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Abstract—We consider a distributed computation problem
over a multiple access channel (MAC), with N devices. It is
known that over-the-air computation (OAC) can provide significant
gains for this problem, but existing works are limited to the
scenario with matched source and channel bandwidths. We
propose OAC schemes for block-fading MACs that modulate
the source to fit the available channel bandwidth in a wideband
channel, while having channel state information (CSI) only at the
transmitter or the receiver. Our results show that the proposed
OAC scheme outperforms even ideal capacity-achieving digital
schemes when the CSI is available only at the transmitter, and the
distortion does not scale with the number of participating devices.
We demonstrate the effectiveness of our proposed scheme in
federated edge learning (FEEL), where OAC is used to aggregate
model updates from the participating devices.

I. INTRODUCTION

In emerging edge intelligence applications, the goal is
often the computation of some pre-defined function of data
at different devices, such as the arithmetic mean, the max-
imum or minimum value, or different polynomials, rather
than reconstruction of the individual data sequences. This can
be formulated as a distributed computation problem over a
multiple-access channel (MAC). A standard approach to this
problem is to let each device transmit a quantized version
of its data samples to the central receiver, where an approx-
imate value of the desired function is computed. However,
the sub-optimality of this approach is well-known, and an
alternative approach, called over-the-air computation (OAC),
can provide significant reduction in both complexity and
bandwidth requirement for function computation over wireless
networks [1]. When the receiver is interested in the average
value of the samples available at the multiple transmitters,
OAC can exploit the superposition property of the wireless
medium, and the data samples transmitted as analog values
over the shared wireless channel get aggregated “over the air”.
This provides significant reduction in the required bandwidth,
and simplifies the transmitter-receiver design. In [2], [3], the
authors show that OAC can be exploited for a large class of
nomographic functions, that is, real-valued functions that can
be represented as post-processed sums of pre-processed real-
valued inputs. The authors in [2]–[4] propose OAC schemes
over fast fading MACs, which utilize multiple channel uses to
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obtain asymptotically optimal reconstructions. Recently, OAC
received significant attention in the context of federated edge
learning (FEEL) [5]–[7], where the goal is to aggregate the
model updates from multiple devices with localized datasets.
However, these works assume that the channel bandwidth for
transmission matches the source bandwidth; that is, the number
of data samples available at the transmitters and the available
channel uses are the same. Our goal in this paper is to benefit
from the available bandwidth to improve the fidelity of the
computed function value.

We emphasize that OAC is a joint source-channel coding
scheme with the objective to minimize the reconstruction error
in the function value. For point-to-point communication of a
Gaussian source over a Gaussian channel, it is well-known
that uncoded analog transmission achieves the optimal mean
squared error (MSE), when the source and channel bandwidths
match [8], [9]. When this is not the case, we have to process
the source so that it “fits” the channel bandwidth. Linear band-
width expansion maps do not provide any gain from the extra
bandwidth under an average power constraint, as they simply
distribute the power over the larger bandwidth. Accordingly,
direct linear approaches to source-channel mapping, referred
to as block pulse amplitude modulation (BPAM) [10] are
highly sub-optimal, and non-linear modulation schemes like
pulse-position modulation (PPM), frequency-position modu-
lation (FPM), frequency modulation (FM), phase modulation
(PM), and hybrid digital-analog techniques [11], provide better
performance. Non-linear mappings will also be needed for
efficient OAC when the channel bandwidth is larger than the
source bandwidth. However, developing bandwidth expansion
maps for multi-user OAC is highly non-trivial precisely due
to the linear nature of the computed nomographic functions
with respect to the inputs.

