)

2

)

, for ∀m ∈ [1:J ]2. If |h| ∈ Hm

and bm = 0, then LTSM selects one measurement of parameter

ς , which is the parameter that minimizes the following distance

metric :

min
bς 6=0

∣

∣|h| − h′
ς

∣

∣ . (21)

When the hard matching condition is not satisfied, the

LTSM considers a soft matching condition for selecting mea-

2If the channel follows a discrete fading distribution, we find h′

m by taking
the mean value of all elements of channel set Hm.

surements; that is, among all parameter types of the measure-

ments in the TB, it selects a measurement of the parameter

whose corresponding interval of channel states has the value

h′
ς closest to the channel state magnitude |h|. If two distinct ς

values satisfy the solution of Eqn. (21), then LTSM chooses the

smallest value of ς . LTSM allocates the power as in Eqn. (19),

and transmits the selected measurement, leading to distortion

in Eqn. (20). Note that the optimal Lagrange multiplier µ is

chosen such that the average power constraint is satisfied. At

the end of d̄ channel accesses, the sensor will have transmitted

all the measurements in the TB, albeit some might have been

allocated zero power as a result of the water-filling algorithm.

V. DISTORTION LOWER BOUNDS

We characterize two lower bounds on the MSE distor-

tion, namely, the TLB and the LLB. While the TLB is the

theoretical performance bound derived without any delay or

complexity constraints on the transmission, the LLB is a

performance lower bound only for LT strategies. We also prove

that the proposed LT strategies meet the TLB under infinite

delay and certain matching conditions between the channel

states and parameter variances.

A. The Theoretical Lower Bound (TLB)

Shannon’s source-channel separation theorem states that the

optimal end-to-end distortion is achieved by concatenating

the optimal source and channel codes when there is no

delay or complexity constraints, and the source and channel

distributions are ergodic [17]. When we remove the delay

and linear encoding constraints in our system model, then the

sensor can transmit to the CC at the ergodic capacity, C̄e, of

the underlying fading channel, while the minimum distortion,

D̄e, is found by evaluating the distortion-rate function for a

composite Gaussian source model at the ergodic capacity.

Since the channel state is known by both the transmitter and

receiver, the ergodic capacity, in terms of the optimal power

allocation scheme P ∗
e (h), is given by :

C̄e , EH

[

1

2
log
(

1 + |h|2P ∗
e (h)

)

]

, (22)

where P ∗
e (h) is found by the water-filling algorithm as

P ∗
e (h) = [α∗ − 1/|h|2]+, where α∗ is chosen to satisfy

P̄e , EH [P ∗
e (h)] = P .

From Eqn. (6.1.21) of [14], the distortion-rate function of

a composite Gaussian source with m components, N (0, σ2
m),

each of which is observed with probability pM (m) for m ∈
[1:J ], is defined as :

D̄e , EM

[

σ2
m2−2R∗

e(σm)
]

, (23)

where the optimal rate allocated to source m, R∗
e(σm), and

the corresponding distortion, D∗
e(σm), are given by :

R∗
e(σm) =

1

2

[

log

(

σ2
m

β∗

)]+

, (24)



D∗
e(σm) = min

(

β∗, σ2
m

)

, (25)

where β∗ is chosen such that R̄e , EM [R∗
e(σm)] = C̄e.

Hence, the optimal distortion is found as D̄e =
EM [D∗

e(σm)], which is the TLB on the achievable MSE

distortion by any transmission strategy. Note that we have re-

moved both the delay constraint and the linearity requirement

on the encoder and decoder.

1) Asymptotic Optimality of LT: In general, the TLB cannot

be achieved by LT strategies even if the delay constraint is

removed. However, it can be shown that LTHM and LTSM

meet this lower bound when the delay constraint is removed

under certain matching conditions between the channel states

and the parameter variances.

