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Abstract—When gradient descent (GD) is scaled to many
parallel computing servers (workers) for large scale machine
learning problems, its per-iteration computation time is limited
by the straggling workers. Coded distributed GD (DGD) can
tolerate straggling workers by assigning redundant computations
to the workers, but in most existing schemes, each non-straggling
worker transmits one message per iteration to the parameter
server (master) after completing all its computations. We allow
multiple computations to be conveyed from each worker per
iteration in order to exploit computations executed also by the
straggling worker. We show that the average completion time per
iteration can be reduced significantly at a reasonable increase in
the communication load. We also propose a general coded DGD
technique which can trade-off the average computation time with
the communication load.

I. INTRODUCTION

For given N training data points X = [x, ..., xv]T,x; € R4,
and the corresponding labels y = [y,...,yn]7, vi €R, i €
[N] £ {1,2,..., N}, the objective of many machine learning
problems is to minimize the parameterized empirical loss
function

N
L(®) = 3" 1((xi, i), 0) + AR(O), )
i=1

where 6 € R? is the parameter vector, / is an application
specific loss function, and R(6) is the regularization component.
This optimization problem is commonly solved by gradient
descent (GD), where at each iteration, the parameter vector
6 € R is updated opposite of the GD direction:

051 =6, —1:VoL(0), )

where 7, is the learning rate at iteration ¢, and the gra-
dient at the current parameter vector is given by Vg =

N Vol ((vis x:).9)).

When X is a large dataset, as in many problems, GD
approach may require large computation time. To this end,
a parallel computation framework can be utilized to reduce the
convergence time [1]. Hence, the gradient computation task is
divided into smaller sub-tasks of computing a partial gradient
over a subset of the dataset (often referred as mini-batch),
which are distributed across multiple workers to be executed in
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parallel. Each worker sends its local gradient estimate back to
the parameter server, which will be referred as the master, as
soon as it is computed. When all the local gradient estimates
are aggregated by the master, their average is used to update
0;.1, as in (2), which is then transmitted to all the workers for
the next iteration. While distributed computation is essential
to handle large data sets, the completion time of each iteration
is constrained by the slowest worker(s), called the straggling
worker(s), which can be detrimental for the convergence of the
algorithm. The randomness of the straggling workers can be
considered to model a packet erasure communication channel,
in which the transmitted data packets are randomly erased
[2]. Motivated by this analogy, several papers have recently
introduced coding theoretic ideas in order to mitigate the effect
of straggling workers in DGD [2]-[10].

The key limitation of the aforementioned works is that
straggling behaviour of the workers is treated as all or nothing
(straggler/non-straggler), and the computations of the straggler
workers are discarded as long as they cannot complete all the
assigned computations. This leads to the underutilization of the
computational resources. Moreover, in practice, non-persistent
stragglers may complete a significant portion of their assigned
tasks.

Therefore, our main objective in this paper is to redesign the
straggling avoidance techniques in a way that computational
capacity of the non-persistent stragglers can also be utilized.
This will be achieved by allowing each worker to send multiple
messages to master at each iteration, which we refer to as multi-
message communication (MMC). We define the average number
of computations conveyed to the master from the workers as
the communication load, and show that there is a trade-off
between the communication load and the computation time. In
this paper, we aim to answer three main questions regarding the
straggler avoidance: How con we redesign coded computation
strategy [4], [7] to utilize non-persistent stragglers? How can
we balance the increase in the communication load with the
computation time? When is it better to use coded/uncoded
computation?

Various other distributed computation techniques with MMC
have recently been considered in [11] and [12]; however, their
analyses are limited to specific problem setups where the main
computation problem boils down to matrix-vector multiplica-
tion. Moreover, they focus exclusively on the computation time,



and the communication-computation trade-off is not explicitly
illustrated.

II. CoDED COMPUTATION

Recently particular attention has been paid to the least
squares linear regression problem, where the gradient computa-
tion reduces to a linear matrix operation, i.e., X’ X0, —X"y. For
this particular problem each iteration of DGD can be treated
as a distributed matrix-matrix or matrix-vector multiplication!
and dataset is encoded before being distributed to workers to
avoid stragglers.

