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Abstract—Global electricity smart meter roll-out has brought
about serious privacy risks for consumers. The masking of
consumer consumption using rechargeable batteries has been
studied as a means of protecting consumer privacy. One metric
used to measure the effectiveness of such approaches is the
empirical mutual information (MI), whose computation requires
the estimation of both consumer load and grid-visible load
distributions. These distributions have previously been modelled
as independent and identically distributed (i.i.d.), or as stationary
first-order Markov processes for simplicity. However, consumer
load statistics are time-varying in nature, and have inherent inter-
temporal dependencies. Consequently, the empirical MI based
on the stationarity assumption lacks accuracy, resulting in the
risk of underestimating the information leakage. In this paper,
we propose using features to characterise the change in con-
sumer demand, modelling them as feature-dependent first-order
Markov processes to better approximate the actual privacy-loss.
Results indicate that this approach is more accurate than i.i.d.
models, and in certain cases may be a better empirical estimate
of MI compared to stationary first-order Markov models.

Index Terms—consumer privacy, energy management, Markov
process, smart meter, time correlation

I. INTRODUCTION

The global roll-out of electricity smart meters (SMs) has

been touted as a means to enable real-time monitoring of

distribution grids, allowing for more efficient grid management

and planning. However, as SMs provide high-frequency con-

sumption measurements, they also entail serious privacy risks

for consumers. In fact, detailed electricity consumption load

profiles reveal highly private information about consumers,

such as their habits, presence at home and working hours,

potential illnesses, and the equipment being used [1], [2]. A

recent survey in the US has shown that utilities pose high

privacy risks, and are not highly trusted by consumers [3].

Several methods have been studied in the literature to

protect consumer privacy, including the manipulation of SM

measurement data (e.g., aggregation and noise addition), and

physically shaping the original power consumption before

reporting it to the energy provider. One approach among the

latter techniques masks a consumer’s energy consumption, i.e.,
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the consumer load, by means of a rechargeable energy storage

component, so that the electricity consumption reported to

the energy provider, i.e., the grid load, is different from the

consumer load [4]. In [5], a heuristic battery control policy is

used to hide the actual consumption by attempting to achieve

a levelled load, while [6] limits the grid load to a finite number

of energy levels in order to hide consumer behaviour.

However, privacy protection alone is unlikely to justify the

cost of investment in energy storage devices, which according

to estimates in [7] remains high. Hence, joint privacy-loss and

energy cost minimisation is studied in [8] and [9]. In [9],

an algorithm based on model-distribution predictive control

(MDPC) is proposed to minimise privacy loss and energy

cost by solving optimisation problems in a receding horizon

manner. The MDPC controller uses the empirical mutual

information (MI) between the consumer load and the grid

load as a measure of privacy loss in its objective function,

estimated by assuming that both the consumer and grid loads

are stationary, independent and identically distributed (i.i.d.).

Binary variables are then introduced to count the predicted

observations in order to estimate this approximated MI in

the MDPC controller’s objective function, resulting in the

controller solving mixed-integer quadratic programs whenever

new meter readings are available.

While measuring privacy by this approximated MI may be

adequate for obtaining privacy-protecting control actions, it

is inadequate for the precise evaluation and comparison of

privacy-protecting methods. In particular, one key drawback

of the analysis in [9] is that MI is approximated by neglecting

time correlations in the consumer and grid loads, which can

lead to an underestimation of the privacy-loss, as shown later

in this paper.

Accurate sample-based estimation of MI is an active area

of research in the field of computer science, but recent works

such as [10] and [11] require large amounts of data that

is usually lacking for individual consumers. Moreover, they

rely on machine learning techniques that can be less readily

integrated into the objective function of control policies for use

in home energy management units. In [6] and [8], an attempt

is made to capture the time correlation by assuming that the

consumer load, and the joint consumer and grid load statistics

are stationary first-order Markov distributions. Despite being

able to overcome the issue of data scarcity, the stationarity



assumption has been shown to lead to poor performance when

modelling feature-dependent components of consumer load

[12]. In this work, we propose expanding the stationary first-

order Markov models used in [6] and [8] to account for the

feature-dependent nature of the consumer load statistics by

modelling them as a non-stationary first-order Markov process.

We classify data into samples of different random variables,

which allows us to estimate the time-varying Markov process

using limited observations.