Assume that the channel follows a discrete fading distribu-

tion, where the channel state h can take one of the J values ĥm

with probability pH(ĥm) for m ∈ [1:J ]. The discrete values

are ordered as |ĥ1| > |ĥ2| > · · · > |ĥJ |. The next theorem

states the necessary conditions in this discrete channel model

under which LTHM and LTSM achieve the optimal distortion

performance when the delay constraint is removed.

Theorem 1. For the discrete AWGN fading channel model, if

the parameter variances and the discrete channel states satisfy
σ1

|ĥ1|
= · · · = σJ

|ĥJ |
, and pM (m) = pH(ĥm), for ∀m ∈ [1:J ],

then the TLB is achieved by LTHM and LTSM when the delay

constraint is removed, i.e., d→∞.

Proof. The proof can be found in Appendix A.

B. The Linear Transmission Lower Bound (LLB)

We next derive a lower bound on the achievable MSE

distortion as a function of the delay and power constraints for

any LT strategy. In order to derive this lower bound, we relax

the assumption on the causal knowledge of the measurements

and channel states, and instead assume that the sensor has the

offline (non-causal) knowledge of a certain number of future

measurements and channel states. Accordingly, we assume

that at any TS the sensor non-causally knows the length-ū
measurement vector, i.e., s = [s1, . . . , sū], taken over the

next ū TSs. Observe that, for a delay constraint d, each

measurement of s can only be transmitted over the following d
channel states observed after it is taken, thus the transmission

of the vector s spans the following c̄ = (d + ū − 1) channel

states observed after the first measurement s1 is taken. We

further assume that the sensor non-causally knows the length-

c̄ channel vector h = [h1, . . . , hc̄]. Henceforth, the problem

is reduced to optimally transmitting ū measurements over

c̄ parallel channels, which is attained by using the optimal

LT scheme presented in Section III-A. Accordingly, we first

reorder s to get s̄ = [s(1), . . . , s(ū)], where the variances of

the ordered measurements satisfy σ2
m(1)

≤ σ2
m(2)

≤ · · · ≤
σ2
m(ū)

, and reorder h to get h̄ =
[

h(1), . . . , h(c̄)

]

, such that

the ordered fading states satisfy |h(1)| ≤ |h(2)| ≤ · · · ≤
|h(c̄)|. Then, the c̄ × ū optimal linear encoding matrix F∗

h,m

consists of a ū × ū size diagonal partition with entries
[

f(1)(h(1+ē),m(1)), . . . , f(ū)(h(ū+ē),m(ū))
]

, and a ē× ū size

partition with zero entries, where ē = c̄ − ū, and it maps

ū ordered measurements to the ū channels with the largest

gains. The optimal entries of F∗
h,m are found as the solution

of the following convex optimization problem with the optimal

objective function D̄∗(d, ū, P ) :

min
f(t)

EM(t),H(t+ē)

[

1

ū

ū
∑

t=1

σ2
m(t)

|h(t+ē)|2f(t)(h(t+ē),m(t))2σ2
m(t)

+1

]

s.t. P̄ , EM(t),H(t+ē)

[

1

ū

ū
∑

t=1

f(t)(h(t+ē),m(t))
2σ2

m(t)

]

≤ P,

(26)

where the expectation is taken over M(t) and H(t+ē) for

t ∈ [1:ū]. The t-th and (t + ē)-th order statistics pM(t)
(m)

and pH(t+ē)
(h), are given by Lemma 2. The optimal linear

encoding matrix with diagonal entries is found as :

f∗
(t)(h(t+ē),m(t)) =

√

√

√

√

[

ζ∗

|h(t+ē)|σm(t)

− 1

|h(t+ē)|2σ2
m(t)

]+

,

(27)

where ζ∗ is the optimal Lagrange multiplier, such that P̄ = P
in (26).

Assuming non-causal knowledge of ū measurements and

c̄ channel states under the delay constraint d and the av-

erage power constraint P , we obtain the optimal distortion

D̄∗(d, ū, P ) for any LT strategy. Then, the LLB is derived by

finding the ū value, which maximizes D̄∗(d, ū, P ) :

D̄l(d, P ) , max
ū

D̄∗(d, ū, P ). (28)

Note that we have relaxed the constraint for the causal

knowledge of measurements and channel states both at the

encoder and decoder. The numerical comparisons of the LLB

with the proposed schemes will be presented in Section VII.