Another straggler avoidance strategy, which is applicable
to more general DGD problems, is gradient coding [8]-[10]
where each worker computes multiple partial gradients over
original dataset but sends the linear combination of those partial
gradients to the master.

For the coded computation framework, consider a distributed
architecture with M workers, Wjy,..., Wy,. Dataset X is
divided into M submatrices each of size N/M X d. Then, these
submatrices are encoded and distributed across the workers such
that coded submatrices igl), e igr) , each size of N/M x d, are
assigned to W; to compute igl)(igl))TO,, . .,igr)(igr))Tﬂt. We
refer to the number of computations assigned to each worker,
r, as the computation load.

Once all these computations are executed, W; returns their
sum to the master. The results obtained from a sufficient number
of workers are used at the master to evaluate 0;,;. Now we will
briefly summarize the Lagrange coded computation method
introduced in [4], [7], which utilizes polynomial interpolation
for the code design?.

A. Lagrange Polynomial

Consider the following vector-valued polynomial
- qj

f@s e || 3)
i€[N]  je[N]\{i} J
where a,...,an are N distinct real numbers, and ay,...,ay

are vectors of size 1 X k. We have f(a;) = a;, Vi € [N]. Let
us consider another polynomial i(z) = f(z)f(z)" 0;, such that
h(a;) = a,-al.TH,. Hence, if the coefficients of polynomial A(z)
are known, then the term Zfi 1 a,-al.TO, can be obtained easily
from ay,...,ay. We remark that the degree of the polynomials
f(z) and h(z) are N —1 and 2N — 2, respectively. Accordingly,
if the value of h(z) at 2N — 1 distinct points are known at the
master, then /(z) can be recovered via polynomial interpolation.
This is the key notion behind Lagrange coded computation [4],
which is explained in the next subsection.

B. Lagrange Coded Computation (LCC)

Let us first assume that N is a multiple of r. For given r
and N, the rows of X, xy,...,Xy, are divided into r disjoint
groups, each of size N/r, and the rows within each group

I'When Q= X7 X is known in advance, the computation task reduces to
evaluating QO;.

2Throughout the paper we will assume M = N for simplicity, although all
these methods can be generalized to any M, N pair.

are ordered according to their indices. Let x; ; denote the jth
row in the kth group, and X denote all the rows in the kth
group; that is, Xy is the N/r x d submatrix of X. Then, for
distinct real numbers a1, ..., ay/,, we form the following r
structurally identical polynomials of degree N/r — 1, taking
the rows of X as their coefficients:

N/r N/r Z—a;
f@ = % [| = kelrl. @)
i=1 j=lj#i b J
Then, we define
H(2) 2 Y ful2)fi() 6. (5)

k=1

Coded vectors igk), k € [r], for W;, i € [N] are obtained by
evaluating f;(z) polynomials at distinct values, 8; € R, i.e.,
igk) = f(B;). At each iteration of the DGD algorithm W; returns

the value of .

HB) = ) % &) 6.

k=1

(6)

The degree of polynomial H(z) is 2N/r —2; and thus, the non-
straggling threshold for LCC is given by Kycc(r) = 2N/r -1,
that is, having received the value of H(z) at Kpcc(r) distinct
points, the master can extrapolate H(z) and compute

N/r

Z H(e;) = X' X0,
j=1

(7

When N is not divisible by r, zero-valued data points can
be added to X to make it divisible by r. Hence, in general the
non-straggling threshold is given by Ky cc(r) = 2[N/r] - 1.

C. LCC with MMC

Here, we introduce LCC with MMC by using a single
polynomial f(z) of degree N — 1, instead of using r different
polynomials each of degree N/r — 1. We define

N N

f@2 ) x

=1 j=lj#i

- qj

®)

a; — aj’
.,apy are N distinct real numbers, and we construct

h(z) = f(2)f(2)" 6., 9)

such that h(e;) = x;x! 6,. Consequently, if the polynomial A(z)
is known at the master, then the full gradient Zil\i | W) =
Zf\i | xixiTH, can be obtained. To this end, r coded vectors

&) , which are assigned to W;, i € [N] are constructed

R

where aj, . .

