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Abstract: Energy-efficient communication in wireless networks of mobile autonomous agents
mandates joint optimization of both transmission and propulsion energy. In Faqir et al. (2017) we
developed communication-theoretic data transmission and Newtonian flight mechanics models to
formulate a nonlinear optimal control problem. Here we extend the previous work by generalizing
the communication model to include UAV-appropriate slow fading channels and specifically
investigate the potential from joint optimization of mobility and communication over a multiple
access channel. Numerical results exemplify the potential energy savings available to all nodes
through this joint optimization. Finally, using the slow fading channel problem formulation,
we generate a chance-constrained nonlinear model predictive control scheme for control of a
terrestrial network served by a single UAV relay. Closed-loop simulations are performed subject
to uncertainties in both transmission and mobility models.

Keywords: Autonomous mobile robots, Communication networks, Information capacity,
Model-based control, Nonlinear control, Optimal control

1. INTRODUCTION

Energy consumption remains a limiting factor for un-
manned aerial vehicles (UAVs), where significant en-
ergy use comes from transmission and propulsion sys-
tems. In previous work (Faqir et al., 2017) we developed
communication-theoretic and Newtonian dynamic models
to represent the data transmission and locomotion efforts
of agents. These models are used to formulate a nonlinear
optimal control problem (OCP) with the objective of mini-
mizing network energy expenditure. Here we generalize the
communication model in the OCP to allow either additive
white Gaussian noise (AWGN) or slow fading channels.
For numerical simulations we consider the use of UAVs
as enabling relays in disconnected terrestrial networks.
In doing so, we provide validations and comparisons of
our proposed solution against more naive communication
policies. Unlike works that investigate the use of model
predictive control (MPC) for control over mobile commu-
nication networks (e.g. networked control subject to com-
munication constraints (Lavaei et al., 2008)), we consider
the use of MPC for control of communication networks, or
the control of data transfer throughout a mobile network.

To capture the cost of communication, it is important
to define a node’s communication energy as the sum of
transmission energy and any propulsion energy used for fa-
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Fig. 1. Simulation geometry consisting of UAV relay U,
access point Uy and N source nodes. U, flies at an alti-
tude a = 1000 m with no lateral displacement. Dashed
lines show multiple access uplinks from sources to
U,. The single access download from U, to the AP
is shown by a dotted line.

cilitating transmission, e.g. when a UAV speeds up or slows
down to maintain better channel access. The network’s en-
ergy expenditure is the sum of each node’s communication
energy. We consider a network consisting of a set of data-
generating source nodes (such as a remote sensor network),
which are geographically separated from an infrastructure-
connected access point (AP). A mobile UAV relays data
between the source network and the AP, as shown in
Figure 1. Since both the source network and UAV operate
on local energy reserves, energy-efficient relaying operation
requires joint optimization of the source’s transmission en-
ergy and the relay’s propulsion energy. This is pertinent for



the source network that — as in the case of a remote sensor
network — may have long lifetime requirements. Trajec-
tories generated by the proposed OCP exhibit potential
network level energy savings upwards of 30%. Closed-loop
simulations motivate including robust channel models into
the OCP formulation.

Communication-theoretic bounds, similar to those em-
ployed by us in Faqir et al. (2017) and in this paper,
are used by Zeng et al. (2016); Lyu et al. (2016); Zeng
and Zhang (2016). Zeng et al. (2016) consider using a
single UAV relay to maximize data throughput between
a stationary source-sink pair. For a fixed trajectory, the
optimal transmission scheme is a directional water filling
from source to sink. A cyclical multiple access scheme is
used by Lyu et al. (2016) to maximize the throughput of
a set of ground terminals served by a UAV relay.

For communication in networks of rolling robots, Yan
and Mostofi (2012) develop a model for channel fading
dynamics in indoor environments. Ali et al. (2015, 2016)
use this model, with a realizable propulsion model for
rolling-robots, in order to minimize communication energy.

