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Abstract—We study the privacy-utility trade-off in data release
under a rate constraint. An agent observes random variable
X and reveals information U to the utility provider over a
rate-constrained channel, such that 7(X;U) < R, in return
for utility /(U;Y), where Y denotes a latent random variable
correlated with X. While the objective is to maximize the utility,
the agent also wants to protect a private information S, also
correlated with X and Y from the utility provider. The trade-off
between rate, utility and private information leakage is studied.
This problem can be thought of as a generalization of both the
information bottleneck and privacy funnel problems, reducing
to either of the two problems in special cases. A necessary and
sufficient condition for the existence of positive utility under zero
private information leakage (or perfect privacy) is established.
Subsequently, the problem of maximizing the utility subject to
perfect privacy constraint is shown to be a linear program when
the rate constraint is inactive. Also, the maximum value of the
ratio of utility to infinitesimal private information leakage for an
arbitrary rate constraint is obtained.

I. INTRODUCTION

We consider the setup shown in Fig. 1 consisting of two
parties, an agent and a remote utility provider. The agent
observes a random variable (r.v.) X, and it acquires utility
based on the information it shares with the utility provider.
In particular, the utility acquired depends on the information
the agent reveals to the utility provider about a latent r.v.
Y, which may not be directly available to the agent. In
particular, denoting the information the agent reveals to the
utility provider by r.v. U, the utility acquired is measured
by I(U;Y). A rate constraint is imposed on the amount of
information that can be shared with the utility provider; and
therefore, the r.v. U must satisfy I(X;U) < R. We further
assume that there is a latent private part of agent’s information,
represented by r.v. .S, which the agent does not want to reveal
to the utility provider. The amount of private information
leakage (henceforth also referred to as leakage) to the utility
provider is measured by I(S;U). While X, Y and S can
be arbitrarily correlated, since the revealed information U
is generated observing only X, the Markov chain condition
(S,Y)— X — U must hold. This scenario occurs commonly in
practice, e.g., a medical organization (agent) communicating
patient data, e.g., test results, MRI, etc., to another laboratory
(utility provider) over a rate-limited link. The goal is to keep
as much information as possible about the attributes of data
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Fig. 1: System model

relevant for the requested analysis, while maintaining the
privacy of some other latent features that can be inferred from
this data, e.g., gender, age or identity of the patient.

While it is clear that maximum privacy can be achieved
by generating a r.v. U independent of X, this results in zero
utility. More critically, revealing more information results in
higher utility, but at the expense of leaking more private infor-
mation, a dilemma of most modern information networks. We
are interested in studying the fundamental trade-off between
the rate, utility and leakage for a given joint distribution pgxy
of ther.v’s S, X and Y, i.e., we are interested in characterizing
the set R(psxy ), defined as follows:

R(psxy)
_ J(R,k,Q) eRS: FU st I(X;U) <R, "
CUU) 2k, ISU)<Q, (SY)-X-Uf

Note that R(psxy) depends on the joint distribution pgxy
only through the marginal distributions pgx and pxy.

The problem of characterizing R(psxy) is equivalent to
that of determining J(psxv, R, ) for all values of (R, (),
defined as

J(psxv, R,Q)

 [I(v;U): FU st I(X;U) <R, ,
=IP [0y <Qand (SY) - x—vUf P

This is a generalization of two distinct problems that have
received a lot of recent attention in information theory and
machine learning, namely the information bottleneck [1] (also
see [2] that studies an equivalent problem) and privacy funnel
[3] problems. For a given joint distribution pxy and fixed
parameter I?, the information bottleneck problem is defined as
the optimization problem that maximizes utility I(U;Y") under
a given rate constraint I(X;U) < R such that Y — X — U
form a Markov chain. On the other hand, for a given joint
distribution pgx and fixed parameter x, the privacy funnel is
defined as the optimization problem that minimizes the leakage



I(S;U) subject to a given constraint I(X;U) > & on the
amount of information revealed about r.v. X, such that S—X —
U form a Markov chain. It is easy to see that the information
bottleneck and privacy funnel problems are special cases of
R(psxy) when Q > H(S), and Y = X and R > H(X),
respectively.