The rest of this paper is structured as follows. While

Section II introduces the general problem description, Section

III provides a brief introduction to the MI approximation

method used in [9]. In Section IV, we introduce the proposed

method based on feature-dependent first-order Markov chains.

Numerical experiments are presented in Section V. Section VI

concludes this paper, providing an outlook for future work.

II. PROBLEM FORMULATION

Let Xt ∈ Xt and Yt ∈ Yt denote the consumer and grid

loads at time t, respectively, where Xt ⊂ R+ and Yt ⊂ R+

denote the corresponding alphabets (their domains). Consumer

privacy can be measured via the MI between the consumer and

grid loads [6], [8], which quantifies the amount of information

shared between the two random processes. The average MI

between the consumer and grid load is formulated as

1

t
I(Xt;Y t) :=

1

t

∫
Xt∈X t

∫
Y t∈Yt

pXt,Y t(xt, yt)×

log
pXt,Y t(xt, yt)

pXt(xt)pY t(yt)
dyt dxt, (1)

where Xt := (X1, . . . , Xt), Y t := (Y1, . . . , Yt), pX,Y , pX
and pY denote the probability density functions of (X,Y ), X
and Y , respectively, and log denotes the base-2 logarithm.

For the rest of the paper, we use the shorthand p(a) to

denote pA(A = a) for a random variable A. The objective

of a privacy-protecting policy is to minimise (1). However,

it is often impossible to evaluate this function because the

probability distribution functions are not readily available;

hence, the need to approximate MI.

III. MI APPROXIMATION BASED ON I.I.D. ASSUMPTION

In [9], MI in (1) is approximated by assuming that both the

consumer and grid load distributions are stationary and i.i.d.

with distribution pX,Y (x, y) over all observed samples, and by

considering a discrete time model. Furthermore, both loads are

assumed to have finite support, i.e., X and Y are finite. The

approximate MI is then estimated by replacing probabilities

with estimates based on the empirical relative frequencies, i.e.,

1

t
I(Xt;Y t) ≈ 1

t

t∑
τ=1

I(Xτ ;Yτ )

=
∑
X∈X

∑
Y ∈Y

p(x, y) log
p(x, y)

p(x)p(y)
, (2)

p(a) ≈ δa
NA

, (3)

where δa is the total number of observations of A = a; NA

is the total number of realised samples of variable A; and

(2) follows from the i.i.d. assumption, i.e., I(X1;Y1) = · · · =
I(Xt;Yt) = I(X;Y ). Note that in (2) t denotes a discrete time

step. While this approximation may be sufficient to obtain a

privacy-protecting control policy, it fails to capture the tempo-

ral time correlation of the consumer and grid loads when used

as an evaluation metric to compare different privacy-protection

methods, which is crucial when assessing the privacy-loss.

IV. APPROXIMATING MI USING FEATURE-DEPENDENT

FIRST-ORDER MARKOV CHAINS

In [8], an upper bound for (1) that captures some of the time

correlation present in consumer and grid loads was proposed

by also considering a discrete time model; by assuming that

only the consumer load Xt and the pair
(
Xt, Yt

)
, ∀ t ∈ Z+,

are stationary first-order Markov processes; and that X and Y
are finite and identical for different time steps, i.e.,

pXt = pX1

t∏
τ=2

pXτ |Xτ−1
,

pXt,Y t = pX1,Y1

t∏
τ=2

pXτ ,Yτ |Xτ−1,Yτ−1
.

This allows the introduction of an upper bound on I(Xt;Y t):

1

t
I(Xt;Y t) ≤ 1

t

[
t∑

τ=2

I(Xτ , Xτ−1;Yτ , Yτ−1)−
t∑

τ=3

I(Xτ−1;Yτ−1)

]
(4)

=
1

t

[
(t− 1) I(Xt, Xt−1;Yt, Yt−1)−

(t− 2) I(Xt−1;Yt−1)
]
. (5)

Limitations of this approach are that it makes the assump-

tion of stationarity, and that it uses a first-order Markov

assumption. While consumer loads can be more realistically

modelled as non-stationary variable-order Markov processes,

it has been shown in [13] that models based on non-stationary

first-order Markov processes are nonetheless sufficiently accu-

rate for generating synthetic consumer load profiles, i.e., it is

not necessary to have a higher order model; nonetheless, the

non-stationarity is an important characteristic that should not

be neglected. However, modelling approaches based on non-

stationary first-order Markov processes treat realisations at dif-

ferent time instances as distinct random variables; and hence,

require large datasets for estimating their distributions. These

large datasets are typically only obtained by grouping data

from multiple consumers. For this reason, these approaches are

not well suited for modelling the consumption of individual

consumers, which is necessary when studying the performance

of a home energy management unit that is supposed to protect

the private information of the consumer. Hence, we propose

reducing the number of probability distribution estimates, and

thus, the required amount of data, by assuming that a consumer



Figure 1. Transition probability estimation through counting.

can be represented by a smaller finite set of random variables,

which are described by a feature set. For example, such

features might be time-of-day, day-of-week, season, ambient

temperature and solar irradiation.