In this paper, we propose an OAC scheme that modulates the
source to fit the available channel bandwidth in a wideband
channel. Unlike existing bandwidth expansion schemes that
depend on the ergodicity of the fast-fading channels [2], [3],
our scheme works for block fading channels, and exploits
the fact that practical applications often communicate vectors
of data values over multiple parallel channels, e.g., OFDM
or multiple antenna channels. Communication over multiple
channels has also been considered in previous works [12],
[13]. In [12], each device transmits its measurement over
multiple frequency subchannels to benefit from multi-channel



Fig. 1: Communication system model

diversity. In [13], transmission over multiple time slots with
fast fading is considered, where each device can choose to
transmit in one time slot with high channel gain. We consider
two cases: CSI available only at the transmitters (CSI-T), and
CSI available only at the receiver (CSI-R). We also evaluate
our proposed schemes for FEEL. In FEEL, a central parameter
server (PS) sends a global model to all the available devices,
which perform one iteration (or one epoch) of training of the
received model with their local datasets, and compute the
updated local model parameters. Then, they transmit these
updated local model parameters to the PS to be aggregated to
update the global model. OAC can be used for the aggregation
of model updates at the PS, which can significantly reduce
the bandwidth requirement and latency of FEEL, which are
essential to enable many edge applications.

Our results show that the proposed OAC schemes outper-
form even ideal capacity achieving digital schemes when the
CSI is available at the transmitter, while also providing a
simple communication system design. Moreover, the distortion
does not scale with the number of participating devices.
When the CSI is available only at the receiver, the proposed
scheme, though outperformed by both the OAC and digital
transmission schemes for the case when CSI is available only
at the transmitter, achieves asymptotically perfect function
computation. The proposed scheme for CSI at only the receiver
scales quadratically with the number of devices.

II. SYSTEM MODEL

The communication system, illustrated in Fig. 1, consists
of N encoder functions E1, . . . , EN ∈ Sp → Rq×T cor-
responding to N devices, [N ] , {1, . . . , N}, where q is
the number of parallel subchannels, and T is the number of
channel uses over which the transmission happens, that map
source vectors Sn = (Sn(1), . . . , Sn(p))

T ∈ Sp, n ∈ [N ],
where S denotes the source alphabet, into channel codewords
X1, . . . ,XN , respectively, a decoder function D(·) at the
PS that maps the received signal Y to estimates of the
desired F-valued nomographic functions of the source signals,
f(·) : SN → F . We denote by F ∈ Fp the vector of functions
computed on the original values of the source signals, i.e.,
F (ρ) = f(S1(ρ), . . . , SN (ρ)), for ρ ∈ [p], and by F̂ ∈ Fp
their reconstruction at the decoder, i.e., F̂ = D(Y).

Nomographic functions are of the form ψ(
∑N
n=1 φn(Sn)),

where φn : S → R, ∀n ∈ [N ], denotes a pre-processing

function at the devices, and ψ : R → F is a post-processing
function at the central receiver.

Channel model: Devices transmit their signals over a
fading MAC. The vector of fading coefficients for the link
between device n and the PS is denoted by hn ∈ Cq . We
assume a block fading model, where the channel remains
constant for T channel uses, while the fading coefficients
of the parallel channels are assumed to be independent and
identically distributed (i.i.d.). Therefore, we assume that Xn =
(xn(1) · · ·xn(T )) ∈ Rq×T , where xn(t) is a vector of q
symbols transmitted over the q parallel channels in the tth

channel use. The additive noise vector, denoted by z ∈ Cq ,
is assumed to be i.i.d. according to the complex normal
distribution CN (0, σ2

z). The received signal in the tth use of
the ρth sub-channel, y(ρ, t), is given by:

y(ρ, t) =

N∑
n=1

hn(ρ)xn(ρ, t) + z(ρ, t), (1)

where xn(ρ, t) and z(ρ, t) are the transmitted symbol by
device n and the noise term, respectively, in the tth use of
the ρth sub-channel.

We consider the following two scenarios:
• CSI at the transmitter (CSI-T): The devices have perfect

CSI of their respective links to the PS, while the PS
(receiver) only has statistical knowledge of the channel.
This models the scenario with channel reciprocity, where
the PS broadcasts pilot signals to all the devices to
estimate their respective channels. This avoids the use
of any feedback mechanism by the PS to keep a record
of the instantaneous channel states of all the devices.