VI. NO CSI AT THE ENCODER

In this section, we assume that the CSI is known only at

the decoder. We derive the optimal LT strategy under a strict

delay constraint (d = 1), as well as the TLB on the achievable

MSE distortion. Additionally, for the multiple measurements-

parallel channels scenario studied in Section III-A, we show

that if the CSI is available only at the receiver, any LT

scheme that is limited to a one-to-one linear mapping from the

measurements to the channel input is suboptimal in general.

The optimal LT strategy is elusive and it will be a non-trivial

function of the source variances and the channel distribution.

A. Strict Delay Constraint

Under a strict delay constraint, the most recent measurement

is transmitted at each TS. By applying Lemma 1 to this

scenario, we can similarly show that there is no loss of

optimality by considering time-invariant encoding functions,

i.e., fi(m) = f(m), ∀i. Hence, the encoding function f(m)
is a scalar and time-invariant. The decoding function g(h,m)
that minimizes the MSE is the linear MMSE estimator [15],



and is also a scalar and time-invariant. Then, the MSE dis-

tortion, D̄ = EM,H,S,Z[|S − Ŝ|2], and the average power,

P̄ = EM,S[|X |2], can be written explicitly as :

D̄ =
J
∑

m=1

pM (m)

∫

R

σ2
m

|h|2f(m)2σ2
m + 1

pH(h)dh, (29)

P̄ =
J
∑

m=1

pM (m)f(m)2σ2
m, (30)

where P (m) , f(m)2σ2
m. The optimal linear encoding

function, f∗(m), is found as the solution to the convex

optimization problem D̄∗ , min
f

D̄, subject to the average

power constraint P̄ ≤ P . From the KKT conditions [16], we

have :

f∗(m) =

√

√

√

√

[

Ψ−1( λ∗

σ2
m
)
]+

σ2
m

, (31)

where Ψ−1 : R→ R is the inverse of the function Ψ : R→ R,

that is defined as, Ψ(P (m)) ,
∫

R

|h|2

(|h|2P (m)+1)2 pH(h)dh. The

optimal Lagrange multiplier λ∗ is chosen such that P̄ = P
in (30).

B. Multiple Measurements and Parallel Channels

Next we consider the multiple measurements-parallel chan-

nels scenario studied in Section III-A, under the strict delay

constraint and the assumption that the CSI is known only

at the decoder, and J > 1. In such a scenario, the optimal

LT scheme of [6], in which the ordered measurements are

mapped one-to-one to ordered channel states, cannot be used

directly. This is because, even though the encoder knows

the N measurements, it does not know any of the channel

states, and hence; cannot order them. For the special case

where N measurements are observed from a single Gaussian

source (J = 1), in [7] the authors show that the optimal

performance is achieved by transmitting one measurement

over each channel. When J = 1, since N measurements all

have the same variance, all orderings are equivalent, and the

optimal LT performance is achieved by an LT scheme that

uses only a one-to-one mapping between measurements and

channels. However, this is not the case in general when J > 1.

Since N measurements follow a composite Gaussian source

model, the encoder can have measurements with different

variances; and hence, we can exploit the diversity of the fading

channel by transmitting a single measurement over multiple

channels, instead of transmitting each measurement only once.

Depending on the source variances, the former may surpass

the best LT performance achieved by using only a one-to-

one linear mapping. This is shown in the following lemma by

considering a particular example.

Lemma 3. Consider the LT of N measurements of a composite

Gaussian source with J > 1 components over N parallel

AWGN fading channels. If the CSI is known only by the

decoder, then the LT scheme that uses a one-to-one linear

mapping between measurements and channels is suboptimal

in general.

Proof. The proof can be found in Appendix B.