2. PROBLEM FORMULATION

As may be seen in Figure 1, there exists N stationary
data-generating sources U,,n € N' = {1,..., N}, which
are geographically separated from a stationary access point
(AP) Uy located at the position (0,0, 0) in Cartesian space.
Consider a single UAV relay U,., r = N + 1, traveling over
a time period 7 £ [0,T] in a linear trajectory, denoted
X, t — (q(t),0,a). Assumption on linear trajectories
confines the motion of U, to a single dimension, with
constant altitude a and no lateral displacement. The use of
fixed linear paths does not detract form our results, since
most path planning algorithms operate over a sufficiently
long time horizon and are generally restricted to be either
linear or circular (Sujit et al., 2014). For example, Kang
and Hedrick (2009) use nonlinear model predictive control
(NMPC) for robust tracking of linear trajectories by fixed
wing UAVs.

U, receives data from U,,n € N, to be forwarded to
the AP by time 7. For notational simplicity, but also
motivated by the optimal UAV path described in Zeng
et al. (2016), we restrict sources to be located on ground
at positions X,, £ (¢,,0,0), such that the relay travels
directly over all source nodes. Over the interval 7, U, must
travel from position ¢(0) = Qinit t0 ¢(T) = Qfinal-

Denote the set of transmitting nodes (both source and
relay) as M = N U {r}. The data received by the relay is
stored in an on-board memory before being forwarded to
the AP. Let s,.(t) denote the amount of data stored in the
relay’s data buffer at time t. We require s,.(t) < M,Vt € T,
where M is the size of the relay’s on-board memory in
bits. The buffers of all transmitting nodes are subject to
the following initial and final conditions:

$2(0) = Dy, so(T) =0,Yn e N (1)
57"(0) =0, ST(T) < Dy, (2)
while the AP Up is modeled as an ideal (infinite) sink, and

is not subject to capacity constraints. We allow for D,. # 0
to simulate U, as a mobile sink (D, = M = o0).

2.1 Communication Model

Nodes U,,,m € M, are assumed to have a single omnidi-
rectional antenna capable of transmitting at a maximum
power Pp... Wireless communication links exist between
nodes U,,,U,,Vm € M,n € {0,7} over channels with
corresponding gain h,,, = v2,, where v, is a realization of a
random variable corresponding to the channel distribution.
The signal gain across a link is defined as

1 (1), 1) 2 )% 3)

where G = C;’dff is a unitless constant representing trans-
mit and receive antenna gains and path loss G at the
reference distance dy. o > 1 is the path loss exponent,
and

Xum(8) 2 | X (0112 = [[(gnm (2), 0, a)]1?, (4)

where ¢nm(t) 2 @n(t) — gm(t). The modeled network
consists of two orthogonal frequency bands B, and By,
respectively dedicated for source-to-relay and relay-to-
AP transmissions. In doing so, we assume that no direct
link exists from the sources to the AP — e.g., due to
physical barriers on the ground — thereby rendering the
mobile terminal essential for relaying data through two-
hop communication. Due to the lack of direct links, it is
optimal for the relay to first decode the data transmitted
by the source nodes, and then re-encode and forward them
to the destination; that is, the relay adopts the so-called
decode-and-forward protocol (Giindiiz et al., 2010). We
now consider two different channel modeling regimes.

Additive white Gaussian noise (AWGN):  All links are
modeled as AWGN channels with zero-mean unit-variance
independent noise components. We evaluate the achievable
data rates using Shannon capacity, which serves as an
upper bound on the achievable rates subject to average
power constraints.

The uplink from the sources to the relay forms a Gaussian
multiple access channel (MAC), for which the set of achiev-
able rate tuples is defined by a polymatroid capacity region
(Tse and Viswanath, 2005). At any instance, U,,n € N,
can transmit to relay node U, at a non-negative data
rate g, using an associated transmission power p,. The
capacity region Cy(-) of the MAC formed by the source
nodes transmitting to the relay node denotes the set of
all achievable rate tuples p, and is bounded by 2% — 1
nonlinear constraints. We define this as

Cn(eph) £ {0201 f(x.p, 0,h,S) <0,¥S SN}, (5)
where x is the tuple of X, defined in (4), p € P is
the tuple of transmission powers allocated by the IV users
on this channel, P = [0, Ppax] is the range of possible

transmission powers for each user, and f(-) is a nonlinear
function defined as:

FOx:ps0,h, S) &
> (Qn — B, log, (1 + 3 Nen(Xrns hn)pn>> . (6)
nes nesS

where B, is the channel bandwidth allocated to the relay,
on is the n'" component of o, and channel gain h, =
1,Vn € N for AWGN channels.