It is well known that the information bottleneck and privacy
funnel problems are non-convex optimization problems, and
hence, closed form solutions or efficient algorithms to obtain
the global optimal solutions do not exist in general. In [1],
an alternating minimization algorithm is proposed for the
information bottleneck problem by introducing a distortion
measure based on Kullback-Leibler divergence. The optimal
privacy-utility coefficient, defined as

I(S;U
es) = 0 ®
S—X-U ’

is studied in [4]. Necessary and sufficient conditions under
which v*(psx) = 0, referred to as perfect privacy therein, is
established, based on the smallest singular value of a normal-
ized probability distribution matrix. In [5], an equivalent form
of this problem is studied. Defining utility as I(X;U), the
problem of utility maximization is considered with a constraint
on the privacy leakage, I(S;U) < e. This can be written as
sup I(X;U). 4)
Pu|x:

S—X-U,
I(S;U)<e

ge(pSX) =

In [5], perfect privacy is said to be feasible if go(psx) > 0,
and a necessary and sufficient condition on the joint distribu-
tion psx is established, such that perfect privacy is feasible.

The problem of characterizing R(psxy) in (1) can be
considered as a generalization of computing g.(psx) in (4),
in which, there is an additional r.v. Y, which determines the
utility to be maximized, I(Y;U), such that Y — X — U
form a Markov chain, and an extra rate constraint is also
introduced, ie., I(X;U) < R. We also briefly mention
that while mutual information leakage is the privacy measure
considered here, several other measures of privacy exist in the
literature, e.g., differential privacy [6], k-anonymity [7], total
variation distance [8], etc.. In the rest of the paper, we focus
on the equivalent optimization problem in the right hand side
(R.H.S.) of (2). Before proceeding, we introduce the notations
required to present our results.

A. Notations

Random variables, their realizations and their supports are
denoted by upper case, lower case and calligraphic letters,
e.g., X, x and X, respectively. Column and row vectors are
denoted by lower case bold letters, e.g., a and a”, respectively.
The probability mass function (p.m.f.) of a discrete r.v. X
(with finite support X)) is treated as a column vector of length
|X'| and denoted by px. For r.v’s X and Y, the conditional
probability distribution py|x is represented by a probability
matrix of dimension |Y| x |X|, i.e., the sum of the entries in
each column is equal to 1. Singular values of a matrix A of

size m X n are denoted by o;(A) (or simply as 0;), 1 <i <
min(m,n).The set of all p.m.f.’s defined over X, represented
as probability vectors of length |X|, is denoted by Px. The
i'" component of a vector x is denoted by x(i). 1, x| denotes
a column vector of length |X’| with all the components equal
to 1.

II. PERFECT PRIVACY

We assume that X, Y and S have finite support, i.e., | X|,
|V, |S| < co. The next proposition shows that the supremum
in (2) can be replaced by a maximum.

Proposition 1. In (2), it suffices to consider auxiliary r.v.’s U
such that [U| < |X| + 2. Also, the supremum in (2) can be
replaced by a maximum.

The proof follows from standard arguments based on the
Fenchel-Eggleston-Carathéodory’s Theorem [9]. By Proposi-
tion 1, J(psxy, R, ) can be written as

J(psxy, R, Q)
=sup{I(Y;U) s.t. U € G(psxvy, R,Q)}, (5)
where,
G(psxy,R,Q)
U Ix0) <R I(S;U) <9 "
Let
J(psxy, R) := J(psxy, R,0)