• CSI at the receiver (CSI-R): The CSI is known only to
the PS, while the devices do not have any knowledge of
their channels.

The power allocation scheme and the channel capacity
depend on the available CSI and the average power constraint.
The following average power constraint is imposed on each
transmitter:

1

qT
E
[
||Xn||22

]
≤ P ∀n ∈ [N ], (2)

where the expectation is over the noise and fading distribution.
Performance metric: The goal is to accurately compute

the desired function of the source vectors accurately despite
the noise and fading in the channel. Hence, we measure
the performance of the proposed schemes by computing the
normalized MSE (NMSE):

NMSE
(
F̂,F

)
,

E
[
||F̂− F||22

]
||F||22

, (3)

where the expectation is over the noise and fading distribution.
Next, we will consider two alternative transmission

schemes, digital transmission with computation at the receiver
and analog transmission with OAC, and compare the two in
terms of the achieved MSE under different CSI assumptions.



A. Digital Transmission with Receiver Computation

In the digital aggregation scheme, the source vectors are
first quantized, and then mapped to a channel codeword. If the
length of the source vector is large, it is split into segments of
p ≤ q values, and each segment is transmitted in a block of
q parallel subchannels. The transmission of each segment in
independent blocks of channel uses is identical, and without
loss of generality, it is sufficient to analyse the transmission in
any one particular block. Therefore, we assume that the signal
vector to be transmitted by device n in an arbitrary block
is Sn , (Sn(1), . . . , Sn(p))

T . Encoder n performs vector
quantization of Sn to obtain the quantized vector vn ∈ Zp,
and then maps it to the channel codeword Xn ∈ Rq×T .

The decoder first decodes the channel codewords from the
transmitters to recover the quantized source signals. In the
asymptotic limit of infinite blocklength (i.e., T → ∞, the
transmitted codewords can be decoded with a vanishing error
probability if the transmission rates lie within the capacity
region of the channel. In that case, the only source of error
in the computation of the desired function is the error due to
quantization. Note that the capacity region only provides an
upper bound on the maximum rate at which a source can be
transmitted, and is not achievable in practice.

B. OAC

In the proposed OAC scheme, the encoder exploits the
fact that the desired function f(·) is a nomographic function.
Encoder n pre-processes the source vector Sn to a vector
sn of the values sn(ρ) = φn(Sn(ρ)), ρ ∈ [p]. Encoder n
then maps sn ∈ Sp to the channel codeword Xn, using the
encoding function En : Rp → Rq×T . The transmitted signals
are added over the channel due to the superposition property
of the wireless medium. The decoder computes the estimate
F̂ = Dρ(Y) of the desired function F using the decoding
function D : Rq×T → Fp, by first decoding an estimate ŝ
of the sum s =

∑N
n=1 sn, and then computing the functions

F̂ (ρ) = ψ(ŝ(ρ)), ∀ρ ∈ [p].

III. OAC OVER FADING MAC

A. With CSI-T

When the CSI is available at the transmitters, they can
employ a channel inversion scheme similar to the one proposed
in [2]. However, unlike [2], we impose an average power
constraint on each device, and therefore, each device transmits
a symbol in the ρth subchannel only if γ(ρ) > γ0, where
γ(ρ) , |h(ρ)|2, and γ0 is a fixed threshold such that the
average power constraint is satisfied. We design a matrix
Π ∈ Zq×T , whose columns consist of permutations of the
integers in the set {1, . . . , q}. Matrix Π is constructed such
that no row contains repetitions of any integer. Note that this
is possible only if T ≤ q.