Cy is bounded from above by 2¢4'4\) _ 1 nonlinear func-
tions. The exponential growth in the number of constraints
upper bounding Cpy is computationally intractable, limit-
ing the number of nodes using each MAC. This is often
the case in small, or highly structured networks where
only small subsets of nodes access each MAC. In practice,
transmitting at arbitrary rate tuples in the capacity region
can be achieved through successive interference cancella-
tion (SIC) and time-sharing or message splitting (Tse and
Hanly, 1998).

The rate from the relay to the AP is bounded using a
similar function:

9(XrsDrs 0r, he) £ 0r = Balogy (1+1(xr, he)pr) . (7)
Importantly, for an AWGN channel, all rates determined
by (6) and (7) may be achieved with arbitrarily small
probability of error.

Slow Fading Channel: In a slow fading channel, the
actual channel gains are constant but random over a single
transmission interval, and as such are no longer modeled
by h,, = 1. Considering (6) with random vector h, it is now
possible that Cnr = @) with nonzero probability regardless
of the transmission power and distance (assuming channel
state is unknown at the transmitter, hence power alloca-
tion is not possible). Therefore, it is impossible to guar-
antee successful transmission at any strictly positive rate
with zero probability of error (Tse and Viswanath, 2005),
and it is no longer beneficial to model the relation between
rates, power and distance through ergodic capacity.

Often the channel distribution is known, even if the
actual realization h is unknown. In this case, we may
define a more useful performance measure, the e—outage
capacity Cy, which is the set of achievable rates that can
guarantee a maximum outage probability of €, defined as

Cy £C(x,p, T (1= ¢)), (8)
where I' is the complementary cumulative distribution of

h, T'(z) £ Pr{h > 2} (Tse and Viswanath, 2005). Rates
are now determined such that (¢1,...,0n) € C§, and

Cy CCn (9)
with high probability. In doing so, we are performing
chance-constrained optimization. However, because the
probability density of the stochastic variable h is known,
the problem may be written in a deterministic form,
with no additional complexity (Schwarm and Nikolaou,
1999). The slow fading channel model naturally allows
for a chance constrained OCP. Future work may instead
consider achieving robust control through optimization
over feedback policies.

2.2 Propulsion Energy Model

Mozaffari et al. (2017) determine the energy required
for a rotary craft to move between locations at a fixed
speed as a linear combination of the decoupled vertical
and horizontal powers. This is not necessarily the case
for a fixed-wing craft. Zeng and Zhang (2016) also use
a Newtonian basis, modeling drag forces as consisting of
parasitic drag (proportional to the square of the speed)
and lift-induced drag (inversely proportional to the square
of the speed).

The fixed-wing UAV U,. is restricted to moving at positive
speeds v € V 2 [Viin, Vinax), where 0 < Vigin < Vinax-
We take a general approach, using Newtonian laws as a
basis. In what follows next, D(-) models the resistive forces
acting on U, in accordance with the following assumption

Assumption 1. The resistive forces acting on U, may be
modeled by the function v — D(v) such that v — vD(v)
is convex on the domain of admissible speeds v € V and
coonuvé&V.

The propulsion force F(-) generated by the UAV must
satisfy the force balance equation

F(t) = D(v(t)) = ma(t), (10)
where m is the mass of U,, v(t) is the speed and a(t) =
0(t) is the acceleration along the direction of motion at
time t. The instantaneous power used for propulsion is the
product v(t)F(t), with the total propulsion energy taken
as the integral of power over time (Zeng and Zhang, 2016).
We assume v(t) > 0, Vt € T, valid for fixed-wing aircrafts.

