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Abstract—Linear transmission of state measurements is stud-
ied, where the control center (CC) sends random state mea-
surement requests to multiple sensors. Each sensor is capable
of measuring multiple system parameters, and the CC asks for
a particular system parameter from each sensor at each time
slot. Delay constrained linear transmission of these measurements
over orthogonal fading channels is considered. The total mean-
square error (MSE) distortion is studied for Gaussian states and
channels under an average power constraint. For a particular
symmetric scenario, a round-robin scheduling algorithm and
optimal linear transmission (LT) scheme are presented. It is
shown that, as opposed to the case of a single parameter
measurement, the performance of the proposed LT strategy
improves as the delay constraint is relaxed, and achieves the
Shannon lower bound under certain matching conditions between
the source and the channel statistics.

I. INTRODUCTION

Closely monitoring the state of a smart grid (SG) is essential

to manage and control the network efficiently, and to detect

failures and reduce their impact [1]. Remote sensors deployed

throughout the grid track sensitive system parameters, such

as voltage, current magnitudes, active/reactive power values,

phase angles, as well as temperature and other physical pa-

rameters [2], [3]. Sensor measurements are transmitted to the

control center (CC) to estimate the smart grid state. In conven-

tional static state estimation, measurements are collected once

every two to four seconds and the state is updated once every

few minutes [4]. However, as the grid evolves and gets smarter,

near real-time accurate state estimation becomes significant

for a quicker respond to failures. This necessity imposes strict

delay constraints on the transmission of sensor measurements

to the CC; and hence, it is not practical to consider advanced

compression and channel coding techniques. Therefore, we

focus on linear transmission (LT) of sensor measurements,

which not only satisfies the delay constraints, but also limits

the complexity of encoding; and hence, the cost and energy

requirements of the sensors.

We consider N wireless sensors, each of which is capable

of measuring J distinct parameters locally. Time is discretized

into time slots (TSs), and at each TS, measurement of a

particular parameter is requested from each sensor by the CC.

The sensors learn these requests causally, but their statistics,

i.e., the probability with which each measurement is requested,
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is known in advance. There are N orthogonal channels avail-

able for the transmission of the requested measurements to

the CC. These channels are scheduled to sensors in advance;

independent of the realizations of the measurements and the

channel states. We focus on a symmetric model, in which the

statistics of the local measurements, the request probabilities

for each parameter, as well as the fading channel distributions

are the same for all the sensors. We study the minimum total

mean-square error (MSE) distortion achievable by LT under

delay constraints.

LT of Gaussian sources over Gaussian channels has been

extensively studied in the literature. In [5], the optimal linear

encoding scheme that matches an r-dimensional Gaussian

signal to a k-dimensional additive white Gaussian noise

(AWGN) vector channel under an average power constraint

is characterized. In [6], LT of a Gaussian source over a fading

AWGN channel is studied. It is shown that the optimal linear

encoding performance can be achieved by symbol-by-symbol

processing, and increasing the block length does not provide

any improvement, as opposed to nonlinear coding schemes.

In [7], linear encoding-decoding strategies for the transmission

of the noisy vector state measurements over a fading AWGN

channel is studied under diagonal and general observation

matrices. LT of vector Gaussian sources over multi-antenna

static and fading channels is studied in [8].

In our model, different from the previous multi-dimensional

source models, J system measurements are not all available at

the sensors at each TS, and instead, only one of them is to be

transmitted at each TS. Hence, the source can be considered

to have a Gaussian mixture distribution. We propose a round-

robin scheduling algorithm depending on the delay constraint,

find the corresponding optimal LT scheme, and characterize

the achievable average sum distortion subject to delay and

power constraints. In contrast to [6], we observe that in our

scenario the achievable average sum distortion diminishes as

the delay constraint is relaxed. We then consider the extreme

case when the delay constraint is removed, and show that

LT achieves the Shannon lower bound under certain matching

conditions between the source and channel statistics.

II. SYSTEM MODEL

Consider N sensors, each capable of measuring J distinct

state parameters locally. The jth state parameter is denoted

by Sj , which is a zero-mean Gaussian random variable (r.v.)
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with variance σ2
j , i.e., Sj ∼ N (0, σ2

j ), for j ∈ [1, J ], where

[1, J ] denotes the set {1, . . . , J}. Each state parameter is

independent and identically distributed (i.i.d.) over time and

sensors. At each TS, which corresponds to one use of the

network, each sensor measures one state parameter requested

by the CC. Let M ∈ [1, J ] denote the requested state

parameter, also i.i.d. over time and sensors, with probability

distribution function (pdf) Pr{M = m} = pM (m).
The maximum delay in transmitting a measurement to the

CC is d ∈ N
+, which is same for all the sensors and

parameters. There are N orthogonal fading channels available.