C. The Theoretical Lower Bound (TLB)

Similarly to Section V-A, we derive the TLB on the

achievable MSE distortion by using Shannon’s source-channel

separation theorem. If the CSI is available only at the decoder

and the average power constraint is P , then the ergodic

capacity is given by :

C̄e , EH

[

1

2
log
(

1 + |h|2P
)

]

. (32)

The distortion-rate function of a composite Gaussian source

is defined as in Eqn. (23) of Section V-A, which leads to the

optimal rate allocated to source m, R∗
e(σm), as in Eqn. (24)

and the corresponding distortion, D∗
e(σm), as in Eqn. (25),

respectively. The Lagrangian multiplier β∗ for this case is

chosen such that EM [R∗
e(σm)] is equal to the ergodic capacity

C̄e in (32). Then the TLB on the achievable MSE distortion

by any strategy when the encoder does not have the CSI is

given by D̄e = EM [D∗
e(σm)].

VII. NUMERICAL RESULTS AND OBSERVATIONS

Here we provide numerical results to compare the perfor-

mances of LTHM and LTSM with the lower bounds, and to

analyze the impact of the delay and power constraints on the

performance. In our simulations, we consider J = 4 Gaussian

parameters with variances {10, 5, 1, 0.5}, which are requested

with probabilities {0.1, 0.3, 0.4, 0.2}, respectively. For a con-

tinuous fading channel, we consider Rayleigh distribution with

mean value 3
√

π
2 , and for a discrete fading channel, we

consider four states {
√
10,
√
5, 1,
√
0.5}, which are observed

with probabilities {0.1, 0.3, 0.4, 0.2}, respectively.

We illustrate the achievable MSE distortion versus average

power under various delay constraints with LTHM in the

discrete channel setting in Fig. 4. We observe that the MSE

distortion diminishes as the delay constraint is relaxed. This

is because a relaxed delay constraint provides a larger number

of measurements in the TB; and hence, more flexibility for

the sensor in selecting the appropriate measurement for each

TS. We note that this statement does not hold when J = 1,

in which case increasing the block length does not provide

any improvement [6]. As it can be seen in Fig. 4, the MSE

distortion converges to a fixed value as the average power

value increases. This is due to the additional distortion brought

in by the untransmitted measurements in the TB. The average

number of untransmitted measurements and their effect on the

MSE distortion decreases as the delay constraint is relaxed,

since having a larger number of measurements in the TB in-

creases the probability of finding a measurement that satisfies

the hard matching condition. In particular, when the delay

constraint is removed, as seen in Fig. 4, LTHM achieves the

TLB, and becomes the optimal LT scheme, since the source-

channel matching conditions in Theorem 1 are satisfied for the

setup considered here.
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Fig. 4. Achievable MSE distortion with LTHM with respect to average power
for different delay constraints in the discrete fading channel model.
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Fig. 5. Achievable MSE distortion with LTSM with respect to average power
for various delay constraints in the continuous fading channel model.

In Fig. 5, we illustrate the achievable MSE distortion with

LTSM with respect to average power under various delay

constraints in the continuous channel model. Similarly to

LTHM, the MSE distortion diminishes as the delay constraint

increases. On the other hand, as opposed to LTHM, the MSE

distortion achieved by LTSM decreases monotonically with

the average power as illustrated in Fig. 5. This is because

the performance of LTSM does not suffer from a fixed

distortion component due to the untransmitted measurements.

In addition, LTSM also approaches the TLB as the delay

constraint is relaxed. Although we do not expect the LTSM to

meet the TLB in this setting since the matching conditions of

Theorem 1 do not hold, we observe in Fig. 5 that it is very

close to the TLB.

