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Abstract: We use nonlinear model predictive control to procure a joint control of mobility and
transmission to minimize total network communication energy use. The nonlinear optimization
problem is solved numerically in a self-triggered framework, where the next control update time
depends on the predicted state trajectory and the accuracy of the numerical solution. Solution
accuracy must be accounted for in any circumstance where systems are run in open-loop for
long stretches of time based on potentially inaccurate predictions. These triggering conditions
allow us to place wireless nodes in low energy ‘idle’ states for extended periods, saving over 70%
of energy compared to a periodic policy where nodes consistently use energy to receive control
updates.
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1. INTRODUCTION

Energy consumption limits the use of autonomous agents,
such as unmanned aerial vehicles (UAVs), with transmis-
sion and propulsion being large drains. A wireless nodes’
transmission energy is the superposition of the energy
usage in send, receive and idle (sleep) modes;

ETransmission := Esend + Ereceive + Eidle. (1)

Idle nodes are neither listening for a message nor sending
one, but can be woken by some internal clock mechanism.
Typically Esend � Ereceive > Eidle and so it is advanta-
geous to idle energy-scarce nodes whenever possible. In
data gathering applications (e.g. mobile sensor networks
(Thammawichai et al., 2018)) movement is used to fa-
cilitate transmission, and therefore should be considered
part of the network’s communication energy expenditure.
Apart from energy, communication bandwidth is another
limiting factor for UAVs and places restrictions on the
amount of mission- and control-centric data that can be
sent. Our proposed triggering scheme aims to reduce both
the energy and bandwidth requirements of the network.

Zeng et al. (2016) uses a UAV as a relay between a station-
ary source and sink. Directional waterfilling is shown to
maximize the throughput for a fixed trajectory. For a fixed
transmission policy, the trajectory is optimized through a

? The support of the EPSRC Centre for Doctoral Training in High
Performance Embedded and Distributed Systems (HiPEDS, Grant
Reference EP/L016796/1) is gratefully acknowledged. D. Gündüz
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sequence of convex optimizations. Energy efficiency of a
circular UAV trajectory is minimized in Zeng and Zhang
(2017), while an optimal hover-fly-hover strategy is found
by Wu et al. (2018) for a two-user broadcast UAV channel.
Yang et al. (2018) trades-off a ground node’s communica-
tion energy and a UAV’s propulsion energy for circular or
straight line flights. We use similar transmission and mo-
bility models, as presented in Faqir et al. (2018), wherein
we only considered a periodic control.

Apart from our previous works, most of the above de-
termine optimal control strategies offline, but are not
interested in using any optimization for a feedback con-
trol. Here we jointly control mobility and transmission to
minimize the total network communication energy. As in
Faqir et al. (2018), this is accomplished by formulating
an optimal control problem (OCP) to minimize the en-
ergy required to aggregate mission-centric data. Here the
novelty is to solve the OCP numerically in a triggered
framework, where the optimization is solved again only
if a given condition – which importantly accounts for the
OCP solution accuracy – is met. This approach should be
taken as a necessity when triggering conditions depend on
approximate state predictions resulting from the numerical
solution of an optimization. Gommans et al. (2014) argues
that any metric of control performance should reflect the
offline and online cost of controller implementation. Our
approach allows to trade-off the control energy and band-
width resource usage with the online cost of updating the
control. We also generalize our previous framework (Faqir
and Kerrigan, 2020b,a), which ties the numerical accuracy
of the OCP with the time between control update events to



allow for time-varying uncertainty bounds. Applying our
scheme to the UAV communication problem allows us to
trade-off the frequency and cost of the online optimization
and idle inactive nodes, saving additional energy.

2. NONLINEAR OPTIMAL CONTROL

We can model a physical process by a set of ordinary
differential equations (ODEs). When mathematically opti-
mizing over these models the control enters as an algebraic
variable, resulting in OCPs (Betts and Huffman, 1998).
Take the nonlinear dynamics

ẋ(t) = f(t, x(t), u(t)) + v(t), (2)

where x(t) ∈ Rn is the system state, and u(t) ∈ Rm
the control input. The dynamics and output are affine
in a disturbance v(t) ∈ Rn satisfying |vi(t)| ≤ v̂i(t), i ∈
[1, n] while f(·) describes the nominal dynamics satisfying
‖f(t, x1, u)− f(t, x2, u)‖ ≤ Lx ‖x1 − x2‖ for all x1, x2, t,
and u with Lipschitz constant Lx.