Let h = [h1, . . . , hN ] denote the channel vector at any TS,

whose entries are i.i.d. with pdf pH(h). We assume a fast-

fading model, i.e., h changes at each TS in an i.i.d. fashion.

The channels have AWGN with zero-mean and unit-variance.

We note that we consider a symmetric system model among

sensors, namely, the statistics of the system parameters Sj ,

measurement requests M , and channel states h are all i.i.d.

over sensors. We assume that both the encoder and decoder

know the instantaneous channel states, as well as the statistics

of the measured parameters, σ2
m, the measurement requests,

pM (m), and the channels, pH(h).
Scheduling of channels to sensors is done in advance; i.e.,

it cannot depend on the realizations of the measurements or

the channel states. At each scheduled TS for transmission, a

sensor transmits all its samples that have been taken within

the last d TSs. We consider an average power constraint of

P at each sensor. The goal is to have an estimate of each

requested measurement at the CC within the delay constraint.

The performance measure is the total MSE distortion for the

requested measurements.

A. Scheduling Algorithm

We consider a round-robin scheduling algorithm. Given a

delay constraint d, assuming N is an integer multiple of d,

we group sensors into N/d groups. Each group is assigned

d orthogonal channels. Each sensor transmits once every d
TSs, using all the d channels assigned to its own group, and

transmits all its measurements from the last d TSs. This round-

robin scheduling of channels provides additional degrees-of-

freedom to the sensors to match their measurements to a larger

number of channels at each transmission round. Fig. 1 depicts

an example of how N = 6 channels are scheduled to N = 6
sensors for different delay constraints d = {1, 2, 3, 6}. Notice

that for d = 1, one channel is assigned to each sensor for

all the TSs; hence, the sensor has no control on matching the

measurements to the channel states. On the other hand, for

d > 1, at each transmission round, a sensor can reorder its

measurements to match them to the available channels in an

optimal manner, or transmit their linear combinations.

We analyze the system performance for a single sensor.

Due to symmetry, results will apply to all the sensors. For

a delay constraint d, the sensor collects d measurements to

be transmitted over d orthogonal fading AWGN channels. Let

m = 〈m1, ...,md〉 be the sequence of d most recent requested

measurements including the current TS. The encoder input
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Fig. 1. Illustration of the round-robin scheduling policy for different delay
constraints.

vector is thus u = [sm1 , sm2 , . . . , smd
], where each entry is

the measured value of the requested parameter, i.e., sm2 is the

measured value of parameter m2.

The signal received at the CC is given by y = Hx+z, where

x and y are the length-d channel input and output vectors,

respectively, and z is the length-d i.i.d. AWGN noise vector

with z ∼ N (0, I). H is a d×d diagonal channel matrix with

i.i.d. fading states. The encoder maps its measurement vector

u, to a channel input vector x, using an encoding function

f : Rd×R
d → R

d, that satisfies the average power constraint

P :

1

d
EM,H

[

Tr
{

ESM
[xx

T
]
}

]

≤ P.

The receiver estimates the measurement vector as û = g(y),
g : Rd×R

d → R
d. The total MSE distortion measure is given

by :

D̄ =
1

d
EM,H

[

Tr
{

ESM ,Z [(u− û)(u− û)T ]
}]

,

We are interested in the minimum total MSE D̄∗, when

f and g are restricted to be linear. Hereafter, f and g are

represented by d× d matrices F and G, respectively.

III. STRICT DELAY CONSTRAINT

We first consider a strict delay constraint of d = 1. In this

case, the encoding function f is scalar. The decoding function

g, is the linear MMSE estimator [9], and thus also scalar. The

MSE D̄, and the average power P̄ , as a function of pH(h)
and σ2

m are given by :

D̄ =

J
∑

m=1

pM (m)

∫

σ2
m

h2f2σ2
m + 1

pH(h)dh, (1)

P̄ =

J
∑

m=1

pM (m)

∫

f2σ2
mpH(h)dh. (2)

We define w(h,m) , σm

h
and l(h,m) , 1

hσm
. The optimal

linear encoding function f∗ is found as the solution to the

convex optimization problem D̄∗ , min D̄, subject to the

average power constraint P̄ ≤ P , as follows :

f∗(h,m) = l

√

[

λ∗

l
− 1

]+

, (3)

where λ∗ is the optimal Lagrange multiplier, such that P̄ = P .
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Fig. 2. Water-filling reflected on a reciprocal mirror.