Next, we compare the performances of LTHM and LTSM

with each other and with the TLB and the LLB. Fig. 6 shows

the achievable MSE distortion of LTHM, LTSM, the LLB and

the TLB with respect to delay constraint in the continuous

fading channel model for an average power constraint P̄ = 10
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Fig. 6. MSE distortion versus delay constraint, d, in the continuous fading
channel model for an average power constraint P̄ = 10 dB.
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Fig. 7. The achievable MSE distortion of LT and the TLB with respect to
average power in the discrete fading channel model with and without encoder
CSI.

dB. As seen in the figure, the performance of the TLB is

constant since it is derived by completely removing the delay

and complexity constraints. On the other hand, the LLB decays

slowly as the delay constraint increases. As expected, the MSE

distortion of LTHM and LTSM decrease as the delay constraint

increases. We can see that LTSM meets the LLB under the

strict delay constraint. As expected, LTSM always outperforms

LTHM, while the gap between the two schemes decreases

with the increasing delay constraint. The gap between the

TLB and two schemes also decreases with the increasing

delay constraint even though we do not expect either of the

schemes converge to the TLB in this setting since the matching

conditions of Theorem 1 do not hold.

Finally, in Fig. 7, we illustrate the achievable MSE dis-

tortion of LT and the TLB with respect to average power

in the discrete channel model for the scenarios in which the

CSI is known only by the decoder, and by both the encoder

and decoder. The MSE distortion of LT under strict delay



constraint of d = 1 for both scenarios diminishes as the

average power increases. However, there is a constant gap

between the optimal performances achieved with and without

encoder CSI at higher P̄ values. On the other hand, the TLB

for both scenarios meet as the average power increases since

the gain from the optimal power allocation over different

channel states disappears in the high power regime.

VIII. CONCLUSIONS

We have studied the delay-constrained LT of composite

Gaussian measurements from a sensor to a CC over an AWGN

fading channel. We have considered a wireless sensor that can

collect measurements from J distinct Gaussian parameters.

The CC asks for a measurement of a particular parameter

from the sensor with a certain probability at each TS. In

this framework, we have presented the optimal LT strategy

under a strict delay constraint, and have given a graphical

interpretation for the optimal power allocation scheme and the

corresponding distortion value. Then, we have proposed two

LT strategies, called LTHM and LTSM, under general delay

constraints, and have provided numerical results to investigate

the impact of the delay and average power constraints on the

performance. We have seen that, if the number of parameters,

J , is more than one, the MSE distortion decreases as the delay

constraint is relaxed. We have also derived lower bounds on

the achievable MSE distortion for generic and LT strategies.

While LTSM outperforms LTHM at all delay constraints, we

have shown analytically that both strategies meet the lower

bound when the delay constraint is removed, under certain

matching conditions between the parameter and the channel

statistics.

We have also studied the scenario in which the CSI is

known only by the decoder. We have presented the optimal

LT strategy under a strict delay constraint. We have derived a

TLB on the achievable MSE distortion by relaxing the delay

constraint and the linearity requirement. We have also con-

sidered the multiple measurements-parallel channels scenario

under a strict delay constraint, and have shown that the optimal

LT performance cannot be achieved by using only a one-to-

one linear mapping between measurements and channels, as

opposed to the results derived in [6] and [7]. The design of

the optimal LT strategy for the multiple measurements-parallel

channels scenario for arbitrary delay constraints is elusive, and

is left as future work.

APPENDIX A

PROOF OF THEOREM 1

Given a delay constraint d = 2d̄ − 1, let the r.v. Z̄m,

m ∈ [1:J ], denote the total number of measurements of

parameter m among d̄ measurements loaded into the TB.

Z̄m follows a Binomial distribution with parameters d̄ and

pM (m). Hence, the probability of having k̄ measurements of

parameter m in the TB is given by pZ̄m
(k̄) = Pr{Z̄m =

k̄} =
(

d̄
k̄

)

pM (m)k̄(1 − pM (m))d̄−k̄. Similarly, considering

the discrete fading model presented in Section V-A1, let the

r.v. Ẑm, m ∈ [1:J ], denote the total number of channels

with state ĥm, after d̄ channel accesses. Ẑm also follows a

Binomial distribution with parameters d̄ and pH(ĥm). Hence,

the probability of observing k̂ channels with state ĥm is given

by p
Ẑm

(k̂) = Pr{Ẑm = k̂} =
(

d̄
k̂

)

pH(ĥm)k̂(1−pH(ĥm))d̄−k̂.