Similar to Zeng and Zhang (2016) we use D(-) of the form
D(v) & { Cp1v® + Cpav™?, VeV (11)

00, otherwise
where the parasitic drag coefficient Cp; and lift induced
drag coefficient C'po follow from
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where 1 is the air density, C'pg is the base drag coeflicient,
S is the wing area, eg is the Oswald efficiency, and Apg is
the wing aspect ratio. L is the induced lift, which for fixed-
altitude flight must be equal to the craft weight W = mg.
We use Cpr = 9.26 x 10~% and Cpe = 2250, similar to
Zeng and Zhang (2016).

CDl CDZ =

The Newtonian constraint (10), being a nonlinear equality,
and the propulsion power cost, being the product F'(¢)v(t),
are both non-convex. We substitute F'(¢) from (10) into the
energy integral, evaluating propulsion energy as

T T m
/ ot F(H)dt = / o) D(()de+ 2 ((T) = (0)),
0 0

f1(v) f2(v)

(13)
where f1(v) is convex by Assumption 1. fa(v) is the
analytic evaluation of the change in kinetic energy, which
is convex assuming fixed initial conditions v(0). The proof

may be found in Faqir et al. (2017).

2.8 Continuous-Time Optimal Control Problem

The tuple of describing variables (state and control vari-
ables) for sources U,,n € N, isY,, 2 (pn, 0n, sn) and relay
is Y, £ (p,, 0r, Sr, ¢r, v, a). The continuous-time OCP is

le )YT‘

T N
min / (Z {pu(O)} +po(t) + v(t)D(v(t») at

+%(02(T)—v2(0)) (14a)
st.YneN,meMteT,SCN



fla(®),p(t),0(t),h,S) <0 (14b)
g(QrO (t)vpr (t)v Or (t)’ hr) <0 (140)
ma(t) + D(v(t)) < Fax (14d)
$r(t) = —or(t) + X0 0n(t) (14f)
() = Colt) (14g)
0(t) = a(t) (14h)
$n(0) =Dy, s,(T)=0 (14i)
s-(0) =0, s.(T)<D, (14j)
q(0) = Qinit, ¢(T) = Qfinal (14k)
v(0) = Vinit, V(T) = Vfnal (141)
Yo < Yp(t) < Y. (14m)

The cost function (14a) sums all transmission energies and
the propulsion energy of the relay. Constraints (14b), (14c)
respectively bound the achievable data rate of the MAC
source-to-relay uplink, and the single access relay-to-AP
downlink. h = 1 for AWGN channels and h = T71(1 —
€) for slow fading channels. (14d) upper bounds thrust
with Fiax. The, now linear, system dynamics are included
by (14e)—(14h). Constraints (14i)—(141) provide boundary
conditions for buffers, position and speed. The relay must
reach its final destination by time ¢ = 7" without violating
the force-acceleration constraint, which is implicit in the
objective. Note that ¢ € {—1,1}, depending on whether
the relay position ¢(t) is decreasing or increasing, respec-
tively, with speed v(t) > 0. (14m) includes simple bounds

Y, =(0,0,0), (0,0,0, —00, Vinin, —00) ,

Y, = (PmaX,OO,OO), (PmaX,OO,M,OO,VmaX,OO),
(15)
on decision variables, where 0 < Viuin < Vinax. This prob-
lem is only feasible if there exists a trajectory admissible
with respect to the aforementioned models and bounds.
Consider the simple case of a mobile transmitter following
an arbitrary linear path with reference to a stationary
receiver. Even in the limit of T'— oo, the maximum data
transfer subject to transmission power constraints is finite.
Therefore, in general we cannot guarantee existence of a
feasible profile. Feasibility is assumed for simulations.

Y, =
. =

3. SIMULATION RESULTS

The continuous-time problem is formulated and solved
using ICLOCS2 (Nie et al., 2018b), through a MATLAB
interface. ICLOCS2 performs transcription to generate a
discretized OCP, which is solved with the open source pri-
mal dual Interior Point solver Ipopt v.3.12.4. ICLOCS2
allows for rate constraints to be directly implemented on
the discretized mesh, to prevent singular arcs in solution
trajectories as well as improving the computational effi-
ciency (Nie et al., 2018a). We use this feature to place
rate constraints on the acceleration. Constant parameters
across all simulations are shown in Table 1.