In nonlinear model predictive control (NMPC) we de-
termine the input sequence as a result of a continuous-
time OCP. NMPC can be computationally demanding but
guarantees constraint satisfaction and is able to handle
complex systems. We write the OCP in Bolza form as

min
x̂,û

Φ(x̂(t0), x̂(tf )) +

tf∫
t0

L(x̂(t), û(t), t) dt (Pa)

s.t. ∀t ∈ [t0, tf ],

˙̂x(t) = f(x̂(t), û(t), t), (Pb)

c(x̂(t), û(t), t) ≤ 0, (Pc)

φ(x̂(t0), x̂(tf )) = 0, (Pd)

x̂(t0) = x(tui ). (Pe)

Optimization is performed over a prediction horizon
Top := tf − t0. Internal variables x̂, û represent the state
and input trajectories. The cost consists of the Lagrange
functional L(·) and Mayer functional Φ(·). The solution
satisfies f(·), enforced as ODEs in (Pb). We enforce path
constraints (Pc) for all time and terminal constraints
(Pd). Feedback is incorporated by re-solving problem (P)
which, through (Pe), is parametric in the most recent state
measurements x(tui ), at every time tui ∈ Tu, where Tu is the
set of input update times (IUTs).

We refer to (x∗(·), u∗(·)) := arg minx̂û (P) as the true solu-
tion of problem (P). There exist algorithmic or hardware
approaches for efficiently solving this nonlinear optimiza-
tion in real-time. None give the true solution (x∗(·), u∗(·))
but instead yield an approximate solution (x̃, u). We can
assess and guarantee the quality of these solutions through
the process of mesh refinement.

2.1 Mesh refinement

Except for the simplest cases, the continuous-time dy-
namic optimization (P) is intractable or impossible to solve
analytically. Direct transcription methods, an overview of
which is given in Kerrigan et al. (2020), approximate (P)
as a finite dimensional NLP, which is solved numerically.
The NLP solution is interpolated into an approximate
solution x̃(·), u(·) (Betts, 2010). State trajectories may be
approximated as continuous piecewise polynomials using a

combination of h- and p-methods (known as hp-methods)
(Kelly, 2017). In these methods the input is approximated
as discontinuous piecewise polynomials. Define the interval
Ω := (t0, tf ), and Ω as the closure of Ω.

Definition 1. (Mesh). The set Th is called a mesh and
consists of open intervals T ⊂ Ω satisfying conditions

(1) Disjunction T1 ∩ T2 = ∅ ∀ distinct T1, T2 ∈ Th,
(2) Coverage ∪T∈ThT = Ω,
(3) Resolution maxT∈Th |T | = h,

(4) Quasi-uniformity minT1,T2∈Th
|T1|
|T2| ≥ σ > 0,

where constant σ must not depend on mesh parameter h.

The indexed set of mesh points is Tm := ∪k∈Kh
inf T k,

where two polynomial segments are joined. Since the pair
(x∗(·), u∗(·)) are unknown, they cannot be used to evaluate
the solution accuracy. A possible metric is the absolute
local error at time t in the ith state, εi(t) := ˙̃xi(t) −
fi(t, x̃(t), u(t)). The vector ε(t) := [ε1(t), . . . , εn(t)]′ is
the error in the differential equations (Pb) resulting from
direct transcription. The error quadrature for state i over
mesh interval Tk ∈ Tm is ηk,i :=

∫
Tk
|εi(τ)|dτ, where |·| is

the scalar norm. As in Betts (2010, Ch. 4), we may obtain
a relative measure of the quadrature of the local error

εk,i := ηk,i(wi + 1)−1, (4)

where the scaling weight, wi := maxt∈Tm
{∣∣ ˙̃xi(t)∣∣ , |x̃i(t)|} .

In short, refinement schemes work by iteratively adding
mesh points or increasing polynomial order until upper
bounds are satisfied on the error quadrature in each mesh
segment. Our numerical examples use an h- method, and
our refinement algorithm is similar to that suggested
in Betts (2010, Ch. 5), with refinement based on the
maximum relative local error over all i state components
in interval Tk ∈ Tm, εk := maxi εi,k. Although we use
time-invariant tolerances, our analysis is easily extended
to allow for different tolerances at each mesh interval, as
done by Paiva and Fontes (2017).