=max{I(Y;U): U € G(psxy,R,0)} (7)

denote the maximum utility achievable under the given rate
constraint R and perfect privacy constraint Q@ = 0. In the
sequel, we will establish the conditions on the joint probability
distribution psxy under which J(psxy,R) > 0. Note that
J(psxy,0) = 0 since 0 < I(Y;U) < I(U;X) = 0;
and hence, we may assume R > 0. Since X, ) and S are
finite discrete sets by assumption, without loss of generality
(w.lo.g.), we may assume that px(z) > 0, py(y) > 0 and
ps(s) > 0 forall x € X,y € Y and s € S, respectively
(since otherwise, we may modify the support by discarding
those points with zero probability without affecting anything).
Due to Proposition 1, we may assume w.lo.g. that &/ =
{1,..., U}, U] < |X|+2, and using the same arguments as
above, that, in the supremum in (7), py(u) > 0, ¥V u € U.
Let P} := {pv € Pu : pu(u) >0, Yu € U} and

G (psxy,R,pu)
= {pxw > pu@pxu(elu) = px (@), Vo € X,
(S.Y)— X —U, I(S;U) =0, I(X;U) < R}. )

Note that we can write

J(psxy,R) = max max I(Y;U). 9)
puEPF, Pxjv€Y (Psxvy,R.pu)
[UI<|X]+2



Let N(A) and N(A)* denote the null space of a matrix A
and its orthogonal complement, respectively. We define

J(psxy,R,pv)

= {pX|U =[x1- Xy i % >0, x; = px +a,

a; € N(pspx): 1<i< .Y pu(u)pxiu(eln)
=px(@), Vo e, I(XG;U) <R, (S,Y)-X-U}.

The next result, which is similar in spirit to Proposition 2 in
[5], provides a necessary and sufficient condition under which
J(psxy, R) > 0.

Proposition 2. (i) J(psxy,R) > 0 if and only if
dim (N(pS|X) ﬂN(py|X)J‘) > 1. Moreover, it is suf-
ficient to consider U such that U] < |X| + 1 and
G'(psxv> Bopr) = J*(psxy- R, pu) for the maxi-
mization in (9), where J*(psxy,R,pu) denotes the
extreme points of the convex set J(psxv, R, pu).

(ii) J(psxy,R) is a non-decreasing function of R.

Proof: To begin with, note that N'(ps|x ) "N (py|x)™* is

a linear space since it is the intersection of two linear spaces,

and hence, its dimension is well-defined. We first prove that

J(psxy,R) > 0 if dim (M(psx) "N (pyx)*) > L. By

definition, I(S;U) = 0, or equivalently, S L U, if and only
if

psiw(slu) = ps(s),Vuecl,seS. (10)

From the Markov chain S — X — U, we have Psjuy =
Ps|xPx|u- Writing ps = ps|xPx, it follows that (10) holds
if and only if,

Psix (Px|u=u —Px) =0, Vuel. (11)

Similarly, from ¥ — X — U, it follows that I(V; W) > 0 if
and only if

Py |x (Px|u=u — Px) # 0 for some u € U. (12)
Also, note that for a € N(pg|x).
1/yja=1[5psxa=0. (13)

Hence, for sufficiently small # € R and a € M (pg|x). pPx +
fa is a probability vector. Now, suppose that dim (N (pgx )N
N (py|x)*") # @. This implies that there exists a # 0, a €
N(psix) N N(py|x)*. We will now show that there exists
an auxiliary r.v. U* and conditional probability distribution
pPx|u+ such that I(Y;U*) >0, I(S;U*) =0, [(X;U*) < R,
and (S,Y)—X —U™* form Markov chains. Let U* ~ Bernoulli
(0.5). For arbitrary 6 > 0, let

Px|U-=0 = Px + 0a,
Px|U==1 = Px — fa,
Ps|\ux=u ‘= ZIGX pX|U*:u(x|u)pS|X(5|x)7 u € {07 1}7

Py |U*=u ‘= ZmGX Px|v+=u(Zlu)Py|x (y]7), v € {0,1}.

Due to (13), px|y=—o and pxy+—1 are probability vectors
for 6 > 0 sufficiently small. Also, note that

ZueX* pu-(w)pxu-(zu) = px(z), V€ X.