Table 1. Model and simulation parameters.

o2 W] | B[Hz] | M [GB] | Pmax W] | @[] | T [min]

10-10 10° 1 100 1.5 20
(Q17Q2) [km] Qinit [km] Qﬁnal [km] (Vminvvmax) [m/s}
(—19.1,—-14.3) —23.8 0 (12,28)

Table 2. Transmission energy of source i (¢;)
and total network communication energy (e¢)
for UAV uplink under different schemes.

Separate BW Shared BW (MAC)
V=avg | V=0" | U= avg v =ov*
ec NA 1 0.690 0.678
€1 NA 1 0.283 0.224
€2 NA 1 0.302 0.231

3.1 Open-loop Energy Savings

We perform open-loop simulations assuming ideal AWGN
channels to compare the potential energy savings. There
exist source nodes Uj 2, which must offload all data to
a receiving UAV U,.. The UAV operates as an ideal sink
with no memory constraints, M = D, = oco. Sources are
initialized with a starting data load D; = Dy = 25 MB.
Communication occurs over a two-user MAC, where the
set of achievable rate tuples is upper bounded by three
functions of the form (6). This is the first result to combine
mobility with transmission over a MAC.

We construct comparative schemes using the following
physical network constraints. Firstly, resources may be
partitioned such that there is no inter-user interference.
Therefore Uy, Us transmit on single access channels (SAC)
of designated bandwidth By = By = B,./2. Partitioning B
is computationally simpler, since the number of constraints
scale linearly, rather than exponentially with the number
of source nodes. Secondly, optimization of transmission
policy may be performed subject to fixed UAV trajectory.
In this case we assume that U, moves at constant speed
Vavg = (Qfinal — Qinit) /T, using minimal propulsion energy.
Combining these constraints gives four possible protocols.

Table 2 shows a comparison of the total energy usage ec,
equivalent to the cost function (14a), and the transmission
energy €1,€z used by source nodes in each scheme. All
energies are given as a percentage of the worst case feasible
scenario. In the simplest case, where U;,U; operate on
an SAC and U, moves at a fixed speed, the optimal
transmission policy of each node is a water-filling solution,
determined by a single water-filling parameter (Tse and
Viswanath, 2005). This reduces the infinite dimensional
search space of the original OCP to a single dimension.
However, for the given starting data load, the problem is
infeasible under these conditions. Generating a solution
by solving (14) results in a 32% total energy savings
when compared with joint optimization over single access
channels, while sources U;, Us each use approximately 76%
less transmission energy. Although there is not significant
total network energy savings for the MAC uplink under
different speed regimes, both Uj,Us respectively save
20.8% and 23.51% transmission energy by allowing the
relay to vary speed. This may be of particular importance
in remote sensing applications, where source nodes may
have stringent energy requirements or perform energy
harvesting.

3.2 Closed-loop Simulation

For closed-loop simulation, an NMPC control policy is
generated by resolving (14) at each computation interval
t. = 10s, subject to initial conditions set by measured



data. We consider the geometry seen in Figure 1, where
sources Uy, Us are initialised with Dy = Dy = 11 MB
and U, has a finite memory constraint of M = 1.5D;.
All data must be relayed to the AP by time 7. The
finite-time nature of the experiment motivates the use of
decreasing horizon control, where the final time is constant
and the horizon length is reduced at each t.. The NMPC
problem is solved centrally, with full state information. In
practice, position and velocity information is found as a
combination of GPS and IMU data.

Typically data is encoded and transmitted in discrete
codewords over packet intervals ¢, < t.. At each com-
putation interval the complete information at each node
is encoded at a rate determined by (14). We assume a
simple repeat request (ARQ) protocol, where transmitters
get feedback through 1 bit acknowledgement (ACK/NAK)
signals. Storage buffers are only updated with successfully
decoded information. Information in an unsuccessfully de-
coded codeword is entirely retransmitted at a later time.