The optimal power allocation and the corresponding distor-

tion are given by :

P ∗(h,m) = w [λ∗ − l]
+
, (4)

D∗(h,m) = wmin

(

1

λ∗
,
1

l

)

. (5)

where P̄ = EM,H [P ∗(h,m)] and D̄ = EM,H [D∗(h,m)].
In Fig. 2 we present a graphical interpretation of the optimal

power allocation and the corresponding distortion for J = 2
parameters with variances σ2

1 , σ
2
2 , which are requested with

probabilities pM (1), pM (2), respectively, and a discrete fading

channel with three states, where the kth state ĥk, is observed

with probability pH(ĥk), k = 1, 2, 3. Fig. 2 depicts rectangles

that are placed upon a mirror surface and their reciprocally

scaled images below. Rectangles represent all possible source-

channel pairs {σm, ĥk}, where lkm = 1

ĥkσm

and wkm = σm

ĥk

indicate the height and width of the rectangles, respectively.

While the optimal power allocation is obtained by water-filling

across the rectangles placed upon the mirror, corresponding

distortion values are found by simply looking at its reflection

on the mirror, which takes the reciprocal of the heights. We

call this water-filling reflected on a reciprocal mirror.

IV. RELAXED DELAY CONSTRAINT

Next, we consider a delay constraint 1 < d ≤ N . We

characterize the corresponding optimal LT, and the achievable

minimum MSE distortion. Given the linear encoding matrix

F, diagonal channel matrix H, and the covariance matrix of

the measurement vector Cu, the optimal decoding function is

again the linear MMSE estimator matrix G. Then, the MSE

distortion D̄, and the average power P̄ are given by :

D̄ =
1

d
Tr

{

EM,H[Cu −CuF
THTΦ−1HFCu]

}

, (6)

P̄ =
1

d
Tr

{

EM,H[FCuF
T ]
}

, (7)

where Cu = E[uuT ] and Φ , HFCuF
THT + I.

For a set of static parallel AWGN channels and Gaussian

vector sources, the linear encoding matrix F∗ that minimizes

the MSE distortion D̄, subject to an average power constraint

P is derived in [5]. It is shown that the optimal linear en-

coding matrix transmits one measurement over each channel.

The optimal mapping between channels and measurements

is as follows: We first reorder the measurements u, to get

ū = [sm(1)
, sm(2)

, . . . , sm(d)
], where the variances of the

ordered measurements satisfy σ2
m(1)

≤ σ2
m(2)

≤ . . . ≤ σ2
m(d)

,

and reorder the fading states h = [h1, h2, . . . , hd], such that

the reordered channel states h̄ =
[

h(1), h(2), . . . , h(d)

]

satisfy

h(1) ≤ h(2) ≤ . . . ≤ h(d). Then, the optimal linear encoding

matrix F̄∗ is diagonal F̄∗ = diag
[

f(1), f(2), . . . , f(d)
]

, and its

diagonal entries can be found solving the following convex

optimization problem :

D̄∗ , min
f(1),...,f(d)

EM(t),H(t)

[

1

d

d
∑

t=1

σ2
m(t)

h2
(t)f

2
(t)σ

2
m(t)

+ 1

]

s.t. EM(t),H(t)

[

1

d

d
∑

t=1

f2
(t)σ

2
m(t)

]

≤ P,

(8)

where the expectations are taken over M(t) and H(t). The order

statistics of the t-th smallest element of {m1,m2, . . . ,md},

which are i.i.d. random samples of M , are denoted by the

r.v. M(t) ∈ [1, J ] with distribution pM(t)
(m). Without loss

of generality, we assume that ordering i.i.d random samples

of M(t) in ascending order, i.e., m(1) ≤ m(2) ≤ · · · ≤ m(d),

implies ordering the measurements in ascending variances, i.e.,

σ2
m(1)

≤ σ2
m(2)

≤ · · · ≤ σ2
m(d)

. Similarly, the order statistics of

the t-th smallest element of {h1, h2, . . . , hd}, the i.i.d. random

fading states of the channels, is denoted by the r.v. H(t) ∈ R

with distribution pH(t)
(h).

Since the objective function and the inequality constraints

are convex functions of f2
(t), from the KKT conditions we

obtain the optimal linear encoding matrix as:

f∗

(t)(h(t),m(t)) = l(t)

√

[

δ∗

l(t)
− 1

]+

, (9)

where l(t)(h(t),m(t)) = 1
h(t)σm(t)

, and δ∗ is the optimal

Lagrange multiplier, such that P̄ = P under the delay

constraint d.

Similarly to the strict delay constraint, the optimal power

allocation and the corresponding distortion can be found by

water-filling, and its reflection on a reciprocal mirror, respec-

tively. The optimal δ∗ depends on pM(t)
(m) and pH(t)

(h),
which can be found explicitly using the order statistics.