2.2 Triggered control

Periodic controls are usually used without question. At
each update period the system is measured, a control is
calculated and applied. However, policies of this type are
inherently open-loop because the control engineer must
find a single sample interval that satisfies performance
and stability criteria for all possible initial conditions and
disturbance realizations (Gommans et al., 2014). Many
current control applications are also restricted by resource
usage. A worst-case periodic design leads to unavoid-
able over-allocation of communication and computation
resources with no necessary gain in control performance.

Triggered control deviates from classic periodic paradigms
by using feedback to dynamically determine sample times
online. Two common approaches are event-triggered and
self-triggered control (ETC and STC). In ETC the system
is sampled continuously and the control is updated only
when a certain ‘triggering’ condition is met. We formalize
this in the following problem statement.

Problem 1. (ETC). Consider the dynamical system de-
scribed by (2), and a time-varying state feedback law
u(t) = µ(x(t), t) which renders the closed-loop sys-
tem globally asymptotically stable (GAS) and/or satisfies



given performance criteria. Identify a set of state- and
input- dependent conditions Fevent : Rn → R, resulting
in update times

tui+1 = inf{t ∈ R+
0 |t > tui , Fevent(x(t)) ≥ 0},

for which the closed-loop system with sampled-data imple-
mentation is GAS and/or satisfies appropriately defined
performance criteria).

Fevent depends on the current state, and so the next
update time may not be known in advance. Therefore,
even if we reduce the average number of updates we cannot
reallocate resources in the meantime. Compute time and
communication bandwidth must always be kept available
for the possibility of a control update. By contrast, in
STC the next update tui+1 is determined at time tui ,
using a triggering condition of the form τui = inf{τ ∈
R+

0 |Fself(x(tui ), τ) ≥ 0}. As Fself : Rn × R+ → R uses only
the system measurements from time tui to determine τui it
allows for resource redistribution over interval τuk . Define
the error δ(t, tuk) between the predicted state x̃(t, tuk),
based on state measurement x(tuk), and measurement x(t)
as δ(t, tuk) := x̃(t, tuk) − x(t). The components of the
prediction error in each state are δi(t) := x̃i(t)−xi(t), with
δ(t) := [δ1(t), . . . , δn(t)]ᵀ where δ(t) = 0,∀t ∈ Tu, with the

associated prediction error dynamics δ̇(t) := ˙̃x(t) − ẋ(t).
We employ the triggering condition

F̃event := ∆− ‖δ(t)‖M , (5)

‖·‖M is assumed to be an appropriately defined p–norm
with weighting matrix M .

3. SYSTEM MODEL

We consider a network of immobile nodes and a sin-
gle mobile data gathering node, tasked with aggregat-
ing/distributing data among the network. Specifically,
∃NT stationary transmitting nodes Un, n ∈ NT :=
{1, . . . , NT } and NR receiving nodes Um,m ∈ NR :=
{NT , . . . , NT +NR}. These nodes are located at positions
Xn := (qn, δn, %n) , n ∈ {NT ,NR}. The single mobile node
U0 travels with trajectory t→ X0(t) := (q0(t), δ0(t), %0(t))
over time t ∈ T := [0, T ]. The components of Xn(t)
are (time-varying) longitudinal, lateral and altitude dis-
placements. U0 is constrained to move from positions
X0(0) = X0,init and X0(T ) = X0,final. We assume full and
correct location information of all nodes to be known. At
time t node Un,∈ N0 := {0,NT ,NR} has internal data
load sn(t) ≤ Mn bits, where Mn is the node’s on-board
memory. Storage buffers satisfy boundary conditions

sn(0) := Dn,init sn(T ) := Dn,final, ∀n ∈ N0.

We can model an infrastructure-connected receiving node
Un as an ideal/infinite by setting Dn,final = Mn =∞.

