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Abstract—Cache capacity-delay trade-off is studied for
cooperative coded caching among small-cell base stations
(SBSs) considering mobile users. First, a delay-aware coded
caching policy is introduced, taking into account the
popularity of the files and the maximum re-buffering delay
constraint, which minimizes the average re-buffering delay
of a mobile user under a given cache capacity constraint.
Subsequently, a given average re-buffering delay constraint
is considered to ensure a certain quality-of-service (QoS)
target, and certain files are served by the macro-cell base
station (MBS) when the cache capacity of the SBSs is not
sufficient to store all the files in the library. A coded caching
policy that minimizes the average amount of data served
by the MBS is proposed for the latter scenario.

I. INTRODUCTION

In the last decade, on-demand video streaming have
started to dominate the Internet traffic. In 2016, Youtube
alone was responsible for %21 of the mobile Internet
traffic in North America [1]. By 2021 the size of the
Internet video traffic is expected to be four times larger
[2]. This rapid growth calls for a paradigm shift in the
design of cellular networks. Caching popular contents
at the network edge has been proposed as an effective
technique to mitigate the excessive video traffic and to
reduce latency.

In heterogeneous cellular networks, small-cell base
stations (SBSs) can also be equipped with cache mem-
ories to store popular video files, and in a network of
densely deployed SBSs, there are often multiple SBSs
that can serve a mobile user (MU). This flexibility in
MU-SBS association leads to the design of cooperative
caching policies [3]-[5], which, in a broad sense, aim at
maximizing the number of files served locally through
SBSs to reduce the load on the macro-cell base stations
(MBSs). Furthermore, storing the contents in an encoded
form, particularly using maximum distance separable
(MDS) codes, can allow users to download a content
from multiple SBSs without coordinating the particular
portions downloaded from each SBS; and hence, further
increases the amount of data served locally [6], [7].

All the aforementioned works seek an optimal co-
operative caching policy based on a given static user
access topology; however, in ultra dense networks, due
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to the limited coverage area of SBSs, user access patterns
are not static, and the mobility patterns of users have
a significant impact on the amount of content that
can be delivered locally [8]. Mobility-aware cooperative
caching policies have been recently studied in [9], [10].
In these works, the goal is to maximize the amount of
data that is served locally while satisfying a given con-
tent downloading delay constraint. However, when the
contents are stored in coded form [9], [10], a user cannot
start displaying the video before collecting all the parity
bits, which may cause significant initial buffering delay,
especially for streaming applications. Proactive content
caching for continuous video display scenario, in which
users can start displaying the video before downloading
all its fragments, has been previously studied in [11],
where SBSs fetch contents dynamically in advance, prior
to user arrivals, using the instantaneous user mobility
information. Instead of a dynamic content fetching pol-
icy, in this paper, we consider a static caching policy
similarly to [9] and [10], but focus on continuous display
of video.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider an heterogeneous cellular network with
one MBS and N SBSs, {SBSy,...,SBSx}, each with
a disjoint coverage area of the same size. Each SBS
is equipped with a cache memory of size C bits. Due
to disjoint coverage, a MU is served by only one SBS
at any particular time. We assume that time is divided
into equal-length time slots, the duration of which cor-
responds to the minimum time a MU remains in the
coverage area of the same SBS. We also assume that
each SBS is capable of transmitting B bits to a MU
within its coverage area in a single time slot.

We consider a content library of K files, V =
{v1,...,vK }, each of size F' bits. The request proba-
bility of vy is pg, where p; > py > --- > pg. Since
a video file has F' bits and the transmission rate of a
SBS is B bits per time slot, a MU cannot download a
video file before T = F/B time slots. For simplicity
we assume 7' is an integer, and call the T time slots
following a user request a download session. Although
a MU is connected to only one SBS at each time slot,
due to mobility, it connects to multiple SBSs over the
same download session. We note that, due to the limited



cache size, an SBS cannot store all the library, and the
uncached video files are offloaded to the MBS.