Thus, the marginal distribution of X is preserved. From (11)
and (12), it follows that I(S;U*) = 0 and I(Y;U*) > 0.
Also,

I(X:U*) = § (D(px + 6allpx) + D(px — fal[px)).

From the continuity of D(px||qx) in px (for px << qx)
for a fixed qy, it follows that there exists 6* > 0 (sufficiently
small) such that

D(px +6*al|lpx) < R, (14)
D(px — 0*allpx) < R. (15)
For such a #*, it follows that I(X;U*) < R. Hence,

J(pSXYa R) > 0.

To prove the opposite implication, notice from (11) and
(12) that J(psxy,R) > 0 only if there exists an aux-
iliary rv. U and a # 0, a € N(pgx) N N(py|x)*"
such that for some u € U, pxjy—=. = Px + a. This
implies that dim(N(pgjx) N N(pyjx)*) > 1. Thus,
dim (M (ps)x) NN (py|x)*) > 1 is both necessary and
sufficient condition for J(psxy,R) > 0, and we can write

J(psxy,R)
= max max I(Y;U). (16)
pu€PH, PxjveI(Psxy, R.pu)
[UI<|x|+2

Now, we prove the second statement of (). From Propo-
sition 1, it follows that [U/| < |X| + 1 is sufficient since
for pxjv € J(psxv,R,pv), I(S;U) = 0 is automatically
satisfied. Also, note that J(psxy, R, pu) is a compact and
convex set since || is bounded, and that I(Y; U) is a convex
function of pyx. It is well known that the maximum of a
convex function over a compact convex set is achieved at the
extreme points of the set. Thus, it is sufficient to consider
J*(psxy,R,pu) in place of J(psxvy, R, pv) in (16). This
completes the proof of (z). Part (i) follows from the facts that
T (psxvy, R, pv) € T*(psxy, R, pv) for R < R’ and the
supremum is non-decreasing with respect to set inclusion. This
completes the proof. [ ]

While Proposition 2 provides a necessary and sufficient
condition under which J(psxy,R) > 0, it would be inter-
esting to explicitly compute J(psxy, R). However, this is a
non-convex optimization problem and hence, a closed form
solution for the global optima does not exist in general. In
[5], it was shown that computing go(psx) is a linear pro-
gram. It can be shown similarly that computing J(psxy, R)
for R > H(X) is also a linear program. Note that when
R > H(X), the constraint I(X;U) < R is inactive. Hence,
J(psxy,R) = J(psxy,H(X)) for all R > H(X). We will
assume that dim(N (pg|x )N (py|x)®) > 1, since otherwise
J(Psxy,R) = 0. Let the singular value decomposition of
Ps|x be given by pgix = BXCT, where B (resp. C) is the



orthogonal matrix of dimension |S| x |S| (resp. |X]| x |X]),
whose columns consist of the left (resp. right) singular vectors
of pgix and X is a diagonal matrix whose entries are the
singular values of pg|yx. Assuming w.l.o.g. that the diagonal
entries of X are arranged in decreasing order of magnitude,
the null space of pg|x is given by

N(ps|x) = Span(ci, - ,¢|x)),

for some | < |X|, where ¢;,1 < i < |X| denote the column
vectors of C. Let

E = E(pg|x) := [c1

Then the constraint {x; > 0, x; = px + a;, a; €
N(psix), 1 < i < ||} is equivalent to {x; > 0, Ex; =
Epx, 1 <i<|U|}. Let
E(E) :={x:

J(psxy,H(X)) can be written alternatively as
J(psxv, H(X))

.. Cl—l]T~

x>0, Ex = Epx}.

= max max I(Y;U), (17)
puePH, PxwveI(Psxy . H(X),pv)
U< x]+1
where,
J(psxv,H(X),pv)
= {pX\U =[x Xyl ix € E(B), 1< < U,
> pu(wpxjp(elu) = px(a), Yz € X,
u€eU
(S,Y)—X—U}. (18)

Let £*(E) denote the extreme points of the convex set £(E).