The network operates over slow fading channels, where
channel realizations are random but constant over t,.
We therefore formulate (14) with e-outage capacity con-
straints, ensuring the control policy is robust to chan-
nel realizations. In the following we consider the MAC
channel over a single codeword interval, dropping time
dependency in notation. For actual realization h,,, channel
outage — where the codeword is not successfully decoded
— occurs because one or more of the received powers
B = 1(Xrn, hn)pn was smaller than predicted and cannot
support rate g,. The decoder may perform joint decoding
of received signals, or decode a subset of received signals,
treating others as interference. Precisely, for an N-user
MAC, information transmitted from users in S C N is
successfully decoded if

ZmEM Bm Zme./\/l B’ﬂi
1+ ZjeS’ Bi ~ 1+ EjeS’ B; ’

where 8" 2 N\ S and 8; = 7(xrm, "1 — €))ppm. For
a single user channel, this simplifies to o, > o,. Since
the rate tuple generated by problem (14) is always on the
boundary of the capacity region (Faqir et al., 2017), (16)
is only a function of transmission powers and not rates.

YMCS,  (16)

UAVs are advantageous in communication networks due
to line of sight (LoS) links. Multipath scattering may
still occur, such as off objects near ground nodes or
flight surfaces of the UAV. Rician fading is suitable for
modelling received signal strength in channels with strong
LoS components (Zhou et al., 2012). For each channel
used, v is a vector of random variables drawn from a
Rice distribution characterized by K-factor x, defined as
the ratio of received signal power in the LoS path to the
power received from scattered paths. For kK = oo there is
no fading and the model reduces to AWGN (Zhou et al.,
2012). The cumulative distribution I'(-) of a Rician channel
is a Marcum Q-function of order 1. In our simulations
Kk = 10.

The UAV may also be disturbed by wind during flight. We
model the disturbance entering the first derivative (Kang
and Hedrick, 2009) such that ground speed ¢ is the sum
of air speed © and wind speed w. To account for this, the
system state is augmented with disturbance variable 6(¢),
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Fig. 2. Mobility related state and input trajectories (solid
lines) for U, during UAV relay simulation. Dashed

lines show constraints.

0(t) =0,Vt € T,0(0) = Weas (17)
and redefined position dynamics
q(t) £ Cu(t) = 8(1). (18)

With full state information, the estimate twWyeas is cal-
culated with a moving average filter. In the following
simulation w = —6m/s.

Channel outages and wind disturbances means the finite
time problem may be infeasible. In this case we switch to a
variable horizon for the last few iterations (the convergence
analysis of the variable time horizon OCP could be a topic
of future work). Simulations are performed for I'=1(1—¢) ~
0.2, with results shown in Figures 2-3. Figure 2a shows the
mobility dynamics of the UAV, where a velocity constraint
becomes active as the UAV slows down to offload collected
data to the AP. The extreme change in velocity results
from the UAV memory s, approaching capacity. Figure 2b
shows the thrust required to maintain altitude during this
maneuver. Since Cpy > Cpp in (11), a wind speed of
w = —6 beneficially slows down the UAV, reducing the
minimum energy by ~ 31% compared to a wind speed of
w = 6.

Commanded rates over t. are strict upper bounds on
achievable information transfer because, even for favorable
channel realizations, data will not be transfered faster than
predicted. Figures 3a—3b show data interchange between
U;,i € {0,1,2,7} in terms of the storage memory and
achieved rates. Figure 3c shows the associated transmis-
sion power profile. Maximum power constraints are active
while the UAV’s buffer is close to capacity, during which
the incoming and outgoing data from U, are similar.
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Fig. 3. Transmission related state/input trajectories (solid
lines) for nodes Uy, Us, U, during UAV relay simula-
tion. Dashed lines show hard constraints.

4. CONCLUSIONS

We have considered simultaneous optimization of propul-
sion and transmission energies for the particular geom-
etry of a UAV relay-assisted communication network. A
general optimal control problem for energy minimization
was formulated based on dynamic models for both trans-
mission and mobility. The chosen geometry exhibited the
possibility of jointly optimizing node mobility along with
transmission across a MAC. Open-loop simulations showed
significant potential energy savings available with this
method, with source nodes in particular saving upwards
of 75% energy. Closed-loop simulations were performed,
subject to significant communication channel uncertainty,
motivating investigation into more realistic, potentially
stochastic channel models and control laws.