3.1 Mobility model

The UAV travels in a linear, constant altitude trajectory.
For notational simplicity we set δ0(t) = δ0, a0(t) =

a0,∀t ∈ T . UAV U0 moves at speed v0(t) ∈ V , [V , V ],
where 0 < V ≤ V . The propulsion force generated by
U0 must satisfy the Newtonian dynamic force balance
equation F (t) − D(v(t)) = Wa(t), where W is the mass

and a(t) , v̇(t). F (t) is the force used to accelerate and

D(·) is a smooth drag model of the resistive forces on Un.
The instantaneous propulsion power is Fn(t)vn(t), with
total propulsion energy as the integral of power over time
(Zeng and Zhang, 2017). We model D(v) of the fixed-
wing UAV as the sum of parasitic and lift-induced drag
D(v) = CD1v

2 + CD2v
−2, ∀v ∈ V. We have taken CD1 =

9.26 × 10−4 and CD2 = 2250 for our simulations, as in
Zeng and Zhang (2017). The parasitic drag is proportional
to the speed squared, while lift-induced drag is inversely
proportional to speed squared.

3.2 Slow fading wireless communications model

Wireless links exist from Un, n ∈ {U0,NT } to Um, n ∈
{U0,NR}, m 6= n, over channels with corresponding gains
hmn := v2

mn with realization vmn. χmn is the squared
distance between Un and Um,

χmn(t) := ‖Xmn(t)‖2 = ‖(qmn(t), δmn(t), %mn(t))‖2 ,
where qmn(t) := qn(t) − qm(t) and δmn, %mn are equiv-
alently defined. The link gain is ηmn(χmn, hmn) :=

hmnGmnχ
−α/2
mn , where α > 1 is the path loss exponent.

Gmn := G̃mnd
α
0 is a unitless constant of receive and

transmit antenna gains G̃mn at reference distance d0. Un
transmits to Um using a transmission power pmn(t) ∈ P :=
[0, Pmax] Watts, at a strictly non-negative data rate rmn(t).

Messages for Um ∈ NR are transmitted over allocated
bandwidth Bm, resulting in a multiple access channel
(MAC). U0 additionally transmits on bandwidths allo-
cated to other nodes in NR. The set of achievable MAC
rate tuples defines a polymatroid capacity region (Tse and
Hanly, 1998). If N nodes transmit independent informa-
tion to receiver Um in the same interval, the received signal
is a superposition of the N transmitted signals scaled
by their respective channel gains η(χmn, hmn). The MAC
capacity region CÑ (·) from sources Un, n ∈ {U0,NT } to a
single sink Um,m ∈ {U0,NR},m 6= n denotes the set of
achievable rate tuples r, and is defined as

CÑ (χ, p, h) :=
{
r ≥ 0 | fm(χ, p, r, h,S) ≤ 0,∀S ⊆ Ñ

}
,

fm(χ, p, r, h,S) :=
∑
n∈S

rn−

Bm log2

(
1 +

∑
n∈S

ηmn(χmn, hmn)pn
σ2
m

)
,

where χ is the tuple of distances χmn, p ∈ PN is the
N -tuple of transmission powers allocated by the N users
on the channel reserved for node Um. Further, rn is the
nth component of r, σ2

m = 1 is the receiver noise power.
Throughput maximization can be achieved through the
decoding process of successive interference cancellation
(SIC) (Tse and Hanly, 1998).

Aerial channels are usually dominated by line-of-sight
components, resulting in a flat fading channel with all sig-
nal components undergoing similar amplitude gains (Tse
and Viswanath, 2005). We consider a slow fading channel,
where the actual gains are random but remain constant
over a certain communication interval, denoted tp. For a
random vector h, CÑ = ∅ with non-zero probability. Re-
gardless of power and distance, we cannot guarantee suc-
cessful transmission at any strictly positive rate with zero



probability of error 1 (Tse and Viswanath, 2005). However,
the channel distribution is often known, even if the actual
realization is unknown. In this case we propose using the
ε−outage capacity Cε

Ñ
, defined as the set of achievable rates

that guarantee a maximum outage probability of ε, namely
Cε
Ñ

, CÑ (χ, p, F−1
h (1−ε)), where Fh is the complementary

cumulative distribution of h, Fh(x) , Pr{h ≥ x} (Tse
and Viswanath, 2005). In doing so we will be performing
chance-constrained optimization. However, since the prob-
ability density of h is known, the problem may be written
deterministically with no additional complexity (Schwarm
and Nikolaou, 1999).

