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Abstract

We present a novel deep neural network (DNN) architecture for compressing an image when
a correlated image is available as side information only at the decoder, a special case of the
well-known distributed source coding (DSC) problem in information theory. In particular,
we consider a pair of stereo images, which generally have high correlation with each other
due to overlapping fields of view, and assume that one image of the pair is to be compressed
and transmitted, while the other image is available only at the decoder. In the proposed
architecture, the encoder maps the input image to a latent space, quantizes the latent
representation, and compresses it using entropy coding. The decoder is trained to extract
the common information between the input image and the correlated image, using only the
latter. The received latent representation and the locally generated common information are
passed through a decoder network to obtain an enhanced reconstruction of the input image.
The common information provides a succinct representation of the relevant information at
the receiver. We train and demonstrate the effectiveness of the proposed approach on the
KITTI and Cityscape datasets of stereo image pairs. Our results show that the proposed
architecture is capable of exploiting the decoder-only side information, and outperforms
previous work on stereo image compression with decoder side information.

1 Introduction

Data compression is a fundamental and well-studied problem in engineering, and is
commonly formulated with the goal of designing codes with minimal average code
length for a given data ensemble. Shannon showed that the entropy is a fundamen-
tal bound in lossless data compression when multiple independent samples of the
information source can be compressed jointly while allowing arbitrarily small prob-
ability of error. The design of entropy codes approaching the Shannon limit relies
on modeling the probability distribution of the data ensemble. On the other hand,
continuous-valued data (such as vectors of image pixel intensities) must be first quan-
tized to a finite set of discrete values, which introduces error. In this context, known
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Figure 1: The proposed network architecture. Block Q corresponds to a uniform
quantizer, while blocks AE and AD to arithmetic encoder and decoder, respectively.

as the lossy compression problem, one must trade-off two competing costs: the en-
tropy of the discretized representation (rate) and the error arising from quantization
(distortion). In the case of lossy compression, the fundamental performance bound
is characterized by the information theoretic rate-distortion curve. In practice, lossy
compression is a challenging problem, and codes are designed for specific information
sources, e.g., image, audio, video. In lossy image compression, practical codes typi-
cally follow a two-step approach, where a linear transform is followed by quantization
and lossless compression using entropy coding (e.g., JPEG, JPEG 2000). Recently,
deep neural network (DNN) aided data-driven image compression algorithms have re-
ceived significant research interest [1–7], and achieved impressive performance results,
outperforming classical methods, such as JPEG 2000 and BPG [8,9].

In this work, we are interested in DNN-aided distributed image compression, where
side information in the form of a correlated image is available only at the decoder.
This scenario occurs, for example, in the case of a pair of stereo cameras, where two
cameras capture images of a scene from different angles at the same moment. In this
case, the two images are highly correlated due to overlapping fields of view. The
two cameras do not communicate with each other, and therefore, cannot apply joint
encoding of the images as in [10]. Assume that the left camera delivers its image (in
a lossless fashion) to the destination, e.g., a central storage or processing unit. The
right camera, instead of employing a standard image compression algorithm, should
be able to benefit from the presence of a highly correlated image from the left camera,
even though it does not have access to this image.

The benefit of decoder-only side information in compression goes back to Slepian
and Wolf’s seminal work on distributed lossless compression [11]. They showed that
a compression rate equal to the entropy of the source conditioned on the side infor-
mation is necessary and sufficient for lossless compression, which is, interestingly, the
same rate when the side information is available to both the encoder and the decoder.
This was later extended by Wyner and Ziv to lossy compression with decoder side
information in [12], which provides unbounded gains in rate. However, there is a
non-zero rate loss in general compared to having the side information both at the
encoder and the decoder.