Observe that after d̄ channel accesses, the number of trans-

mitted measurements selected from the TB with LTHM is

given by min{Z̄m, Ẑm}. On the other hand, the number of

untransmitted measurements remained in the TB is given by

[Z̄m−Ẑm]+. Then, the average power, P̄∞, and the achievable

MSE distortion, D̄∞, of LTHM when d̄→∞ are given by :

P̄∞ , lim
d̄→∞

1

d̄

J
∑

m=1

E
Z̄m,Ẑm

[

min
{

Z̄m, Ẑm

} ]

P (ĥm,m), (33)

D̄∞ , lim
d̄→∞

1

d̄

J
∑

m=1

{

E
Z̄m,Ẑm

[

[Z̄m − Ẑm]+
]

σ2
m

+E
Z̄m,Ẑm

[

min
{

Z̄m, Ẑm

}]

D(ĥm,m)
}

, (34)

where the allocated power P (ĥm,m) and the distortion

D(ĥm,m) are chosen as in Eqn. (19) and Eqn. (20), respec-

tively.

In the rest of the proof, we use p(m) to refer to the condition

of Theorem 1, i.e., pM (m) = pH(ĥm) = p(m), ∀m. Under

this condition, the expected value and variance of Z̄m and Ẑm

can be found as, E[Z̄m] = E[Ẑm] = d̄ · p(m) and Var[Z̄m] =
Var[Ẑm] = σ2

Zm
= d̄ ·p(m) · (1−p(m)), respectively. Let ǫ >

0 be any positive number. Then, the Chebyshev’s inequality

leads to the following inequalities, Pr{|Z̄m − d̄ · p(m)| ≥
ǫ · σZm

} ≤ 1
ǫ2

and Pr{|Ẑm − d̄ · p(m)| ≥ ǫ · σZm
} ≤ 1

ǫ2
. We

define the interval I on the real line as, I = [d̄ · p(m) − ǫ ·
σZm

, d̄ · p(m) + ǫ · σZm
].

Next, we compute (33) and (34) by finding upper and lower

bounds on the expectation terms under the matching condition.

Observe that,

lim
d̄→∞

1

d̄
E
Z̄m,Ẑm

[

min
{

Z̄m, Ẑm

}]

, (35)

≤ lim
d̄→∞

1

d̄
E
Z̄m,Ẑm

[

Z̄m

]

= p(m). (36)

We can also lower bound this term as,

lim
d̄→∞

1

d̄
E
Z̄m,Ẑm

[

min
{

Z̄m, Ẑm

}]

,

≥ lim
d̄→∞

1

d̄
E
Z̄m,Ẑm

[

min
{

Z̄m, Ẑm

} ∣

∣

∣Z̄m∈I,

Ẑm∈I

]

Pr{Z̄m∈I,Ẑm∈I},

(37)

≥ lim
d̄→∞

1

d̄

(

d̄p(m)− ǫσZm

)

(

1− 1

ǫ2

)2

, (38)

= lim
d̄→∞

(

p(m)−
√

p(m)(1− p(m))

d̄
1
6

)

(

1− 1

d̄
2
3

)2

= p(m),

(39)

where (37) follows from the law of total expectation; (38)

follows from the definition of I, and the Chebyshev’s inequal-

ity; and (39) is obtained by setting ǫ = d̄
1
3 . Since the upper



and lower bounds in (36) and (39) are equal, we have shown

that (35) converges to p(m) as d̄→∞.