<(1)

X7,

by evaluating f(z) at r different points, ,851), e, ﬁl(.r) ,ie.,
/) = f(BY), i € [Nj €lr].

W; computes igl)(igl))TO,, .. .,igr)(igr))TH,, and transmits
the resultant vector to the master after each computation.
Coded computation corresponding to coded data point ig’)

(10)

at W; provides the value of polynomial i(z) at point By). The
degree of the polynomials f(z) and h(z) are N—1 and 2(N —1),



respectively, which implies that A(z) can be interpolated from
its values at any 2N — 1 distinct points. Hence, any 2N — 1
computations received from any subset of the workers are
sufficient to obtain the full gradient.

We note that, in the original LCC scheme coded data points
are constructed evaluating r different polynomials at the same
data point, whereas in the multi-message LCC scheme, coded
data points are constructed evaluating a single polynomial at r
distinct points. Per iteration completion time can be reduced
with MMC since the partial computations of the non-persistent
stragglers are also utilized; however, at the expense of an
increase in the communication load. Nevertheless, it is possible
to set the number of polynomials to a different value to seek a
balance between the communication load and the per iteration
completion time. This will be illustrated in Section V.

IIT. UNCODED COMPUTATION AND COMMUNICATION
(UCuQ)

In UCUC, the data points are divided into N groups, where
N is the number of workers, and each group is assigned to
a different worker. While the per iteration completion time
is determined by the slowest worker in this case, it can be
reduced by assigning multiple data points to each worker, and
allowing it to communicate the result of its computation for
each data point right after its execution. We also remark here
that, with UCUC the master can apply SGD, and evaluate
the next iteration of the parameter vector without waiting
for all the computations, which is not possible with coded
computation. While we will mainly consider GD with a full
gradient computation in our analysis for a fair comparison with
the presented coded DGD approaches, we will show in Section
V that significant gains can be obtained in both computation
time and communication load by ignoring only 5% of the
computations.

Let A be the assignment matrix for the data points to workers,
where A(j, k) = i means that the ith data point is computed by
the kth worker in the jth order. An efficient way of constructing
A is to use a circular shift matrix, where

A(j,:) = circshift ([1: N],—( — 1)). (1D

We also note that non-persistent stragglers can be also utilized
via local parameter updating and weighted averaging over
workers without MMC [13].

IV. PER ITERATION COMPLETION TIME STATISTICS

In this section, we analyze the statistics of per iteration
completion time T for the DGD schemes introduced above.
For the analysis we consider a setup with N workers and
assume that the dataset is divided into N data points (these
could also be mini-batches). For the straggling behavior, we
adopt the model in [2] and [11], and assume that the probability
of completing s computations at any worker by time ¢ is given

by
1 — g us-a)
Fy(t) = ’
50 {0, else.

if t > sa,
(12)

The statistical model considered above is a shifted exponential
distribution, such that the duration of a computation cannot be
less than . Under this model, although the overall computation
time at a particular worker has an exponential distribution,
the duration of each computation is assumed to be identical.
Further, let Py(f) denote the probability of completing exactly
s computations by time r. We have F(t) = X.%,_; Py(r), where
P.(t) = F,(t), since there are a total of r computations assigned
to each user. One can observe that Pg(t) = Fy(t) — Fg41(¢); and,
hence Pg(f) can be written as follows:

0, if t < sa,

Py(t) = {1 = e7H(Gm),
e M=) _ pmu(§-a),

sa <t<(s+Da. (13)

(s+Da<t,

We divide the workers into r + 1 groups according to the
number of computations completed by time ¢. Let Ny(¢) be the
number of workers that have completed exactly s computations
by time 7, s = 0,...,r, and define N(¢) = (Ny(?), ..., N.(2)),
where 3%, Ns(t) = N. The probability of a particular realiza-
tion is given by

PrN) = [ | oo™ (N - ?v, N;
s=0 K

A

). (14)