Related works: Previous works [13, 14] study neural distributed source coding.
In [13], the authors exploit high spatial correlations between pairs of stereo images,
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Figure 3: DSC architecture.

having significantly overlapping fields of view, by finding similar patches in a inter-
mediate reconstructed image and the side information image, and then using these
to refine the reconstructed image. The paper [14] considers a different setup where
the bottom half of the image of a face is used as side information for reconstructing
the upper half of the face. In [15], the authors propose a framework for distributed
compression of correlated sources, and joint decoding, by employing a recurrent au-
toencoder architecture which processes the residual content over repeated multiple
iterations in order to achieve better reconstruction performance.

In this paper, we propose a novel neural architecture to perform lossy compres-
sion of an image assuming that its stereo pair is available at the decoder as side
information, similarly to [13]. The novelty of the proposed method lies in employing
the concept of common information to first learn the common features between the
two correlated images. The common information generated by the decoder is then
used along with the quantized latent representation of the original image conveyed by
the encoder to reconstruct the original image. We show that our proposed method
achieves a significantly better rate-distortion trade-off at low bit rates than the state-
of-the-art single image compression algorithms, as well as a similar previous work on
deep stereo image compression with decoder side information [13].

Wyner-Ziv compression: Let 𝑋 and 𝑌 denote the source and side informa-
tion variables, respectively, with joint distribution 𝑝(𝑥, 𝑦). The information theoretic
fundamental limit in lossy compression is characterized by the rate-distortion func-
tion, given by 𝑅𝑊𝑍

𝑋 |𝑌
(𝑑) = inf 𝐼 (𝑋;𝑉 | 𝑌 ), where 𝑅∗(𝑑) is the rate of compression (in

bits per source sample) to achieve a given target average distortion 𝑑, between the
input sequence x ∈ R𝑛 and its reconstruction x̂ ∈ R𝑛. The infimum is with respect to
all auxiliary random variables 𝑉 and reconstruction functions 𝑓 : Y × V → X̂ that
satisfy: i) 𝑉 and 𝑌 are conditionally independent given 𝑋, that is, 𝑉 − 𝑋 − 𝑌 form a
Markov chain; ii) E [𝐷 (𝑋, 𝑓 (𝑉,𝑌 ))] ≤ 𝑑.

2 Image compression with side information

In this section, we describe our main contribution, where we propose a novel autoen-
coder architecture for image compression exploiting the side information, y, available
only at the decoder, to reconstruct the image x. In the Wyner-Ziv characterization of
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the rate-distortion function, the encoder identifies and transmits the latent variable
𝑉 , which is then combined with the side information to reconstruct the original im-
age. This is the approach followed by [13]. In our architecture, we model the images
x and y as being generated by the random variables w, v𝑥 and v𝑦, according to the
graphical model illustrated in Fig. 2, which also satisfy the Markov chains v𝑥 − x− y,
x−w−y and x−y−v𝑦. The variable w captures the common features between the two
images, while the variables v𝑥 and v𝑦, which we call the private information variables
for the respective images, capture those aspects of x and y that are not captured by
the common variable w. We expect that feeding only the common information to the
combining function at the decoder, instead of all the side information, will help the
encoder to identify and send only the information that is not available at the decoder
through the side information, and simplify the task of the combining function.

In general, we have 𝑅𝑊𝑍
𝑋 |𝑌
(𝑑) ≥ 𝑅𝑊𝑍

𝑋 |𝑊
(𝑑) (see the proof in Appendix 5.2 of [16]); that

is, it is more beneficial to have 𝑊 as side information at the decoder, as it is ‘closer’
to 𝑋 in distribution. Of course, we cannot in general generate 𝑊 reliably based only
on 𝑌 , but we argue that even an approximate reconstruction of 𝑊 allows the decoder
to extract only the most relevant parts of the side information that are helpful in
estimating 𝑋. Our experimental results confirm that the proposed approach helps in
improving the reconstructed image quality.