Proposition 3. It is sufficient to restrict to £*(E) in place of
E(E) in (18).

Thanks to Proposition 3, we can write

J(psxy,H(X))

= max, max I(Y;U), (19)
puEPS, Pxju€I*(Psxy, H(X).pv)
U<l

where,

T (psxy, H(X),pv)
= {pX|U = [X1'~-x‘u‘] ix; € EM(R), 1 <i<|U|,

ZpU pX(x)avxe‘Xv
ucl

(S,V) - X — U}.

pX\U (z[u) =

Since £(F) is a set defined by linear constraints, it is well
known that £*(E) consists of the basic feasible solutions of
the system of linear equations defining £(FE) [10]. Since the
rank of E is [ — 1, the number of elements in £*(E) is atmost
(/*). The problem in (19) can be solved in two steps as

follows.

1) First, the matrix pxjy is constructed by choosing
columns from the set £*(E), i.e., for some x; € £*(E),
L<i < Ul pxjw = X1 Xjy)-

2) Note that given px|y as constructed in step I,
S M pu(iyp (ali), HY|U) and H(X|U) are all
linear functlons of the weights py(i),i € [1 : |U|] that
satisfies 1 p (i) = 1. More specifically, we have

u|

H(Y|U) = ZPU )1 (Py|xXi),
\U|

X|U ZpU fl Xz

where

¥
= x(j)log(x(5))
j=1

Hence, finding the optimal py that maximizes (17) is equiva-
lent to finding the weights pyr(7), 1 <4 < ||, that maximizes

H(Y) - Zlu‘l pu (i) f1(x;) subject to
|tA] |

> puli)=1Tand Y puli)x; =
i=1 i=1

This is a simple linear program and can be solved efficiently.
To illustrate the algorithm above, consider the following
example.

Example 1. Ler S = X = {0,1,2,3}, Y = {0,1}, and let
Psxy be defined by

110 0 04 0.6
110 0 02 08
Psx =0.125- 15 1 4| PYIX= |93 o7]°
00 1 1 01 0.9

and S — X — Y. The singular value decomposition of pgs|x
yields psjx = BX.CT, where 01 = 09 = 1, 03 = 04 =
0, B = [bl bg b3 b4], C = [Cl Co2 C3 04}, b1 = C =
(—0.7071 —0.7071 0 0)T, by = ¢ = (0 0 — 0.7071 —

0.7071)7, by = —c3 = (—0.7071 0.7071 0 0)7 and by =
—cy = (00 —0.7071 0.7071)7. Then,
N(ps|x) = Span (c3, c4)
and
B v [~0.7071 —0.7071 0 0
E=leic” = 0 0 —0.7071  —0.7071| "

It is easy to see that the rank of E is 2, and there are 4
possible ways (at most (3) = 6 in general) of choosing two
linearly independent columns of E, which correspond to the
basic feasible solutions of the system of linear equations that
define E(E). Denoting by ej, the j" column of E, these
are {e1,e3}, {e1,es}, {es,e3} and {es,es}, and lead to
the basic feasible solutions [0.5 0 0.5 07, [0.5 0 0 0.5]T,



[0 0.5 0.5 0] and [0 0.5 0 0.5]7, respectively. Thus, finding
the maximum utility under perfect privacy amounts to solving
the following optimization problem:

max 0.8113 —[0.9341 0.8113 0.8113 0.6098] py (20)

+
PuEP

05 05 0 0 0.25
0 0 05 0.5 0.25
st. 105 0 05 0 |py=1025 (21)
0 05 0 05 0.25
1 1 1 1 1

Solving (20) yields the solution p}; = [0.5 0 0 0.5]7 with the
maximum utility 1(Y; U*) = 0.0393.