At this point, we introduce M(t), which denotes the total
number of computations completed by all the workers by
time 7, i.e., M(t) = X'_; s X Ny(t), and let M;; denote the
threshold for obtaining the full gradient. Hence, the probability
of recovering the full gradient at the master by time ¢, Pr(T < 1),
is given by Pr(M(t) > M;;). Consequently, we have

PT < t) = Z Pr(N(1)), (15)
N(@#):M(t)>M;,
and
E[T] = / OoPr(T>t)dt (16)
0
=/oo 1- Pr(N(zr))| dt. a7
0

N():M(t)>M;,

Per iteration completion time statistics of non-straggler
threshold based schemes can be derived similarly. For a given
non-straggler threshold K;j, and per worker computation load
r, we have

N

PrT <1)= Z

N ‘ t
(k)(l _ e—y(;—a/))k(e—y(;—a))N—k’ (18)
k=K;j

when ¢t > ra, and 0 otherwise.

V. NUMERICAL RESULTS AND DISCUSSION

We first verify the correctness of the expressions provided
for the per iteration completion time statistics in (15) and
(18) through Monte Carlo simulations generating 100000
independent realizations. Then, we show that MMC approach
can reduce the average per-iteration completion time E[T]
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Fig. 1: Per iteration completion time statistics for N = 10 and
r=>5.

significantly. In particular, we analyze the per iteration com-
pletion time of different DGD schemes, gradient coding (GC),
Lagrange coded computation (LCC), and LCC with MMC
(LCC-MMQ). For the simulations we consider M = N = 10,
r =5, and use the cumulative density function (CDF) in (12)
with parameters u = 10 and @ = 0.01 for the completion time
statistics (we have made similar observations for a wide range
of parameters).

In Fig.1 we plot the CDF of the per iteration completion
time T for CG, LCC, and LCC-MMC schemes according to
the closed-form expressions derived in Section 4 and Monte
Carlo simulations. We observe from Fig. 1 that the provided
closed-form expressions match perfectly with the results from
the Monte Carlo simulations. We also observe that, LCC-MMC
outperforms the LCC as well as GC scheme.

Next, we consider the setup from [4], where M = 40 workers
are assigned N = 40 tasks to be computed at each iteration and
analyze the performance of the various DGD schemes with
respect to computation load r. Again, we use the distribution in
(12) with parameters ¢ = 10 and @ = 0.01. For the performance
analysis, we consider both the average per iteration completion
time E[7T] and the communication load, measured by the
average total number of transmissions from the workers to
the master, and the results obtained from 100000 Monte Carlo
realizations are illustrated in Fig. 2. From Fig. 2(a), we observe
that the UC-MMC scheme consistently outperforms LCC for
all computation load values. More interestingly, UC-MMC
performs very close to LCC-MMC, and for a small r, such as
r =2, it can even outperform UC-MMC. Hence, in terms of
the computation load UC-MMC can be considered as a better
option compared to LCC especially when r is low.

On the other hand, from Fig. 2(b) we observe that, in terms
of the communication load the best scheme is LCC, while the
UC-MMC introduces the highest communication load. We also
observe that the communication load of LCC-MMC remains
constant with r, whereas that of the LCC (UC-MMC) scheme
monotonically decreases (increases) with r. Accordingly, the
communication load of the LCC and UC-MMC schemes are

closest at r = 2. From both Fig. 2(a) and Fig. 2(b) we note
that, when r is low, e.g., when the workers have small storage
capacity, UC-MMC may outperform the LCC scheme in terms
of the average per iteration completion time including the
decoding time as well.

Remark 1. An important aspect of the average per-iteration
completion time that is ignored here, and by other works
in the literature, is the decoding complexity at the master.
Among these three schemes, UC-MMC has the lowest decoding
complexity, while LCC-MMC has the highest. However, as
discussed in Section II, the number of transmissions as well
as the decoding complexity can be reduced via increasing
the number of polynomials used in the decoding process. To
illustrate this, we consider a different implementation of the
LCC-MMC scheme, where two polynomials are used in the
encoding part, denoted by LCC-MMC-2. In this scheme, for
given r, the coded inputs correspond to the evaluation of two
polynomials, each of degree N —1, at r /2 different points. Each
worker sends a partial result to the master after execution of
two computations, which correspond to the evaluation of these
two polynomials at the same point. Since two polynomials
are used in the encoding, the number of transmissions is
reduced approximately to half compared to LCC-MMC as
illustrated in Fig. 2(b). A noticeable improvement is achieved
in the communication load, at the expense of a relatively
small increase in the average per iteration completion time as
illustrated in Fig. 2(a).