Architecture: See Fig. 3 for the conceptual architecture of the distributed source
encoder/decoder pair that we consider, and Fig. 1 for the implemented network ar-
chitecture. The distribution 𝑞𝝓 (v𝑥 | x; 𝝓𝑥) is learnt by a transform g𝑎𝑥 at the encoder,
and 𝑞𝝓 (v𝑦 | y; 𝝓𝑦) is learnt by a transform g𝑎𝑦 at the decoder. The encoder maps
the image x to a latent representation v𝑥 by applying the transform g𝑎𝑥 to it. The
latent representation v𝑥 is quantized to v̂𝑥 ∈ Z

𝑚. Since the quantization step is a non-
differentiable operation, which prevents end-to-end training, it is instead replaced by
additive uniform random noise over [−0.5, 0.5] during training (see [1]). Thus, v𝑥
is perturbed by uniform noise during training to obtain ṽ𝑥, which approximates the
quantized latents v̂𝑥. The decoder extracts the common information w = f (y; 𝝓 𝑓 )

between the images x and y by applying the transform f , where 𝝓 𝑓 refers to the
weights of the DNN. The transform f learns the marginal distribution 𝑞𝝓 (w | y; 𝝓 𝑓 ).
The decoder concatenates w to the received latent variable v̂𝑥, and reconstructs an
estimate x̂ = g𝑠𝑥 (v̂𝑥,w; 𝜽𝑥) of the image x by applying a transform g𝑠𝑥, which corre-
sponds to the marginal decoder 𝑝𝜽 (x | v𝑥,w; 𝜽𝑥). Simultaneously, the decoder learns
to reconstruct the correlated image y by first mapping it to the latent representation
v𝑦 using a transform g𝑎𝑦, and then reconstructing an estimate ŷ = g𝑠𝑦 (v𝑦,w; 𝜽 𝑦) by
concatenating the common variable w to v𝑦 and applying a transform g𝑠𝑦 to it. Note
that the latent representation v𝑦 is neither quantized nor perturbed with uniform
noise. This is because the encoding and decoding of image y happen at the receiver
side without being transmitted over the channel.

The variables w, v𝑥 and v𝑦 are modeled using a univariate non-parametric, fully
factorized density function, similarly to the method proposed in [1, 2]. The joint
distribution of the random variables, assuming the model illustrated in Fig. 2, is
given by 𝑝(x, y,w, v𝑥, v𝑦) = 𝑝(w)𝑝(v𝑥)𝑝(v𝑦)𝑝𝜽 (x | w, v𝑥; 𝜽𝑥)𝑝𝜽 (y | w, v𝑦; 𝜽 𝑦), param-
eterized by 𝜽𝑥 and 𝜽 𝑦. To obtain tractable inference of latent variables, we intro-
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duce the following factored variational approximation of the posterior distribution:
𝑞𝝓 (w, v𝑥, v𝑦 | x, y) = 𝑞𝝓 (v𝑥 | x; 𝝓𝑥)𝑞𝝓 (w | y; 𝝓𝑤)𝑞𝝓 (v𝑦 | y; 𝝓𝑦), each of which is pa-
rameterized by a distinct DNN. The joint distribution of the latent variables can be
estimated by minimizing the expectation of the Kullback-Liebler (KL) divergence be-
tween the approximate variational density 𝑞𝝓 (ṽ𝑥, v𝑦,w | x, y) and the true posterior
distribution 𝑝(ṽ𝑥, v𝑦,w | x, y) over the data distribution 𝑝(x, y):

𝐷KL
(
𝑞𝝓 (ṽ𝑥 , v𝑦 ,w | x, y) | | 𝑝(ṽ𝑥 , v𝑦 ,w | x, y) | 𝑝(x, y)

)
= Ex,y∼𝑝 (x,y)𝐷KL

(
𝑞𝝓 (ṽ𝑥 , v𝑦 ,w | x, y) | | 𝑝(ṽ𝑥 , v𝑦 ,w | x, y)