III. PRIVACY-UTILITY TRADE-OFF

In Proposition 2, we characterized the conditions under
which a positive utility is achievable along with perfect
privacy. Next, we study the behaviour of the privacy-utility
trade-off when a small amount of leakage is allowed. More
specifically, we provide a characterization of the maximum

value of the slope of the utility-leakage trade-off w,
when 2 > 0 is small, i.e.,
1 J(pSXY7R7 Q)
A(psxvy, R) = Jim === (22)

When J(psxy,R,0) can be efficiently computed, as dis-
cussed above, A(psxy,R) together with J(psxy,R,0)
(which is the vertical intercept in the utility-leakage graph)
provides a good linear approximation to J(psxy, R, ) for
small positive values of €.

When I(Y;X) =0, then I(Y;U)=0foral Y — X — U,
hence J(psxvy, R,Q) =0, and consequently, A(psxy,R) =
0. On the other hand, when I(Y;X) > 0 and I(S;X) =0
(which implies I(S;U) = 0 for all S — X — U), then taking
U such that I(X;U) < R and I(Y;U) > 0 (such a U always
exists by time-sharing between U = X and U equal to a
constant), we obtain A(psxy, R) = oo. Hence, in the sequel,
we assume that I(Y; X') and I(S; X) are both positive.

Let px and qx denote two p.m.f’s on X. Let pg (resp.
qs) and py (resp. qy) denote the output of the channel pg)x
and py|x with input px (resp. qx), i.., Ps = Ps|xPx.
ds := Ps|x4x, Py := Py|xPx and qy := py|xqx. Define

D(QY”PY)

AN (psx,p = sup ,
(Psx, pyx) D(as|lps)

ax:

Y #PY
with the convention that if there exists qx such that qy #
py and qs = pg, then A*(psx,pyx) = oo. Note that
A*(psx,Pyx) € [0,00], and is well-defined.

Theorem 4. For any R > 0 and given distribution psxy
such that I(Y; X) > 0 and 1(S; X) > 0,
A(psxy, R) = A*(Psx, Prx)- (23)

Note that the R.H.S. of (23) does not depend on the rate
constraint R, as intuitively expected.

While S and Y are assumed to be latent variables in our
setting, the results stated above easily extend to the scenario
when S or Y, or both S and Y are directly observed by the
agent. In fact, these scenarios are special cases of our setting
in which X = (S,W), X = (Y,/W), or X = (S,Y, W),
respectively, for some r.v. W with finite support. We may
assume w.l.o.g. that |W| > 1, since we may take TV to be a
constant if W = &. We next show that when X = (S,Y, W),
it is always possible to obtain a positive utility under perfect
privacy, provided Y is not a deterministic function of S.

Proposition 5. If X = (S,Y, W) for some rv. W (|W| < 00),
then J(psxy,R) > 0 if and only if Y is not a deterministic
Sfunction of S.

Proof: If Y is not a deterministic function of S, there
exists some s; € S, wi,wy € W and y;,y2 € )V such that

Y1 # Y2, Psyw (s1,y1,w1) > 0 and psyw (s1,y2, w2) > 0.
Let U denote a Bernoulli(0.5) r.v. and

pSYW|U(37 y, w|0)

pSYW(Sava)—’_Gv if (Svyaw) = (slaylvwl)a
= pSYW(S’ y,'lU) -6 lf (S,y, w) = (817 y27w2)>
Psyw (s, y,w), otherwise,

pSYW\U(SavaH)
= 2pSYW(Sa va)_pSYW|U(Say7w‘0)av (Sa y7w) S SXyXWa

where ¢ > 0 is chosen sufficiently small such that
psyw‘U(Sl,yQ,’LUQlO) > 0 and 0 < I(S,Y,W,U) < R.
It is easy to see that pgyw y—o and psyw|y=1 are valid
probability vectors, psyw (s, y,w) is preserved in psywu,
I(S;U) = 0 and I(Y;U) > 0. Hence, J(psxy,R) > 0.
On the other hand, if Y = f(5) for some f : S — ), then
Y — S — U holds. Hence, I(S;U) = 0 implies I(Y;U) = 0.
This completes the proof. [ ]
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