V. NO DELAY CONSTRAINT

Another extreme scenario for our system model is obtained

when the delay constraint is completely removed. We first

state the theoretical performance bound without any delay or

complexity constraints, and prove that this lower bound can

be achieved by LT under certain conditions.

A. The Shannon Lower Bound

Shannon’s well known source-channel separation theorem

states that the optimal distortion is achieved by concatenating

the optimal source and channel codes when there is no delay

or complexity constraints, and if the source and channel

distributions are ergodic. For the symmetric model in this

paper, the Shannon lower bound is achieved by allocating one

channel to each sensor. The sensor can transmit to the CC

2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM)

55



at the ergodic capacity, C̄e, of the underlying fading channel,

while the achieved distortion, D̄e, is found by evaluating the

distortion-rate function for our source model at the ergodic

channel capacity.

Since the transmitter and receiver both know the channel

state, the ergodic capacity in terms of the optimal power

allocation scheme P ∗

e (h) is given by:

C̄e , EH

[

1

2
log

(

1 + h2P ∗

e (h)
)

]

, (10)

where P ∗

e (h) is found by the water-filling algorithm as

P ∗

e (h) = [α∗−1/h2]+, such that α∗ satisfies EH [P ∗

e (h)] = P .

The distortion-rate function for a Gaussian source Sm ∼
N(0, σ2

m), each of which is observed with probability pM (m)
for m ∈ [1, J ], is defined in terms of the optimal rate allocation

function R∗

e(σm) as:

D̄e , EM

[

σ2
m2−2R∗

e
(σm)

]

. (11)

R∗

e(σm) and the distortion D∗

e(σm) are:

R∗

e(σm) =
1

2

[

log

(

σ2
m

β∗

)]+

, (12)

D∗

e(σm) = min
(

β∗, σ2
m

)

, (13)

where β∗ is chosen such that EM [R∗

e(σm)] = C̄e.

The Shannon lower bound is not tight when the encoder

is limited to LT, even if the delay constraint is removed.

However, the following theorem states that, the Shannon lower

bound is tight when the channels follow a discrete probability

distribution with the same number of states as the number of

different parameters, J , and the channel states and the source

variances satisfy a certain matching condition.

Assume, without loss of generality, that the channels states

and source variances are ordered as, ĥ1 > ĥ2 > . . . > ĥJ ,

and σ2
1 > σ2

2 > . . . > σ2
J , where ĥm denotes the mth discrete

channel state for m ∈ [1, J ].

Theorem 1. For the discrete fading channel model introduced

above, under no delay constraint, i.e., d → ∞, if the source

variances and the channel states satisfy σ1

ĥ1
= · · · = σJ

ĥJ

, and

pM (m) = pH(ĥm), for all m ∈ [1, J ], then the Shannon lower

bound can be achieved by LT.

VI. NUMERICAL RESULTS

We illustrate the performance of LT for strict, relaxed

and no delay constraint scenarios through numerical results.

Fig. 3(a) shows the achievable average sum distortion versus

the average power for J = 4 Gaussian system parameters with

variances {625, 225, 64, 4}, each of which is requested with

equal probability, i.e., pM (m) = 0.25, for m ∈ [1, 4]. The

discrete fading channel has four states {25, 15, 8, 2}, each of

which is observed with equal probability, i.e., pH(ĥk) = 0.25,

for k ∈ [1, 4]. We observe that the achievable total MSE

decreases as the delay constraint is relaxed. In addition,

Fig. 3(a) illustrates that LT under no delay constraint achieves

the Shannon lower bound, as claimed by Theorem 1.
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Fig. 3. Achievable total MSE with respect to average power.

Fig. 3(b) shows the MSE distortion versus the average

power for J = 4 parameters with variances {30, 25, 15, 2},

which are requested with probabilities {0.1, 0.6, 0.2, 0.1}, re-

spectively. Considering the same discrete fading channel as

above, we observe that the LT in this case does not meet

the Shannon lower bound even when the delay constraint is

relaxed; however, the gap between the two is quite small.

VII. CONCLUSIONS

We have studied the delay constrained linear encoding

of multiple state measurements from N sensors to a CC

over orthogonal fading AWGN channels. We have employed

a channel scheduling algorithm that schedules the available

channels to sensors in a round-robin fashion in order to

provide the maximum degrees-of-freedom to each sensor when

matching its measurements to the orthogonal fading channels.

We have characterized the achievable total MSE for varying

delay constraints, and showed that it decreases as the delay

constraint is relaxed. We have also characterized the Shannon

lower bound when the delay constraint is removed, and shown

that LT achieves this lower bound under certain matching

conditions between the source and the channel statistics.
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