)
= Ex,y∼𝑝 (x,y)Eṽ𝑥 ,v𝑦 ,w∼𝑞𝝓

[(
log 𝑞𝝓 (ṽ𝑥 | x; 𝝓𝑥) + log 𝑞𝝓 (v𝑦 | y; 𝝓𝑦) + log 𝑞𝝓 (w | y; 𝝓 𝑓 )

)
(1)

−
(
log 𝑝𝜽 (x | w, ṽ𝑥; 𝜽 𝑥)︸���������������������︷︷���������������������︸

𝐷𝑥

+ log 𝑝𝜽 (y | w, v𝑦; 𝜽 𝑦)︸���������������������︷︷���������������������︸
𝐷𝑦

+ log 𝑝(w)︸����︷︷����︸
𝑅𝑤

+ log 𝑝(ṽ𝑥)︸�����︷︷�����︸
𝑅𝑥

+ log 𝑝(v𝑦)︸�����︷︷�����︸
𝑅𝑦

)]
+ const.,

where the first term, 𝑞𝝓 (ṽ𝑥 | x; 𝝓𝑥), is a constant because the quantization noise has
a uniform distribution with a constant width, and the second and third terms are
zero because the inference model is deterministic for the common information and
the latent representation of the correlated image, which implies that the associated
conditional entropies are zero. The entropy terms 𝑅𝑤, 𝑅𝑥 and 𝑅𝑦 correspond to
‘rate-like’ terms for the common information, the quantized latent representation of
the input image, and the latent representation of the correlated image, respectively.
The distortion terms 𝐷𝑥 and 𝐷𝑦 may correspond to closed-form likelihoods, such as
Gaussian distributions, in which case they can be interpreted as mean-squared error
terms. For other perceptual distortion metrics, such as MS-SSIM, this is not the case
in general. However, we retain the same form of the loss function, and train the DNN
by minimizing the following loss function:

𝐿 (g𝑎𝑥 , g𝑠𝑥 , g𝑎𝑦 , g𝑠𝑦 , f ) = (𝑅𝑥 + 𝜆𝐷𝑥) + 𝛼
(
𝑅𝑦 + 𝜆𝐷𝑦

)
+ 𝛽𝑅𝑤 , (2)

where, for simplicity, we use the same weight 𝜆 for the distortion terms. Since our
main objective is only to reconstruct x, we introduce the hyperparameters 𝛼 and 𝛽
that determine how much importance is given to the reconstruction of the correlated
image, and to the complexity of common information extracted by the decoder, re-
spectively, which act as regularizers for the main objective. We also extend the above
approach to use scale hyperpriors by using the model of [2] as the baseline.

Experimental setup: To compare the compression performance of our proposed
model with the state-of-the-art, we conducted a number of experiments using the Py-
Torch framework. Our code is publicly available1. Fig. 1 illustrates the proposed
DNN architecture for distributed source coding in detail. The transforms g𝑎𝑥 and
g𝑠𝑥 have the same structure as those in [1]. These transforms are composed of con-
volutional layers, and linear (i.e., rectified linear unit) and nonlinear functions (i.e.,
generalized divisive normalization [GDN] and inverse generalized divisive normaliza-
tion [IGDN]), which have been shown to be particularly suitable for density modelling
in image compression [1]. Note that, we have omitted the section of the network that

1Our code is available at: https://github.com/ipc-lab/NDIC
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the decoder uses to reconstruct the correlated image during training in Fig. 1. We
introduce the transform f as mentioned in Section 2.