In a time series of consumer load values, realisations having

the same values of the features are assumed to be i.i.d. samples

of the corresponding random variables, and we further assume

that all these random variables follow a non-stationary first-

order Markov process. In summary, we consider a block

model, where the feature values (and thus the corresponding

random variable) remain constant within each block, and it

changes from one block to the next following a first-order

Markov process. The input load values are conditionally i.i.d.

within each block, where the conditioning is on the feature

values. To further reduce the complexity of the model (and

ensure accuracy with limited data), we treat each day as

being independent, and a group of days may be identical if

their features are equal and can therefore be described by

the same Markov process. Let k be the number of intervals

within a day, each of them having i.i.d. realisations of the

same random variable pair, and let (X̃i, Ỹi) be the random

variable pair corresponding to interval i. Fig. 1 illustrates

our model for a single day. The transition probability matrix

is estimated for (X̃1, Ỹ1) transitioning to (X̃2, Ỹ2) using the

empirical distribution, i.e., the histogram method (quantising

the data and counting), which is a non-parametric method

for probability estimation, as real measurement data do not

necessarily follow specific distribution functions [13]. Let the

distribution of (X̃1, Ỹ1) span 6 consecutive time slots, as in

Fig. 1, and let (xa, ya) be the first realisation of (X̃2, Ỹ2).
Each of the 6 realisations of (X̃1, Ỹ1) is treated as being a

sample that could equally lead to state (xa, ya), resulting in 6

samples for estimating the probability p(xa, ya|X̃1, Ỹ1). While

this may lead to an over-fit of the data, it is a compromise

in order to handle the issue of having too few samples for

estimating the transition probabilities. Moreover, this allows

us to capture in our first-order Markov model some of the time

correlation that spans multiple time slots, typically present

in consumer loads, thereby implicitly modelling higher-order

Markov processes. The right hand side of (4), which does not

consider the stationarity assumption and which we denote Iub,

is approximated for a group of identical days (e.g., weekdays

in summer), by:

Îub :=
1

k

(
k∑

i=2

I(X̃i, X̃i−1; Ỹi, Ỹi−1)−
k∑

i=3

I(X̃i−1; Ỹi−1)

)
.

(6)

Note that the temporal average MI in (4) is replaced in (6) by

the daily average MI as the days are considered to be identical

within the same group. Let Itr := I(X̃i, X̃i−1; Ỹi, Ỹi−1), we

estimate the following:

Itr =
∑

X̃i∈X

∑
X̃i−1∈X

∑
Ỹi∈Y

∑
Ỹi−1∈Y

p(x̃i, x̃i−1, ỹi, ỹi−1)×

log
p(x̃i, x̃i−1, ỹi, ỹi−1)

p(x̃i, x̃i−1)p(ỹi, ỹi−1)
,

where p(a) is estimated analogously to (3). It can be shown

that Iub = Îub for a group of similar days if each time interval

has exactly one realisation, though this may lead to a problem

of data scarcity. This model should enable us to compute a

better approximate for the actual value of the upper bound of

the MI between the consumer and grid loads. Note also that

the equality between the MI of the discrete (quantised) and

continuous versions of X̃i and Ỹi is usually not achieved even

if the MI is Riemann integrable [14], as data availability limits

the number of quantisation levels.

It has been shown that for real SM data, e.g., the Irish

Smart Meter Dataset [15], consumer demand, and implicitly

its statistical distributions, changes according to a finite set of

features. The authors of [16] show through the use of cluster-

ing techniques that the consumer demand in [15] changes as

a function of the season, the day of the week, and the time

of day. Hence, exploiting these features to model consumer

load using a smaller finite set of random variables as proposed

here represents a better approximation compared to assuming

stationarity.