Device n first pre-processes the source vector Sn to obtain
the vector sn. The vector sn is then padded with q−p zeros. In

channel uses

subchannels

Fig. 2: Transmission of the parameter vector sn by device
n over q parallel subchannels and T channel uses, using a
circular permutation matrix.

the tth channel use and the ρth sub-channel, device n transmits
the symbol:

xn(ρ, t) = 1γn(ρ)>γ0

√
αh∗n(ρ)

|hn(ρ)|2
sn (π(ρ, t)) , (4)

where π(ρ, t) is the element in the ρth row and tth column
of matrix Π. In other words, each element sn(ρ), ρ ∈ [p], is
transmitted in a different sub-channel in each of the T channel
uses. This is illustrated in Fig. 2. By substituting Eq. (4) in
Eq. (1), the received signal at the PS is given by:

y(ρ, t) =

N∑
n=1

√
α1γn(ρ)>γ0sn(π(ρ, t)) + z(ρ, t). (5)

To obtain the sum, the sub-channel permutations of Π are
reversed by the PS to align the elements of the received signal
in each time slot. As a result, each time t now effectively has
an independent channel coefficient associated with it in each
sub-channel ρ, denoted by h′(ρ, t). Thus we have

y′(ρ, t) =

N∑
n=1

√
α1γ′n(ρ,t)>γ0sn(ρ) + z′(ρ, t), (6)

where y′(ρ, t), γ′n(ρ, t) and z′(ρ, t) are the elements of the
corresponding vectors in the ρth sub-channel and tth time slot
after re-alignment. The sum s is estimated in the following
way:

ŝ(ρ) =
1√

αTPr(γ > γ0)

T∑
t=1

y′(ρ, t), (7)

which is an unbiased estimate of the sum.
As stated earlier, in the case of a standard MAC, it is

difficult to exploit the extra bandwidth for function compu-
tation. Here, we exploit the bandwidth to transmit the same
signals over different subchannels, which allows the receiver to
recover multiple noisy versions of the same sum with different
channel gains. The recovered sum will be more accurate as the
likelihood of experiencing fading in multiple subchannels is
lower. Indeed, in the asymptotic limit of q, T → ∞, the law
of large numbers dictates:

ŝ(ρ)→
N∑
n=1

sn(ρ) ∀ρ ∈ [p]. (8)



Finally, the receiver computes the estimates F̂ (ρ) = ψ(ŝ(ρ)),
∀ρ ∈ [p].

The average power consumption is given by:

1

qT
E[||Xn||22] = E

[
|xn(1, 1)|2

]
(9)

=E

[(
1γn(1)>γ0

√
α

|hn(1)|
sn(π(ρ, t))

)2
]

(10)

B. With CSI-R

In this section, we describe the scheme for the scenario
when the CSI is available perfectly only at the receiver
(CSI-R). Since the CSI is not known to the transmitters,
devices allocate equal power to all the subchannels by scal-
ing the source signal with a constant α. The value of α
is chosen so that the average power constraint is satisfied,
and is given by α = qP

||sn||22
. Device n transmits xn(t) =

√
α (sn(π(1, t)) · · · sn(π(q, t)))T in the tth channel use. The

signal received by the receiver in the tth channel use and the
ρth sub-channel is given by

y(ρ, t) =

N∑
n=1

√
αhn(ρ)sn(π(ρ, t)) + z(ρ, t). (11)

After reversing the permutations of the subchannels, similarly
to Section III-A, the PS obtains:

y′(ρ, t) =

N∑
n=1

√
αh′n(ρ, t)sn(ρ) + z′(ρ, t). (12)

The PS then estimates the sum s as follows:

ŝ(ρ) =
1√

αTE[|h|2]

T∑
t=1

N∑
n=1

h′∗n (ρ, t)y
′(ρ, t), (13)

which, similarly to the CSI-T case, provides T -fold diversity.

IV. DIGITAL TRANSMISSION WITH RECEIVER
COMPUTATION

In this section, we describe the baseline digital scheme to
evaluate the proposed OAC scheme with CSI-T, where device
n uses a uniform lattice quantizer to map the source vector
Sn to the discrete vector vn.