Similarly,

lim
d̄→∞

1

d̄
E
Z̄m,Ẑm

[

[Z̄m − Ẑm]+
]

, (40)

= lim
d̄→∞

1

d̄

{

E
Z̄m,Ẑm

[

[Z̄m − Ẑm]+
∣

∣

∣Z̄m∈I,

Ẑm∈I

]

Pr{Z̄m∈I,Ẑm∈I}

+E
Z̄m,Ẑm

[

[Z̄m − Ẑm]+
∣

∣

∣Z̄m 6∈I
or

Ẑm 6∈I

]

Pr{Z̄m 6∈I or Ẑm 6∈I}

}

, (41)

≤ lim
d̄→∞

1

d̄

{

2ǫσZm
+

(

2

ǫ2
+

1

ǫ4

)

d̄

}

, (42)

= lim
d̄→∞

{(

2
√

p(m)(1− p(m))

d̄
1
6

)

+

(

2

d̄
2
3

+
1

d̄
4
3

)

}

= 0,

(43)

where (41) follows from the law of total expectation; (42)

follows from the from the definition of I, and the Chebyshev’s

inequality; and (43) is obtained by setting ǫ = d̄
1
3 . This proves

that (40) indeed converges to zero as d̄→∞. This also implies

that as d̄ → ∞, all selected measurements by the LTSM

strategy satisfy the hard matching condition. Hence, LTSM

and LTHM are equivalent in the asymptotic of d̄→∞ under

the matching condition of Theorem 1.

Finally, we can rewrite P̄∞ and D̄∞ for both LTHM and

LTSM as :

P̄∞ =

J
∑

m=1

[

µ∗q − 1

|ĥm|2

]+

p(m), (44)

D̄∞ =

J
∑

m=1

[

σ2
m

|ĥm|2
[

µ∗q − 1
|ĥm|2

]+

+ 1

]

p(m), (45)

where we use q , σm

|ĥm|
, ∀m, from Theorem 1, and µ∗ is

chosen to satisfy P̄∞ = P .

Next, we show that (P̄∞, D̄∞) pair above, obtained under

the conditions of Theorem 1, achieve the TLB pair (P̄e, D̄e),
derived in Section V-A. First, under the matching condition,

observe that µ∗q = α∗, and thus, P̄∞ = P̄e = P . Moreover,

under the matching condition, R̄e = C̄e in TLB implies

α∗ = q2

β∗
. Combining the two equalities, we obtain µ∗ = q

β∗
.

Substituting this into Eqn. (23) together with the matching

condition, we can show that D̄e =
J
∑

m=1
min

(

q
µ∗

, σ2
m

)

p(m) =

D̄∞, which concludes the proof of Theorem 1.

APPENDIX B

PROOF OF LEMMA 3

In order to prove Lemma 3, we construct a counter-example.

We argue that the achievable MSE distortion of a particular

LT scheme that is not constrained to use only a one-to-

one mapping between measurements and channels can be

smaller than the minimum achievable MSE distortion of all

possible LT schemes that use only a one-to-one mapping,

i.e., a diagonal encoding matrix. Suppose we have J = 2
zero-mean Gaussian parameters with variances σ2

1 and σ2
2 ,

which are requested with probabilities pM (1) = p1 and

pM (2) = p2 = (1− p1), respectively, and assume an extreme

case, where σ2
1 > 0 and σ2

2 = 0. Suppose we have a discrete

fading channel with two states, which are observed with

probabilities pH1(ĥ1) = p1 and pH2(ĥ2) = p2, respectively,

and assume that the channel states are ĥ1 > 0 and ĥ2 = 0.

We aim at linearly transmitting N = 2 measurements of

parameters m1 ∈ [1:2] and m2 ∈ [1:2], over N = 2 channel

states h1 ∈ {ĥ1, ĥ2} and h2 ∈ {ĥ1, ĥ2}.
We first characterize the minimum achievable MSE dis-

tortion, D̄1, for all possible LT schemes with a diagonal

encoding matrix. According to Eqn. (10), the encoding func-

tion needs to satisfy the average power constraint P , i.e.,
1
2

[

P11p
2
1 + P12p1p2 + P21p1p2 + P22p

2
2

]

= P , where Pm1m2

is the allocated power for the pair of measurements of pa-

rameters m1 and m2, respectively. We have P22 = 0, since

σ2
2 = 0. Then, by using Eqn. (12), the MSE distortion D̄1

can be written explicitly as in (46). The minimum distortion

is achieved by dividing the power, i.e., P11, equally between

measurements if two measurements are observed from pa-

rameter 1, i.e., m1 = m2 = 1. If one measurement is

requested from each parameter, i.e., (m1 = 1,m2 = 2)
or (m1 = 2,m2 = 1), then the minimum distortion is

achieved by allocating the entire power, i.e., P12 or P21, to

the measurement of parameter 1, since σ2
2 = 0.