V. NUMERICAL EXPERIMENTS

Here, the proposed empirical MI approximation in (6) is

compared with those in (2) and (5) through simulations using

the Irish Smart Meter Dataset [15], as well as some synthetic

load curves. In the rest of this section, we denote the values

obtained using (6) by MI-v (time-varying Markov process),

those from (5) as MI-s (stationary Markov process), and the

values obtained using (2) as MI-i (independent and identically

distributed).

A. Irish Smart Meter Dataset

In order to validate the proposed MI approximation method

on real SM data, we simulate the MDPC and load-levelling

controllers presented in [9] using data from Meter 1002 of

the Irish Smart Meter Dataset [15] over a period of 450 days

with an hourly time resolution. Different values of energy cost

to privacy-loss are obtained by varying the relative price of

privacy-loss, given in Rp/bit (100 Rappen (Rp) = 1 CHF),

for both schemes. A brief description of both controllers are

presented below, with the general simulation parameters given

in Table I. The quantisation is equal for both Xτ and Yτ , as

shown in Table I, and is kept constant for the rest of this

Subsection.



TABLE I
DEFAULT SIMULATION PARAMETERS.

Prediction Horizon, T : 12
MDPC Counting Window, N : 132
Number of X Bins, m: 20
Number of Y Bins, n: 20
Additive Smoothing, ε: 0.12
Reg. Coefficient, σ: 0.11
Battery Capacity: 6.4 kWh

Battery Power: 3.3 kW

Battery Efficiency, α: 96 %

Energy Price (high): 24.6 Rp/kWh

Energy Price (low): 13.15 Rp/kWh

1) MDPC: The MDPC scheme consists of solving at each

time t the following optimisation problem

minimise
y,z

1

T + 1

t+T∑
τ=t

cτyτ + μΦ(z)

subject to (y, z) ∈ Ft,

where T is the prediction horizon, cτ is the price of energy at

time τ , yτ is the grid load, μ is the relative price of privacy

loss, z is a vector of binary variables used in predicting the

statistics, Φ(z) is an approximation of (2), and Ft enforces

the system and binary constraints (see [9] for details).

2) Load-Levelling: The load-levelling scheme solves at

each time t the optimisation problem

minimise
y

1

T + 1

t+T∑
τ=t

cτyτ +
μ

T + 1

t+T∑
τ=t

(yτ − yτ−1)
2

subject to y ∈ F̄t,

where F̄t enforces the system constraints (see [9] for details).

This scheme attempts to flatten the grid load profile by penal-

ising deviations from previous realisations, reducing private

information leakage in the grid load.

According to the analysis performed in [16], the typical

consumer load profile in the Irish Smart Meter Dataset [15]

(excluding special days such as Christmas) can be described

using the seasons (determined by standard equinox and solstice

dates for Ireland), day of the week (weekdays and weekends),

and time of day. Each day can be split into four consecutive

time intervals as follows:

(a) Overnight: 10.30 p.m. to 6.30 a.m.

(b) Morning: 6.30 a.m. to 9.00 a.m.

(c) Daytime: 9.30 a.m. to 3.30 p.m.

(d) Evening: 3.30 p.m. to 10.30 p.m.

When computing MI-v, the realisations are grouped accord-

ing to the features defined above, omitting the special days

identified in [16]: 24th, 25th and 31st of December 2009,

1st, 9th and 10th of January 2010, and 4th of April 2010.

Figures 2 and 3 illustrate the trade-off between the cost of

energy (each point on the line resulting from a different μ
value in the objective functions) and the three different MI

approximations in autumn and spring, respectively; while Fig.

4 illustrates the trade-off for the whole simulation period,

ignoring the seasonal changes in consumer demand. The MI-

v curves shown in these figures are those for the weekdays.

In autumn, comparable privacy protection can be achieved by

both the MDPC and load levelling schemes when measured

using MI-i, albeit at different energy costs. However, when

one observes the resultant grid load curves for both schemes

shown in Figures 5a and 5b, it is apparent that a clearer diurnal

pattern is observable for the load levelling scheme. Hence, the

MI-i measure is unable to capture the time correlation in the

diurnal pattern. This time correlation is, however, reflected in

the values of MI-v and MI-s, whose values indicate that the

MDPC scheme is more private compared to the load levelling

scheme, despite both schemes having similar MI-i values. This

inability of MI-i to capture the time correlation, compared to

MI-v and MI-s, is more apparent in spring as shown in Fig.