For the first set of experiments, we constructed our dataset from the KITTI Stereo
2012 dataset [17] and from the KITTI Stereo 2015 dataset [18, 19], consisting of
unique 1578 stereo image pairs (i.e., a pair of images taken simultaneously by different
cameras). We refer to this dataset as KITTI Stereo. We trained every model on 1576
image pairs, and we validated and tested every model on 790 image pairs from KITTI
Stereo dataset. We also trained our models on the Cityscape dataset [20], consisting of
5000 stereo image pairs, out of which 2975 image pairs belong to the training dataset,
500 image pairs belong to the validation dataset, and 1525 image pairs belong to the
test dataset. These datasets are designed to illustrate the calibrated and synchronized
camera array use case. We evaluate our models using both the multi-scale structural
similarity index measure (MS-SSIM), as well as the peak SNR (PSNR) based on the
mean-squared error (MSE) distortion. The MS-SSIM has been widely reported to
provide a better measure of human perception of distortion [21].

Training: We center-crop each 375 × 1242 image of the KITTI Stereo dataset to
obtain a 370×740 image, and then downsample it to a 128×256 image. For Cityscape
dataset, we directly downsample each image to 128×256. We train the baseline model
with different values of 𝜆 to obtain points with different bit rates using the PSNR and
MS-SSIM metrics for the reconstruction loss. We train the proposed model for 500K
iterations, using randomly initialized network weights. Similarly to [1], we train our
models using AMSGrad optimizer [22], with a learning rate of 1× 10−4. The learning
rate is reduced by a factor of 10 whenever the decrease in the loss function stagnates,
where the lower bound on the learning rate is set to 1 · 10−7. We use a batch size of 1
because of the small size of the datasets under consideration. For comparison, we also
train the model proposed in [13] which will be referred to as DSIN. We highlight that
the results for DSIN reported here differ from those in [13] because we use smaller
images in our experiments.

Experimental results: In this section, we discuss the performance of the pro-
posed model and compare it with other alternatives (see Fig. 4). In addition to DSIN,
we also consider BPG as well as DNN-aided compression schemes introduced in [1]
and [2], which will be referred to as Ballé2017 and Ballé2018, respectively. Follow-
ing [23], we employ 4:4:4 chroma format for BPG. We note that these schemes do
not exploit the side information at the receiver. “ours + Ballé2017” and “ours +
Ballé2018” refer to our proposed solutions with the models in [1] and [2] as the base-
lines, respectively. In Figs. 4a and 4c, we present the comparison in terms of the
average PSNR. We observe that the proposed model is particularly effective at low
bit rates. Note that DSIN does not perform well when optimized for MSE. We ob-
serve an even more stark improvement in performance when optimized with respect
to MS-SSIM in Fig. 4b and 4d, where the models that do not use side information
experience a sharp drop in performance at low bit rates, while DSIN and the proposed
solution, which exploit the side information, experience a more graceful degradation
of performance with decreasing bit rates. This illustrates the fact that the presence of
side information is particularly useful at low bit rates, where even a very limited infor-
mation allows reasonable reconstruction by exploiting the side information. We also
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(a) KITTI Stereo (PSNR) (b) KITTI Stereo (MS-SSIM)

(c) Cityscape (PSNR) (d) Cityscape (MS-SSIM)

Figure 4: Comparison of different models in terms of MSE and MS-SSIM metrics.

note that the proposed solution significantly improves the performance with respect
to DSIN in experiments with both datasets.

We also present a visual comparison of the performance of the models proposed
in Fig. 5. Notice that the Ballé2018 model fails to capture the colours at very low bit
rates, as illustrated in Fig. 5, unlike DSIN and ours. Moreover, our model successfully
captures the textures and details of colours and objects in the background, while
DSIN has a blurring effect on the image. This is because the DSIN model operates
by first reconstructing the image based on the compressed description provided by the
encoder, then finding the offset of corresponding patches (using the “side information
finder” block in their model) in the intermediate reconstructions of the input and
correlated images when passed through their baseline autoencoder, and then using the
corresponding patches from the original side information image to refine patches in the
intermediate reconstruction of the input image. If the intermediate reconstructions
are not of a high quality to begin with, it can cause the wrong patches to be recognized
as the corresponding patches in the side information image. This causes distortions
in the reconstructed image, leading to low MS-SSIM values. Our model operates
instead by overlaying the content details sent by the encoder over the structural and
texture details extracted from the side information. This is illustrated in Fig. 7. We
generate the visualizations of the private and common information by passing them
individually through the decoder while setting the other to zero. It is observed that
the common information captures the colors and texture information, which explains
why our model is able to capture them even at very low bit rates. We also note in
Fig. 7 that as the bit rate is increased, the encoder is allowed to send more content
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Original Image Ballé2018 DSIN Ours