D̄1 =
1

2

{

p21

(

EH1

[

σ2
1

|h1|2 P11

2 + 1

]

+ EH2

[

σ2
1

|h2|2 P11

2 + 1

])

+ p1p2

(

EH1

[

σ2
1

|h1|2P12 + 1

]

+ EH2

[

σ2
1

|h2|2P21 + 1

])

}

,

= p21

(

p1
σ2
1

|ĥ1|2 P11

2 + 1
+ p2σ

2
1

)

+
p1p2
2

(

p1
σ2
1

|ĥ1|2P12+1
+ p1

σ2
1

|ĥ1|2P21+1
+ 2p2σ

2
1

)

. (46)

Assuming the average power constraint P is satisfied as in

the above scheme, we next consider a particular LT scheme.

This scheme uses a diagonal encoding matrix if both mea-

surements are observed from the same parameter; otherwise,

it uses a non-diagonal matrix, where the measurement of

parameter 1 is transmitted over two channels. Then, from

Eqn. (12), the MSE distortion D̄2 can be written as in (47). The

minimum distortion can be achieved by dividing the power,

i.e., P11, equally between measurements if two measurements

are observed from parameter 1, i.e., m1 = m2 = 1, similarly

to the above scheme. If one measurement is requested from

each parameter, i.e., (m1 = 1,m2 = 2) or (m1 = 2,m2 = 1),
then this particular scheme divides the power, i.e., P12 or P21,

equally between two channels h1 and h2 for the transmission

of the measurement of parameter 1, as seen in the term

multiplied by p1p2 in (47). If two measurements are observed

from parameter 2, i.e., m1 = m2 = 2, then we do not allocate

power, i.e., P22 = 0, since σ2
2 = 0.



D̄2 =
1

2

{

p21

(

EH1

[

σ2
1

|h1|2 P11

2 + 1

]

+ EH2

[

σ2
1

|h2|2 P11

2 + 1

])

+p1p2

(

EH1,H2

[

σ2
1

(|h1|2 + |h2|2)P12

2 + 1

]

+EH1,H2

[

σ2
1

(|h1|2 + |h2|2)P21

2 + 1

])}

,

= p21

(

p1
σ2
1

|ĥ1|2
P11
2 +1

+ p2σ
2
1

)

+ p1p2

2

(

2p22σ
2
1 + p21

σ2
1

|ĥ1|2P12+1

+p21
σ2
1

|ĥ1|2P21+1
+ 2p1p2

σ2
1

|ĥ1|2
P12
2 +1

+ 2p1p2
σ2
1

|ĥ1|2
P21
2 +1

)

.

(47)

We can easily see that D̄2 < D̄1 for all P11, P12 and P21.

This implies that the minimum achievable MSE distortion

of LT schemes constrained to one-to-one mapping can be

improved by utilizing non-diagonal encoding matrices, which

concludes the proof of Lemma 3.
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Deniz Gündüz [S’03-M’08-SM’13] received the
B.S. degree in electrical and electronics engineering
from METU, Turkey in 2002, and the M.S. and
Ph.D. degrees in electrical engineering from NYU
Polytechnic School of Engineering in 2004 and
2007, respectively. After his Ph.D. he served as a
postdoctoral research associate at the Department of
Electrical Engineering, Princeton University, and as
a consulting assistant professor at the Department
of Electrical Engineering, Stanford University. Af-
terwards he was a research associate at CTTC in

Barcelona, Spain. Since September 2012 he is a Lecturer in the Electrical
and Electronic Engineering Department of Imperial College London, UK. He
also held a visiting researcher position at Princeton University from November
2009 until November 2011.
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