6a, where despite having a lower MI-i value of 0.147 bits, the

load levelling scheme exhibits a clear diurnal pattern, while

the MDPC scheme appears to be random and clearly more

private despite having an MI-i value of 0.164 bits.

The difference between the lowest amount of privacy loss

achieved in autumn and spring can be attributed to the higher

load peaks in spring (6.90 kW max), which cannot be com-

pensated for by the battery used in the setup. The battery is

of sufficient power rating to compensate the load peaks in

autumn, which has a maximum of 3.04 kW, enabling better

privacy protection.

While the MI-v and MI-s approximations are able to capture

some of the time correlation in the load levelling scheme, the

MI-s method perceives the load-levelling scheme to be more

private at higher energy costs as seen in Fig. 2b, eventually

leading to values below that of MI-i, despite no significant

changes in the grid load curves as the energy cost (and the

weighting on privacy protection) increases (see Figures 5a and

5b for points LA1 and LA2), i.e., no improvement in privacy

protection. While the quantisation error does contribute to this

reduction in MI-s, it is not a major factor as it is also present

in MI-v, which does not show such a drastic improvement in

privacy protection as the energy cost increases. By assuming

stationarity, MI-s incorrectly models the feature-dependent

distributions underlying both the LA1 and LA2 curves, leading

to the observed reduction in privacy-loss despite both grid load

curves being almost the same. Moreover, MI-s is also unable

to capture the time correlation between realisations that are

farther apart in time, e.g., the clear diurnal pattern in the LS2

curve, leading to a much lower MI estimate than expected for

its clearly discernible periodic consumer consumption pattern

seen in Fig. 6b. While the LS2 curve is flatter than the LS1

curve, it would be wrong to conclude that LS2 is more private

than LS1, as privacy-leaking peaks have been masked in both,

and both still exhibit a distinct diurnal pattern.

Both MI-v and MI-s estimates of the empirical MI are more

accurate than MI-i. There is no significant difference when

using MI-v and MI-s to assess the MDPC scheme, but the

MI-s method is unable to accurately assess the load levelling

scheme. Hence, among the three methods studied in this paper,

MI-v has been shown to be the most accurate measure of



Energy Cost [CHF]
171 172 173 174 175 176 177

M
ut

ua
l I

nf
or

m
at

io
n 

[b
its

]

0

0.1

0.2

0.3

0.4

0.5

0.6
MI-v 
MI-s 
MI-i 

MA1 MA2

(a) MDPC

Energy Cost [CHF]
170 175 180 185 190 195 200 205 210

M
ut

ua
l I

nf
or

m
at

io
n 

[b
its

]

0

0.1

0.2

0.3

0.4

0.5

0.6
MI-v 
MI-s 
MI-i 

LA1 LA2

(b) Load levelling

Figure 2. Energy cost vs MI in autumn.
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Figure 3. Energy cost vs MI in spring.

empirical MI.

B. Synthetic Loads

The different methods of estimating empirical MI are further

evaluated using a synthetic consumer load X̂ , and synthetic

grid loads Ȳ and Ŷ . The synthetic loads are quantised using 20
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Figure 4. Energy cost vs MI ignoring seasonality.
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Figure 5. Consumer and grid load curves in autumn.
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Figure 6. Consumer and grid load curves in spring.

bins, with even bin widths, and adjusted to match the range of

each synthetic load curve. For the calculation of MI-v, every

24 consecutive realisations are treated as a single day, with

four time intervals of equal length that define four different

distributions. All days are treated as being identical.

1) Sinusoidal curves: The resultant grid load curves for

the load levelling privacy protection scheme in Subsection

V-A resemble smoothed out noisy sinusoids. To examine the

accuracy of the proposed methods when used to assess sinu-

soidal curves, we calculate the empirical MI for two perfectly

identical sinusoids X̂ := sin(B)+1 and Ŷ := sin(B)+1 (Case

A), and for a sinusoid X̂ := sin(B) + 1, and a normalised,

phase-shifted sinusoid Ŷ with Gaussian noise (Case B) given

by

Ŷ :=
sin(B + 12) + Λ

max(sin(B + 12) + Λ)
+ 1, (7)

where B = {0, 6, 12, . . . } is the angle in degrees, Λ ∼
N (0, 0.05) is zero mean Gaussian noise, and max(A) com-

putes the maximum value of A. The estimated empirical MI

for these synthetic load curves are given in Table II.