A. User Mobility

The mobility path of a MU is defined as the sequence
of SBSs it visits within the same download session. For
instance, for T' =5, SBS1,SBS3,SBS,, SBSs, SBSg
is a possible mobility path. We consider a high mobility
scenario, where at the end of each time slot the MU
moves to a neighboring cell it has not visited within
the same download session. Under this assumption a
mobility path is a sequence of 1" distinct SBSs.

B. Delay-aware coded caching

We explain here the coding scheme that is used to
encode the stored video files. Each file is divided into
T disjoint segments of size B bits each, i.e., vy =

(s,(fl), .. SECT) These segments are grouped into Mj
disjoint fragments f,gl), ceey ,gM’“); that is,

M,

we=J "
m=1

for any 4,5 € {1,...,Mj} and ¢ # j. Then, the
segments in fragment m are jointly encoded using an
(\ f,im)|,N) MDS code, and each coded segment is

, and f0 N9 =, (D

cached by a different SBS. Hence, fragment f,gm) can
be recovered from any | f,gm) |B parity bits collected
from any | f,gm)\ different SBSs within | fkm)\ time slots
(please refer to [12] for further discussion on the coded
storage strategy).

The reason for constructing N coded segments is
to ensure that a MU does not receive the same coded
segment more than once in any possible path. We remark
that, for a given 7', certain cells can not be visited within
the same mobility path; hence, depending on 7', less than
N coded segments may be sufficient to achieve this [13].

Definition 1. A coded caching policy X defines how
each ﬁle vy is divided into fragments, ie., X £

{X‘k}kzly where Xk = fkl)’ ceey lng)

}. A caching
policy is feasible, ifzle MB < C.

C. Continuous video display and delay analysis

The video display rate, )\, defines the average amount
of data (bits) required to display a unit duration (nor-
malized to one time slot) of a video file. In this work,
we consider the scenario in which the service rate
of the SBSs and the video display rate of MUs are
approximately equal, i.e., B ~ \. Hence, at each time
slot the MU displays one segment and can also download
data of the size of one segment. In order to display
a segment, it should be available at the MU buffer in
an uncoded form. If a segment is not available in the
buffer, then the user waits until it becomes available.

This waiting time is called the re-buffering delay.

The cumulative re-buffering delay for file vg, under
policy Xy, is denoted by Dy (Xy), and it is equal to the
sum of re-buffering delays experienced within a video
streaming session. For the delay analysis, consider a
particular file with M fragments, i.e., {f(l), ., fOD }
The display duration of a fragment is the number of
segments in it. If there is only one fragment, the display
duration of that fragment is equal to the video duration.
Let d™) denote the display duration of fragment f("),

ie., d™ = |f™|B/X ~ |fU™)]| . Furthermore, let
tf,m) and tl(jm) denote the time instants at which the

mth fragment is downloaded and started to be displayed,
respectively. If t,(,m) > t&m), the user displays the mth
fragment without experiencing any stalling; however, if
t(m) > tém) then the user enters a re-buffering period
and it stops displaying the video until tfi 2 Accordingly,
the re-buffering duration for the mth fragment, Alm)

can be formulated as

A — max {tf{’” g, 0} , )
Note that tl(,m) is equivalent to the sum of the display
times and re-buffering delays experlenced by the preV1-
ously displayed fragments, i.e., tp = Z

d®.

Similarly, assuming that the fragments are downloaded
in order, ¢, ") is the total download time of all the previ-
ous fragments ie., t(m) = Z:’;l d® . Hence, (2) can be
oyt M),o}. We
observe that if A(™) > 0, then we have > A =
d™). Let D be the cumulative re-buffering delay expe-
rienced over all fragments of the video, which is derived
by the following lemma.

rewritten as A(™) = max {d(m)

Lemma 1. The cumulative re-buffering delay D is equal
to the display duration of the largest fragment, i.e.,

M
D= Z A = max{d(l),...

m=1

7d<m>} )

Lemma 1 can be easily proved by induction using the
equality Y7 A = d(™) and the fact that A() =
d™). Note that if the first fragment has the largest display
duration, then D = A and the cumulative re-buffering
delay is equal to the initial buffering delay.