A. Quantization

When the number of quantization levels is large, the quan-
tization noise is usually modeled as uniformly distributed
and independent of the data [14]. Given a p−dimensional
vector, the quantization noise per dimension of an optimal
p−dimensional uniform lattice quantizer is given by ε =
GpV

2/p, where Gp is the normalized second moment, which is
a measure of the quantizer efficiency, and V is the volume of a
Voronoi cell of the lattice [15]. If we consider a p−dimensional
cube of volume 1, and if the number of lattice points inside
the cube, also called the lattice point density, is 2Q, then we
have V ≈ 1

2Q
. Therefore, we have ε = Gp2

− 2Q/p. For p = 1,
we have G1 ≥ 1/12, while for p→∞, the minimum value of
Gp → 1/2πe ≈ 0.058550 [16].

B. Fading MAC with CSI-T

When the CSI is available perfectly only at the transmitters,
device n performs channel inversion so that the receiver does
not need perfect CSI to correctly decode the transmitted
message. Note that to correctly decode the transmitted vectors,
the receiver must know whether the fading coefficient is
greater or less than γ0 in any given sub-channel, that is,
the receiver requires 1 bit CSI. To satisfy the average power
constraint 1

qT E
[
||Xn||22

]
≤ P , device n uses the following

power allocation in the ρth sub-channel and tth channel use:

|xn(ρ, t)|2 = 1γn(ρ)>γ0

α

|hn(ρ)|2
, (14)

Let the rates at which the devices transmit be denoted by
the tuple (R1, . . . , RN ). The capacity region of the channel
with the above transmission scheme is characterized by the
following inequalities:∑
a∈A

Ra ≤
T∑
t=1

(
q∑
ρ=1

log

(
1+
∑
a∈A

α1γa(ρ,t)>γ0

))
,∀A ⊆ [N ],

(15)

When q →∞, the inner summation in Eq. (15) is equivalent
to the ergodic capacity of a fading MAC with the channel
inversion scheme. It is easy to see, from the submodularity of
the capacity region, that the operating point with R1 = · · · =
RN =

∑N
m=1 Rm

N , lies within the capacity region. Hence, the
channel capacity for device n on that operating point is given
by Rn =

∑N
m=1 Rm

N . The PS decodes the messages from each
device, and then computes the desired function.

V. EXPERIMENTS

We evaluate the proposed schemes for model aggregation
in FEEL, where the desired function is f(S1, . . . , SN ) =
1
N

∑N
n=1 Sn. We denote the set of data samples available at

device n by Dn, and the model update computed by device n
on the local data samples Dn, and the parameter vector at the
τ th iteration, θτ , by Sn(θτ ) ∈ Rp, n ∈ [N ]. At each iteration,
all the devices deliver their model updates to the PS. The goal
of the PS is to update the model parameters as follows:

θτ+1 =
1

N

N∑
n=1

Sn(θτ ). (16)

A. Reconstruction error analysis

OAC CSI-T: Denoting λ , Pr(γ > γ0) and µ ,∑N
n=1 sn(ρ), the normalized MSE is given by:

NMSE(F̂ (ρ), F (ρ)) =

E
[(

1
N ŝ(ρ)−

1
N

∑N
n=1 sn(ρ)

)2]
(

1
N

∑N
n=1 sn(ρ)

)2
(17)

∝ 1− λ
λT

+
σ2
n

αµ2λ2T
. (18)

Note that, if we make the same assumption of infinite parallel
channels as in the digital transmission case, the MSE can be



Fig. 3: Comparison of the NMSE achieved by the OAC with
CSI-T, OAC with CSI-R, and digital transmission schemes.

made arbitrarily small by increasing the number of channel
uses. The scaling parameter α and the threshold γ0 depend on
each other, and are optimized numerically.

OAC CSI-R: Assuming σ2
h = E[|h|2], the normalized MSE

is given by:

NMSE
(
F̂ (ρ), F (ρ)

)
∝ 1

T
+
N(N − 1)

T
+

Nσ2
n

α2Tσ2
h

(19)

Notice that the MSE grows quadratically with N , while it is
independent of N for the CSI-T case.