(a) KITTI Stereo (b) bpp = 0.0261 (c) bpp = 0.0187 (d) bpp = 0.0152

(e) Cityscape (f) bpp = 0.0782 (g) bpp = 0.0460 (h) bpp = 0.0348

Figure 5: Visual comparison of different models trained for the MS-SSIM metric.
“Ours” in the figures above refers to “ours + Ballé2017” model.

and structural information; and therefore, the decoder tends to extract less definite
content details and more global color and texture details from the side information.

Ablation study: To study the impact of each component of the proposed model
on the overall performance, we carry out an ablation study on the architecture of the
decoder by varying the parameters 𝛼 and 𝛽 in Eq. (2), and compare the performances
in Figs. 6 and 7. The default model sets 𝛼 = 𝛽 = 1. By setting 𝛼 = 𝛽 = 0, we
remove the additional regularization terms, and we observe that this results in a slight
decrease in the performance at low bit rate. Moreover, we observed an unpredictable
behaviour when evaluating the DSIN model, which lacks the regularization terms 𝑅𝑤

and 𝑅𝑦 +𝜆𝐷𝑦 that we have in Eq. (2). Having non-zero 𝛼 and 𝛽 provides the required
regularization, and as a result, improves the performance. We also check whether the
desired regularization can be obtained through only the rate of the common part, 𝑊 ,
by setting 𝛼 = 0 and 𝛽 = 1. However, we observe that the performance is even worse
in this setting. We argue that by imposing the decoder to reconstruct its own side
information under a rate and distortion penalty prevents 𝑊 from being too far from
𝑌 , and hence, in a way, acts as another regularizer on the common part 𝑊 . Making
the value of 𝛽 small, with 𝛼 = 1, is observed to provide an improvement over the
default setting. This is illustrated in Fig. 7, where having 𝛼 = 1 and 𝛽 = 10−3 allows
the decoder to generate more common information, and therefore, the encoder can

Figure 6: Ablation study experiments for the MS-SSIM metric on KITTI Stereo.
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(a) 𝛼 = 1, 𝛽 = 10−3

bpp = 0.1281
(b) 𝛼 = 0, 𝛽 = 0
bpp = 0.1572

(c) 𝛼 = 1, 𝛽 = 1
bpp = 0.1658

(d) 𝛼 = 0, 𝛽 = 1
bpp = 0.1731

Figure 7: Ablation study: Effect of hyperparameters 𝛼 and 𝛽 on the common
information (1𝑠𝑡 row) and private information (2𝑛𝑑 row) decomposition, for a similar
reconstruction quality (3𝑟𝑑 row).

send a lower quality private information image at a lower bit rate to achieve the same
reconstruction quality. This suggests that 𝛽 can be tuned to maximize the model’s
performance at different bit rates.

3 Conclusions

We presented a novel autoencoder for lossy image compression with decoder side in-
formation exploiting the common information between the image to be reconstructed
and the side information. The encoder learns to send only input image specific in-
formation, like the content details, to the decoder, while common information, like
texture and colors, are extracted by the decoder from the side information. We show
that this approach allows good quality image reconstruction even at very low bit rates,
improving significantly over both single image compression models, as well as previous
work on image compression with side information. The loss function in Eq. (2) also
provides a framework to extend this work to a setting where there are two distributed
encoders having correlated images. Moreover, combining the side information with
the received latent representation in the latent space provides a general framework to
extend this work to task-aware image compression.
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