D. Problem formulation

Our goal is to find the optimal coded caching policy
X that minimizes the cumulative re-buffering delay av-
eraged over all files, i.e., Dgye(X) = Zle D (Xk).
We first focus on a particular file and highlight the delay-
cache capacity trade-off with an example. If the number
of fragments is equal to the number of segments, i.e.,
flm = {s(m)}, Vm € {1,...,T}, then each SBS
caches all the segments. This requires a cache memory



of FF = TB bits for the corresponding file. On the
other hand, if there is only one fragment that contains
all the segments, ie., f() = {s) ... 5TV} then all
the segments are jointly encoded, and each SBS caches
only B bits for the corresponding file. However, while
the re-buffering delay in the first scenario is only 1, it is
T in the second.

Recall that the required cache size for a file is M B
bits, which depends only on the number of fragments
M. However, the cumulative re-buffering delay is equal
to the display time (the number of segments) of the
largest fragment. Hence, for given M the cumulative
re-buffering delay can be minimized by choosing frag-
ment sizes approximately equal, i.e., for any ¢,j €
{1,...,M},and i # j, |[d®) —dY)| < 1. Consequently,
for a given memory constraint of M B bits the minimum
achievable cumulative re-buffering delay is [7/M].

To mathematically capture this relationship, we in-
troduce the delay-cache capacity function Q(M) =
[T'/M], which maps the number of fragments in a file to
the minimum achievable re-buffering delay D. We note
that (M) is a monotonically decreasing step function.
To analyze Q(M), we introduce two new parameters:
the delay level and the decrement point. Any possible
value of Q(M) is called a delay level, denoted by D).

Recall that the popularity of the files are not identical,
which implies that re-buffering delay of popular files
has a greater impact on the average. Hence, for each
file vy, we consider a weighted delay-cache capacity
function Qy(Mjy), where Qi (My) £ py [T/My]. Note
that for a given number of fragments M, we know the
optimal caching decision, i.e., the number of segments
in each fragment. Hence, from now on, we use M £

(My, ..., Mk) to denote the caching policy (instead of
X). Then the average re-buffering delay is rewritten as

Dyyg(M) = Zszl Qk(My). Eventually, we have the
following optimization problem

P1: mNiIn Dgvg(M)
subject to: Dy (M) < Dmas, VEk, 4)
K
> MkB<C, ©)
k=1

where (4) is the fairness constraint which ensures that
the cumulative re-buffering delay is less than D,,,, for
any video file, and (5) is the cache capacity constraint.

III. SOLUTION APPROACH
Lets denote the minimum ! that satisfies D®) < D,.x

in P1 by l,;,. Then, the optimization problem P1 can
be reformulated as

P2: mNiIn Dy (M)
subject to: M, > m(l"‘“‘),Vk, 6)
K
> My <C/B. )
k=1

Algorithm 1: Cost-free delay minimization

K
Input :B,C,{{’Yk,l}lel}
Output: M

k=1

1 My <—m(lmin),'yk = Vi lins K € {1,...,K};
2 Iy 4 lpnin, C < C/B;

3 while C > 0 do

4 l;::argmax{'yl,...,'y;(};

5 it ¢ > (mb%TY — m%)) then

6 l,; — llé +1;

7 Vi T VkL

8 Mk — m(k)’

9 Cp + Cp — (m%) —m=1)
10 else

1 Mk<—ME+C’B,C~”<—O;

12 end

13 end

Note that we simply converted the delay constraint to a
cache capacity constraint, such that each file requires a
cache capacity of at least m(“==) B bits. In order to find
a feasible solution to P2, we need C > K mUmin) B bits.
In the following section, first we solve P2 assuming that
this condition holds. The other case will be considered
in the subsequent section. Note that, if (6) does not hold
for all the files, some of the least popular files are not
cached at all, and a MU requesting one of these files
is offloaded to the MBS causing additional overhead.
Later we will show how this overhead can be modeled.
We call a caching strategy cost-free if allthe video files
are cached by SBSs.