3.3 Control strategy

Optimization is performed over state and input variables
Φn := (sn, pn, rn),∀n ∈ N′ and Ψ0 := (X0, v0, a0, F0). pn
is the tuple of outgoing transmission powers pmn(t) and
rn is similarly defined. The continuous-time OCP solved
at times Tu to generate a control input is

min
Ψn,n∈N

∫
0,T

∑
N0

pn(t) + v(t)F (t)dt (6a)

s.t. ∀n ∈ {U0,NT },m ∈ {U0,NR}, t ∈ T ,S ⊆ NR
fm(χ(t), p(t), r(t), h̃,S \ {m}) ≤ 0, (6b)

χmn(t) = ‖Xmn(t)‖2, (6c)

ṡn(t) =
∑
m6=n

(rnm(t)− rmn(t)) , (6d)

Ẋ0(t) = faero(Φ0(t)), (6e)

sn(0) = Dn,init, sn(T ) = Dn,final, (6f)

Xn(0) = Xn,init, Xn(T ) = Xn,final, (6g)

Φn ≤ Φn(t) ≤ Φn., Ψ0 ≤ Ψ0(t) ≤ Ψ0. (6h)

The cost function (6a) is the sum of transmission energy
of all nodes and the mobility energy of U0. Dynamic
stage constraints (6b)–(6c) bound the achievable data
rates to be within the ε−outage capacity of each receiving
node. Transmission dynamics are enforced in (6d), which
updates the storage buffers with the sent and received
data. Mobility dynamics are included in (6e). Boundary
conditions provide initial and final requirements on the
state of the network; variable bounds are included in (6h).
The continuous-time problem is transcribed using direct-
collocation and solved with the open source primal dual
interior point solver IPOPT (Wächter and Biegler, 2006).
Problem (6) is solved centrally on U0, assumed to have
more on-board compute. Control trajectories are then
disseminated to all other nodes. Although power aware
control of control-centric data (vs mission-centric data)
is not included in problem (6), this does use additional
energy — particularly if nodes are unaware of when they
will receive control updates.

3.4 Feedback and decoding strategy

We determine a decoding procedure for received data
across the MAC. Data will be encoded and sent in discrete
1 This is under the assumption that the transmitter has no channel
state information — and hence, cannot perform power allocation —
and that hmn cannot be bounded below by a positive value with
probability 1, that is, P{hn ≤ ε} > 0, ∀ε > 0.

codewords over packet intervals tp. At each update time
tui , the complete infomation at each node is encoded at
a rate determined by (6). Feedback occurs through a
repeat request (ARQ) protocol where transmitters receive
1-bit acknowledgement (ACK/NAK) signals. Buffers are
updated with successfully decoded information, while an
unsuccessfully decoded packet is retransmitted at a later
time. Take a single MAC channel over a single codeword
interval, dropping time dependency in notation. For actual
realization h̃mn, channel outage — where decoding is
unsuccessful — occurs because one or more of the received
powers β̃n , η(χnm, h̃mn)pmn was smaller than predicted
and cannot support rate rn. The decoder may perform
joint decoding of received signals, or decode a subset of
received signals, treating others as interference. Precisely,
for an N -user MAC, information from users in S ⊆ N ⊆
NT is successfully decoded if

r ∈ D ,
⋃
S⊂N

{
r > 0 |

∑
m∈M

rm−

B log2

(
1 +

∑
n∈M β̃n

σ2 +
∑
s∈S′ β̃s︸ ︷︷ ︸

SNIR

)
≤ 0,∀M ⊂ S

}

where S ′ , N \ S is the set of users not decoded, treated
only as interference. Rician fading is suitable for mod-
elling channels with strong LoS components (Zhou et al.,
2012). For each channel used, ν is a vector of random
variables drawn from a Rice distribution characterized
by K-factor κ, defined as the ratio of received signal
power in the LoS path to the power received from scat-
tered paths. The cumulative distribution Γ(·) of a Rician
channel is an order 1 Marcum Q-function. In simulations
we set κ = 10, and assume that different users’ fad-
ing processes are independent and identically distributed;

vnm ∼ Rice
(√

κ(κ+ 1)−1,
√

(2(κ+ 1))−1
)
, for each fad-

ing instance and pair of nodes n,m. Additionally assume
that the control data packets are always successfully sent.
Simulations are performed for Γ−1(1− ε) ≈ 0.3.