REFERENCES
Ali, U., Cai, H., Mostofi, Y., and Wardi, Y. (2016).

Motion and communication co-optimization with path
planning and online channel estimation. arXiv preprint

arXiw:1603.01672.
Ali, U., Yan, Y., Mostofi, Y., and Wardi, Y. (2015). An

optimal control approach for communication and motion

co-optimization in realistic fading environments. In
American Control Conference (ACC), 2015, 2930-2935.
IEEE.

Faqir, O.J., Kerrigan, E.C., and Giindiiz, D. (2017).
Joint optimization of transmission and propulsion
in aerial communication networks. arXiv preprint
arXiv:1710.01529.

Giindiiz, D., Khojastepour, M.A., Goldsmith, A., and
Poor, H.V. (2010). Multi-hop mimo relay networks:
Diversity-multiplexing tradeoff analysis. IEEE Trans.
Wireless Comm., 9(5), 1738-1747.

Kang, Y. and Hedrick, J.K. (2009). Linear tracking for a
fixed-wing UAV using nonlinear model predictive con-
trol. IEEE Transactions on Control Systems Technol-
ogy, 17(5), 1202-1210.

Lavaei, J., Momeni, A., and Aghdam, A.G. (2008). A
model predictive decentralized control scheme with re-
duced communication requirement for spacecraft forma-
tion. IEEFE Transactions on Control Systems Technol-
ogy, 16(2), 268-278.

Lyu, J., Zeng, Y., and Zhang, R. (2016). Cyclical multiple
access in UAV-aided communications: A throughput-
delay tradeoff. IEEE Wireless Communications Letters,
5(6), 600-603.

Mozaffari, M., Saad, W., Bennis, M., and Debbah, M.
(2017).  Mobile unmanned aerial vehicles (UAVs)
for energy-efficient internet of things communications.
arXiww preprint arXiw:1703.05401.

Nie, Y., , and Kerrigan, E.C. (2018a). How should rate
constraints be implemented in nonlinear optimal control
solvers? In Proc. 6th IFAC Conference on Nonlinear
Model Predictive Control.

Nie, Y., Faqir, O.J., and Kerrigan, E.C. (2018b).
ICLOCS2: Solve your optimal control problems with less
pain. In Proc. 6th IFAC Conference on Nonlinear Model
Predictive Control.

Schwarm, A.T. and Nikolaou, M. (1999).  Chance-
constrained model predictive control. AIChE Journal,
45(8), 1743-1752.

Sujit, P.; Saripalli, S., and Sousa, J.B. (2014). Unmanned
aerial vehicle path following: A survey and analysis
of algorithms for fixed-wing unmanned aerial vehicles.
IEEE Control Systems, 34(1), 42-509.

Tse, D. and Viswanath, P. (2005). Fundamentals of
wireless communication. Cambridge university press.
Tse, D.N.C. and Hanly, S.V. (1998). Multiaccess fading
channels. I. polymatroid structure, optimal resource al-
location and throughput capacities. IEEE Transactions

on Information Theory, 44(7), 2796-2815.

Yan, Y. and Mostofi, Y. (2012). Robotic router formation
in realistic communication environments. IEEE Trans-
actions on Robotics, 28(4), 810-827.

Zeng, Y. and Zhang, R. (2016). Energy-efficient uav
communication with trajectory optimization. arXiw
preprint arXiw:1608.01828.

Zeng, Y., Zhang, R., and Lim, T.J. (2016). Throughput
maximization for mobile relaying systems. IEEE Trans.
Communications, 64(12), 4983-4996.

Zhou, Y., Li, J., Lamont, L., and Rabbath, C.A. (2012).
Modeling of packet dropout for UAV wireless commu-
nications. In Computing, Networking and Communica-
tions (ICNC), 2012 International Conference on, 677—
682. IEEE.