A. Cost-free delay minimization

P2 can be shown to be an NP hard problem, as it can
be reduced to the knapsack problem. However, if we use
a piecewise linear approximation of the delay-cache ca-
pacity function Q (M ), which is denoted by Qi (M),
then the objective function becomes the sum of piecewise
monotonic linear functions. Let 7y ; be the slope of the
function Qi (Mp), in the interval (m®m(+1)]. Then,
it is easy to observe that |y ;| > |yg,+1| holds for
all [. Hence, if the objective function is replaced by

Dayg(M) = Zle Qu(Mp), we obtain the following
convex optimization problem:
~ K ~
P3: min Davg (M) = ;Qk(MK)
subject to: My > m''mn) for all k ®)
K
> M. <C/B. ©)
k=1

Note that the solution of P3 is not equivalent to the
solution of the original problem P2. However, we will
show that with a small perturbation in the cache size C,
the two solutions become identical. Since the objective is
a convex function of sum of piecewise linear functions,
we follow a similar strategy to the one used in [10].
The proposed algorithm first allocates each file a cache



memory of size m() B bits, which corresponds to
the delay level of D(min) After this initial phase, it
searches for the Qk(Mk) that has the minimum slope
(maximum negative slope), and updates the delay level
of file vy to the next one, i.e., DU to DU and
updates M}, accordingly. The procedure is repeated until
(9) is satisfied with equality. The overall coded caching
strategy is detailed in Algorithm 1. Please refer to [12]
for further discussions on the optimality of Algorithm 1.

B. Average delay constrained cost minimization

In some cases, it may not be possible to satisfy the
D4, constraint for all the files in the library due to
the cache capacity constraints. Furthermore, the average
re-buffering delay can be a predefined system parameter,
denoted by Dgygnras, in order to offer a certain QoS to
the users; however, the average delay obtained from the
solution of P2 may not satisfy this requirement. As a
result, some of the least popular files are not cached at
all and the requests for these files are offloaded to MBS.

We denote the average amount of data that needs to be
downloaded from the MBS by O, and the set of cached
videos by A = {k : M} > 0}. Then, we have O =
> ke Pr. Our goal is to find the coded caching policy
M f%at minimizes ©:

P4: min O(M) = k
nin © (M) %p
subject t0: Davg(M) < DavgMaw, (10)
My, > mmin) v ke A, (11)
K
> M, <C/B. (12)
k=1

Constraint (10) is for the maximum average delay
requirement, (11) is the fairness constraint for the lo-
cally cached files; and (12) imposes the cache capacity
constraint. Due to (11), at most K = min(m%%, )
different files can be stored in the SBS caches. If the
most popular K files are cached according to the delay
constraint D, 4z, mUmin) B bits allocated to each file,
then the cache memory size and the fairness constraints
are satisfied. If the constraint (10) is also satisfied, i.e.,
Davgrtaz = Dmaa, then the aforementioned assignment
is optimal, and no further steps are needed. Otherwise, in
order to decrease Dgygarqz, the least popular file in A is
removed and Algorithm 1 is applied to find the optimal
cache allocation for the remaining files.

The use of Algorithm 1 ensures that the allocation
yields the minimum possible average cumulative re-
buffering delay under the given cache capacity con-
straint. Using this procedure, we increase the average
cost by the least possible amount while decreasing the
average delay by the highest possible amount. This step
is repeated until all the constraints are satisfied. The
overall procedure is illustrated in Algorithm 2.

Algorithm 2: Delay constrained cost minimization
Input : B,C, Dgygrrax
Output: M ~
M, +0,ke{l,....,K},C + C/B;
for k € {1,...,K} do
if C > m(imin) then
| My, + mimin), €« C — mlimin);
end

N S

end

execute Algorithm 1;

while Dgvg > Daygriaz do

k =argmin{p;},i € {1,..., K : M; > 0};
10 M, < 0;

1 execute Algorithm 1;

12 end

e ® 9 !