4. ACCURACY-BASED TRIGGERING

Many optimal control software return the error distribu-
tion ε as well as the solution trajectories. If triggering
conditions make use of the predictions resulting from the
optimization, then we must account for this error. Here we
present a lower bound for the inter-update time based on
the error distribution of the solution trajectories. Results
of this nature were initially presented by Faqir and Kerri-
gan (2020b,a) for systems effected by noise ‖v(t)‖ ≤ v̂.
However in the application of interest in this work we
consider component-wise and time-varying noise bounds.
This will allow us to use the command (predicted) data
rates determined by the OCP solution as bounds on the
uncertainty in data transfer.

Theorem 1. (Quadrature Error Triggering ). The IUT

τQET
i = sup

{
τ > 0|

(∥∥∥∥∥∑
T∈Tt

εk

∥∥∥∥∥
M

+

∫ τ

0

‖v̂(t)‖M dt

)
eLxτ ≤ ∆

}
(7)



based on x̃(·), ηk, which approximately solves problem (P)

at time tui , satisfies ‖δ(tui + τ)‖ ≤ ∆,∀τ ≤ τQET
i .

For completeness, a proof may be found in Appendix A. In-
tuitively, we can see that because we compute trajectories
with less error (smaller ε), we can run the system in open-
loop for longer between updates. Consider a multi-hop
MAC scenario, where transmitting ground nodes U1, U2

send data to receiver U3 via UAV U0 passing overhead. No
bandwidth is allocated for direct messages between ground
nodes. We initialize data buffers D1,init = 0.78, D2,init =
0.48 MB. In km, the ground nodes are located at X1 =
(0, 0, 0), X2 = (0, 100, 0), and X3 = (1200, 0, 25). U0

moves between X0,init(t) = (−1.17, 0, 50) and X0,final(t) =
(1.17, 5000, 50). The transmission dynamics in (6) are writ-
ten as ẋ = f(x(t), u(t)), g(x(t), u(t)) ≤ 0, and do not fall
into the class of systems for which Theorem 1 holds. By
index reduction we pose the problem in explicit ODE form,
at the expense of increasing problem size (Kerrigan et al.,
2020). To do so we introduce a fictitious decoding order
ϕ(t) ∈ [0, 1],∀t ∈ Topt. The MAC dynamics of senders
U1, U2 are

ṡi(t) =B0

(
ϕ(t) log2

(
1 +

η0i(χ0i(t), h0i)pi(t)

σ2
0

)
+

(1− ϕ(t)) log2

(
1 +

η0i(χ0i(t), h0i)pi(t)

σ2
0 + η0j(χ0j(t), h0j)pj(t)

))
,

for i = {1, 2}, j = {2, 1}, j 6= i. We use these expressions
instead of (6b). Writing transmission dynamics s0(t) as

ṡ0(t) = ṡ1(t)+ṡ2(t)−B3 log2

(
1 +

η30(χ30(t), h30)p0(t)

σ2
3

)
,

we will be in a position to apply the STC from Theorem 1
once we determine noise bounds. These are slow-fading
channels with some probability of outage — meaning
unsuccessful data transmission. It is never possible to
transmit a negative amount of data, nor it is possible to
transmit more data than we encode. Thus, the actual data
change in storage buffer si(t) will always be an element
in the range [0, ṡi(t)]. We can model these channels as
being affected by the additive noise vi(t), |vi(t)| ≤ v̂(t) =
si(t), i ∈ {0, 1, 2}. A key consequence is that condition (7)
now depends on the actual predicted trajectories as well as
the actual error distribution of the solution. This focuses
control updates around the peak transmission intervals,
which allows us to successfully idle nodes at other times.

Closed-loop state and input trajectories are shown in
Figures 1 and 2 for a weight matrix M with diagonal
[0.01, 10.0, 10.0, 10.0], thresholds ∆ = 0.075 and ε̂ = 0.01.
This choice of values guarantees all IUTs are larger than
the packet interval tp. Both U1, U2 successfully transmit
all required data to UAV U0. The closed-loop policy
offloads all but 0.15 MB from U0, which is 11% of the
total starting data. Our policy uses 47 control updates
with an average IUT of 3.74 s and a minimum IUT of
0.26 s. We see both mesh points (crosses) and triggered
updates (circles) are centered around transmission events.
Outside of the transmission events and control updates we
can set nodes to ‘idle,’ where they are not awaiting data
reception. From (1), the total receive and idle network
energy is only 30% compared to if we had updated the
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Fig. 1. Closed-loop state trajectories of triggered control
based on Theorem 1. Control update times Tu are
shown by open circles.