None of the three methods accurately estimates the MI of

two perfectly identical sinusoids, which in this example is the-

oretically 4.97 bits using the equation derived in [17], as there

is no uncertainty when sinusoids are modelled using second-

order Markov processes, and the number of X and Y bins are

limited by the data available. When Ŷ is a phase-shifted and

noisy version of X̂ as in Case B, MI-s shows an increase,

contrary to the expected decrease due to the phase shift and

TABLE II
EMPIRICAL MI FOR CASE A AND CASE B

MI-v [bits] MI-s [bits] MI-i [bits]

Case A 2.83 0.985 3.99

Case B 2.03 1.40 2.09

added noise. This occurs as the I(Xt−1;Yt−1) component

in (5) decreases much faster than the I(Xt, Xt−1;Yt, Yt−1)
component due to the stationary first-order Markov process

assumption. MI-v does not exhibit this weakness due to its

grouping of realisations into time intervals resulting in it

implicitly modelling a higher-order Markov process. Addi-

tionally, as mentioned previously, modelling a sine wave as

a second-order Markov process entails no randomness (given

the realisations of Xt−2, and Xt−1, then pXt
(x) = 1 for some

x), and the MI in Case B would theoretically be due to the

Gaussian noise alone. Hence, while all three empirical MI

approximation methods fail to accurately capture the MI of

sinusoids, MI-s performs the worst. This may help to explain

the results seen in Fig. 2, where MI-s decreases with the

increase in energy cost despite no noticeable change in the

resultant grid-load.

2) Stepped grid load curves and the addition of Gaussian
noise: Next, we analyse the MI approximation methods on

stepped grid load curves Ȳ and grid load curves Ŷn that are

increasingly noisier versions of the consumer load curve. The

empirical MI for a single step (flat) grid load Ȳ , denoted Ȳf ,

and a two step grid load Ȳ , denoted Ȳs, are estimated. Ȳf is

the average of the consumer load X̂ , while Ȳs step values are

taken as the average consumer load X̂ within the time interval

where the step occurs. Mathematically, Ŷn is given by

Ŷn :=
X̂ +Ω

max(X̂ +Ω)
+ 1,

where Ω ∼ N (0, σ2) is zero mean Gaussian noise, with

variance σ2 = 0.5α. Increasing α increases the Gaussian noise

added to the consumer load.

Fig. 7a illustrates the original consumer load X̂ , Ȳs, and

Ȳf , while Fig. 7b shows Ŷn with α = 2. Table III shows the

empirical MI for the stepped grid load curves. A perfectly

flat grid load curve gives zero empirical MI, and increasing

the number of steps leads to more privacy-loss. The values

of empirical MI for X̂ and Ŷn with increasing values of

α are shown in Fig. 7c. All three methods of calculating

empirical MI decrease with increasing noise. MI-i falls below

the values of MI-v and MI-s as the Ŷn curve increasingly loses

its resemblance to X̂ , becoming increasingly Gaussian noise-

like as seen in Fig. 7b for Ŷn with α = 2. At this noise level,

MI-v and MI-s values are higher than MI-i as they capture the

little remaining time correlation still present in the Ŷn curve.

All three methods are capable of assessing the performance

of some common privacy-protection methods, e.g., adding

noise, heuristic load-levelling, and heuristic stepped control

policies, with varying degrees of accuracy.



TABLE III
EMPIRICAL MI FOR Ȳf AND Ȳs

MI-v [bits] MI-s [bits] MI-i [bits]

Ȳf 0 0 0

Ȳs 0.721 0.244 0.967
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Figure 7. Results obtained by adding Gaussian noise and flattened load.

VI. CONCLUSIONS AND FUTURE OUTLOOK

In this paper we calculated the empirical MI between

consumer and grid loads by modelling their joint distribution

and the consumer load distribution as feature-dependent first-

order Markov processes. To reduce the number of random

variables and avoid the issue of data scarcity, we grouped

realisations according to features that define a change in

consumer demand, e.g., time-of-day, day-of-week and season.

This has also the advantage of implicitly modelling higher-

order Markov processes. By means of numerical simulations,

our formulation has been shown to produce a better approx-

imation for the MI between consumer and grid loads. We

remark that choosing an accurate method to approximate MI

is crucial, as otherwise, privacy-loss may be underestimated.

Future research will focus on adapting the proposed MI

approximation method in conjunction with a control policy in

home energy management units, incorporating other features

that define the random variables, using hidden Markov models

for modelling the loads, and identifying other metrics to

quantify the loss of consumer privacy.
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