IV. NUMERICAL RESULTS
A. Simulation setup

We consider a video library of K = 10000 files, where
the popularity of the files follows a Zipf distribution with
parameter w = 0.85, which adjusts its skewness. We set
T = 10 and D,,,., = 10. we consider two different
scenarios. First, we consider the cache sizes, normalized
over the library size, Ce [0.1,0.7] so that D, can be
satisfied for each video file. For this scenario we analyze
the average cumulative re-buffering delay with respect
to the cache size. In the second scenario, we consider
C = 0.08, where D,, . constraint cannot be satisfied
for all the files; and thus, for the second scenario we
analyze the trade-off between the average cost and the
average cumulative re-buffering delay.

B. Simulation results

In the simulations we consider tow benchmarks,
namely; most popular file caching (MPFC) and the equal
file caching (EFC). In MPFC, initially, a cache size
enough to satisfy D,,,, is allocated to all files, then,
starting from the most popular file, allocated cache size is
made equal to file size until no space is left in the caches
of SBSs. In EFC, again we use the same initial cache size
allocation, then starting from the most popular file the
allocated cache size is increased to the next decrement
point. Once, the cache size of the each file is aligned
to the next decrement point, we go back to the most
popular file and repeat the process until no empty space
is left in the caches.

In the first simulation scenario, the cost-free delay
minimization algorithm is executed and the results are
shown in Figure 1. The average cumulative re-buffering
delay of the system is plotted against the available
cache size for the proposed caching scheme and the two
benchmarks. The proposed caching policy is observed to
have better performance than the two benchmarks in all
the scenarios, and in some points the average delay is
reduced up to 35% with respect to the benchmark with
the best performance at this point.

In the second simulation scenario, in which the cache
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Fig. 1: Average buffering delay vs cache size

size is not sufficient to satisfy delay constraint Dy garaz
Algorithm 2 is executed, and its performance is com-
pared with MPFC and EFC policies in Figure 2.

MPFC with a given Dgygnrq, constraint is executed
according to the following strategy: first the most popular
% files are cached according to the maximum al-
lowed delay Djyq, . If the average delay constraint is not
satisfied, i.e., Dimaz > Davgiaz then the least popular
file that is cached is removed, and the corresponding
cache memory is used for the most popular file that is
not cached up to the maximum level. This procedure is
repeated until the average delay constraint Dgqgnraq 1S
satisfied for all the cached files. For the EFC benchmark,
again after the initial step, if the average delay constraint
DgvgMaqe 18 not satisfied, then the least popular file in
the cache is removed. The equal file caching algorithm
described above is applied subsequently on the files that
are still in the cache. This procedure is repeated until the
average delay constraint is satisfied for all the cached
files. The graph portrays the relationship between the
average cost and the average delay constraint Dg,gnqz-
Our proposed solution exhibits significant improvement
in comparison with the benchmark policies. For example,
Davgrrax = 2, the average cost is improved by 23% and
36% with respect to EFC and MPFC, respectively. As
it is expected, the tighter the average delay constraint
DgvgMaqz- the higher the cost.

V. CONCLUSION

We first proposed a caching policy that minimizes the
average cumulative re-buffering delay under the high
mobility assumption, where a MU does not visit the
same SBS within the same download session. We then
considered a scenario in which the average cumulative
re-buffering delay is a given system requirement, and
introduced a caching policy that minimizes the amount
of data downloaded from the MBS while satisfying this
requirement. Numerical simulations have been presented,

04} Delay Aware Caching
’ Caching Most Popular files
035t Caching files equally

Average cost normalised over file size

2 4 6 8
DanMaX (in time slots)

Fig. 2: Average cost vs maximum average delay

showcasing the improved performance of the proposed
caching policy in comparison with other benchmark
caching policies. General user mobility patterns will be
studied as a future extension.
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