0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8

1

0

5

10

15

20

25

30

35

Fig. 2. Closed-loop transmission powers and command
velocity of triggered control based on Theorem 1. Con-
trol update instances Tu are shown by open circles.

control every 0.26 s, coinciding with the minimum IUT.
In fact, if there were no positional uncertainty, our scheme
would only trigger during transmission events. Accounting
for positional uncertainty allows us to partially pre-empt
situations where the UAV may travel past the transmitting
node, losing access to the most favourable channels.

If we were to solve (6) to a higher accuracy, then we may be
able to reduce the number of updates further. However the
possibilities of channel outages limit the potential of this,
and means there is little gain from using more compute for
a better prediction. On the contrary, condition (7) allows
us to actually use a relatively poor prediction in the STC
while still being assured of the satisfaction of (5).

5. CONCLUSIONS

Accounting for solution accuracy is imperative in situa-
tions where we may run systems in open loop for ex-
tended periods based on potentially inaccurate predic-
tions. Combining mesh refinement with triggering condi-
tions like (7) yield an effective framework for trading off
the cost of computation with the frequency of computa-
tion/communication. We have applied these principles to
triggered nonlinear predictive control of a UAV-enabled
wireless network, showing energy savings of over 70% by
‘idling’ nodes when not awaiting control or mission data.
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Appendix A. PROOF OF THEOREM 1

The ETC (5) guarantees ‖δ(t)‖M ≤ ∆. Without loss of
generality, say (P) was solved at tui = 0, with measurement
x̃(0) = x(0). The prediction error in state i is

δi(t) =

∫ t

0

˙̃xi(τ)− fi(τ, x(τ), u(τ)) + vi(τ)dτ. (A.1)

As time-invariant scalar wi > 0, we rewrite (4) as

εk,i =

∫ tk+1

tk

∣∣( ˙̃xi(τ)− fi(τ, x̃(τ), u(τ)))(wi + 1)−1
∣∣︸ ︷︷ ︸

:=|αi(τ)|

dτ.

Substituting ˙̃x(t) = (wi + 1)α(t) + fi(x(t)) into (A.1),

δi(t) =

∫ t

0

(wi + 1)αi(τ) + fi(τ, x̃(τ), u(τ))

− fi(τ, x(τ), u(τ))− vi(τ)dτ.

Using the triangle inequality, the prediction error magni-
tude in each state is bounded from above as

|γi(t)| ≤ (wi + 1)

∫ t

0

|αi(τ)|dτ +

∫ t

0

|vi(τ)|dτ

+

∫ t

0

|fi(τ, x̃(τ), u(τ))− fi(τ, x(τ), u(τ))|dτ. (A.2)

Now, consider the set Tt ⊆ Th of open intervals of T ,
i.e. Tt := {T ∈ Th|T ∩ (0, t) 6= ∅} which is a mesh on
Ωt := (0, t) and by construction satisfies the properties
detailed in Definition 1. Mesh refinement certifies εk,i ≤ ε̂i,
so we bound the first integral in (A.2) as

(wi + 1)

∫ t

0

|αi(τ)|dτ ≤ (wi + 1)
∑
k∈Kt

εk,i,

We then bound the prediction error in the ith state as

|δi(t)| ≤ (wi+1)
∑
k∈Kt

εk,i+Lx

∫ t

0

|δi(τ)|dτ+

∫ t

0

|vi(τ)|dτ,

where the first integral falls from Lipschitz f(·). Combining
element-wise inequalities, we find the bound

‖δ(t)‖M ≤

∥∥∥∥∥(w + 1)
∑
k∈Kt

εk

∥∥∥∥∥
M

+∫ τ

0

‖v̂(t)‖M + Lx ‖δ(τ)‖M dτ

From the integral form of the Gronwall-Bellman inequality,

‖δ(t)‖M ≤

∥∥∥∥∥(w + 1)
∑
k∈Kt

εk

∥∥∥∥∥
M

+

∫ τ

0

‖v̂(t)‖M

 eLxt

Restricting the RHS ≤ ∆ yields the explicit IUT in (7).