B. Synthetic parameter vectors

We first perform experiments on synthetically generated
parameter vectors to compute their average. We assume that
N = 100 devices have parameter vectors of length p = 5000,
whose elements are sampled from a standard Gaussian distri-
bution. It is also assumed that q = T . In Fig. 3, we plot the
NMSE versus the SNR for the proposed OAC scheme for CSI-
T and CSI-R, and also the digital transmission with receiver
computation, assuming CSI-T. It is clear that the OAC CSI-T
scheme outperforms both the OAC CSI-R scheme as well as
the digital transmission scheme with CSI-T. The superiority
of the OAC CSI-T scheme over the OAC CSI-R scheme can
be seen by comparing Eq. (18) and (19).

C. FEEL for image classification

To demostrate the effectiveness of the OAC scheme for
model aggregation in FEEL, we train a VGG16 model [17]
on the CIFAR10 dataset [18] for image classification with 10
classes. We consider a federated setting where N = 40 devices
with i.i.d. datasets of images from all the classes. At the start,
each device is provided with a common initialized model by
the PS. Then, each device performs one epoch of training of
the local model on its local dataset. After training, the updated
local model is delivered to the PS over the wireless channel
using the proposed schemes. The PS computes the mean of the
received model parameters, and sends them to the devices for

Fig. 4: FEEL: Comparison of testing accuracy of proposed
schemes at SNR = −10dB.

the next epoch of training. The CIFAR-10 dataset consists of
60000 32x32 colour images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test
images.

In Fig. 4, we compare the speed of convergence of the model
when using the OAC scheme and the digital scheme with CSI-
T. We assume that q = T . As observed with the experiments
on the synthetic parameter vectors, the OAC scheme with CSI-
T outperforms the ideal capacity achieving digital scheme. As
expected, the test accuracy of the converged model improves
when we employ a larger delay T , but it is also interesting
to note that the model converges faster in the beginning if a
smaller value of delay T is used, indicating that large errors
in the aggregated model are tolerable in the initial stages of
training, but large errors degrade the performance once model
changes become small during the later stages. Taking this into
account, we also execute an adaptive delay scheme in which
a smaller delay T = 10 is used for the first 100 epochs, and
then a larger delay T = 20 is used for the remaining epochs.
We observe that the adaptive delay scheme provides the best
convergence time and test accuracy.

VI. CONCLUSIONS

It is known that OAC provides significant benefits when
trying to recover a function of the signals distributed at
multiple transmitters. One challenge in OAC is to exploit all
the available channel bandwidth, as it is known that linear
bandwidth expansion schemes do not provide any gains. We
proposed a scheme that modulates the source to fit the avail-
able bandwidth in a wideband channel, and works for block-
fading channels. This is achieved by exploiting the channel
bandwidth to create diversity for the desired sum. We have
shown through numerical experiments, including in a FEEL
scenario, that OAC can significantly outperform the digital
counterpart even assuming capacity achieving transmission for
the latter.



REFERENCES

[1] B. Nazer and M. Gastpar, “Computation over multiple-access channels,”
IEEE Transactions on Information Theory, vol. 53, no. 10, pp. 3498–
3516, 2007.

[2] M. Goldenbaum and S. Stanczak, “Robust analog function computation
via wireless multiple-access channels,” IEEE Transactions on Commu-
nications, vol. 61, no. 9, pp. 3863–3877, 2013.

[3] ——, “On the channel estimation effort for analog computation over
wireless multiple-access channels,” IEEE Wireless Communications Let-
ters, vol. 3, no. 3, pp. 261–264, 2014.

[4] J. Dong, Y. Shi, and Z. Ding, “Blind over-the-air computation and
data fusion via provable wirtinger flow,” IEEE Transactions on Signal
Processing, vol. 68, pp. 1136–1151, 2020.
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