Overall, the optimal strategy highly depends on the network
structure. When the completion time is dominated by the
workers’ computation time, the LCC-MMC becomes the
best alternative. This might be the case for special-purpose
high performance computing (HPC) architectures employing
message passing interface (MPI) rather than communicating
through standard networking protocols [14]. On the other
hand, if the communication load is the bottleneck, then LCC
becomes more attractive especially when the workers have
enough storage capacity, i.e., large r. However, as we observe
in Fig. 2, the communication load and the average per iteration
completion time can be balanced via playing with the number
of polynomials used in the encoding process.

We also observe that when the workers have a small storage
capacity, i.e., small r, UC-MMC has the lowest per iteration
completion time. Moreover, when the decoding complexity
is taken into account, UC-MMC can be preferable to coded
computation schemes. Another advantage of the UC-MMC
scheme is its applicability to K-batch strategy [15] where
the parameter vector 6, is updated when any K gradient
values, corresponding to different mini-batches (data points),
are available at the master. Using gradients corresponding to
K data points, instead of the full gradient, the per iteration
completion time can be reduced. To this end, we consider
a partial gradient scheme with MMC, called UC-MMC-PG,
with 5% tolerance, i.e., K = N X 0.95. The results in Fig.
2 show that when r is small, UC-MMC-PG can reduce the
average completion time up to 70% compared to LCC, and up



0.7 T

-e-LCC

06 —+—LCC-MMC 1
UC-MMC
0.5 —$-LCC-MMC-2 1
—»-UC-MMC-PG

Average completion time E[T]

0 . . . . .
2 4 6 8 10 12 14 16 18 20

Computation load r

(a) Average completion time vs. computation load.

120 T T T T T T T T ‘
100 - 1
=l
8
. 806— ®
g
5 ——LCC
g 00y —e- LCC-MMC ]
E UC-MMC
Z 40m—+——+—+—|—+LCC-MMC-2 44—
S ——UC-MMC-PG
20 1
0 | | | | | 1 1 K

2 4 6 8 10 12 14 16 18 20
Computation load r

(b) Communication load vs. computation load.

Fig. 2: Per iteration completion time and communication load statistics.

to 33% compared to UC-MMC; while only two gradient values
are missing at each iteration. In addition to the improvement
in average completion time, the UC-MMC-PG scheme can
also reduce the communication load as shown in Fig. 2(b). We
remark that, in the K-batch approach the gradient used for each
update is less accurate compared to the full-gradient approach;
however, since the parameter vector 6, is updated over many
iterations, K-batch approach may converge to the optimal value
faster than the full-gradient approach. Further, this tolerance
rate can be dynamically updated through iterations to achieve
better convergence results [16].

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have introduced novel coded and uncoded DGD schemes
when MMC is allowed from each worker at each iteration. We
first provided a closed-form expression for the per iteration
completion time statistics of these schemes under a shifted
exponential computation time model, and verified our results
with Monte Carlo simulations. Then, we compared these
schemes with other DGD schemes in the literature in terms of
the average computation and communication loads incurred.

We have observed that allowing multiple messages to be
conveyed from each worker at each GD iteration can reduce
the average completion time significantly by expoiting non-
straggling workers at the expense of an increase in the
average communication load. We also observed that UCUC
with simple circular shift can be more efficient compared to
coded computation approaches when the workers have limited
storage capacity. We emphasize that, despite benefits of coded
computation in reducing the computation time, their relevance
in practical big data problems is questionable due to the need
to jointly transform the whole dataset, which may not even be
possible to store in a single worker.
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