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ABSTRACT

We propose a data-driven secure wireless communication
scheme, in which the goal is to transmit a signal to a legit-
imate receiver with minimal distortion, while keeping some
information about the signal private from an eavesdropping
adversary. When the data distribution is known, the optimal
trade-off between the reconstruction quality at the legitimate
receiver and the leakage to the adversary can be characterised
in the information theoretic asymptotic limit. In this paper,
we assume that we do not know the data distribution, but
instead have access to a dataset, and we are interested in the
finite blocklength regime rather than the asymptotic limits.
We propose a data-driven adversarially trained deep joint
source-channel coding architecture, and demonstrate through
experiments with CIFAR-10 dataset that it is possible to
transmit to the legitimate receiver with minimal end-to-end
distortion while concealing information on the image class
from the adversary.

Index Terms— security, wiretap channel, convolutional
neural networks, generative adversarial networks

1. INTRODUCTION

Physical layer secrecy achieves information confidentiality by
exploiting an advantage for the legitimate channel with re-
spect to some eavesdropper. This approach to security is par-
ticularly interesting, since it does not rely on cryptographic
mechanisms, but only on physical characteristics of the chan-
nel, and provides security guarantees independent of the com-
putational power of the eavesdropper. The limits of physical
layer secrecy are characterized by the secrecy capacity, or the
more general trade-off between the communication rate and
the private message’s equivocation (secrecy) rate [1,2,4-7].
Here, we consider the more general setting studied in [3]
(see Fig. 1 for an illustration), where we consider the lossy
delivery of an information source (U¥) to the legitimate re-
ceiver, while limiting the information leakage to an adver-
sary. We will further generalize the model in [3], and as-
sume that the transmitter only wants to keep a certain sensitive
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Fig. 1: The wiretap channel model.

part of the information source (5) secure from the eavesdrop-
per. By considering independent and identically distributed
(i.i.d.) discrete memoryless source and channel distributions,
the fundamental trade-off between the best achievable distor-
tion at the legitimate receiver, and the leakage to the eaves-
dropper, measured by the equivocation rate, is characterized
in [3] in the asymptotic information theoretic regime. It is
shown that the optimal performance is achieved by a separa-
tion based scheme, where lossy compression of the source is
followed by an optimal wiretap channel code to transmit the
compressed bits. This formulation is attractive as it provides
theoretical and quantifiable security guarantees; however, its
application to practical systems is limited due to the idealistic
and perfectly known source and channel distributions, and the
result does not hold in practical finite blocklength regimes.

In this work, our goal is to study the trade-off between
the distortion achieved at the legitimate receiver and the leak-
age to an eavesdropper in a practical non-asymptotic regime.
Moreover, we will not assume the knowledge of the distribu-
tion of the underlying source and the sensitive part, but in-
stead follow a data-driven approach. Examples for the ap-
plication of this framework are abundant: an activity/ health
sensor can transmit user’s vital measurements to an access
point. Its goal would be to provide as accurate description of
the underlying signals as possible, while keeping some private
aspect of the data hidden from potential eavesdroppers (e.g.,
the identity of the user). Similarly, a surveillance drone may
want to transmit back images without revealing the locations
of critical infrastructures from eavesdroppers.

Data-driven approaches to wireless communications is
receiving increasing attention [9], including autoencoder-
based end-to-end design for channel coding [10], as well as
for joint source-channel coding (JSCC) [11,12]. Yet, to the
best our knowledge, the only prior work studying a similar



data-driven approach to wiretap channels are [13] and [14].
In [13], the authors propose clustering of constellation points
in an autoencoder-based communication scheme in order to
achieve a trade-off between the reliability at the legitimate
receiver and the eavesdropper. While [13, 14] focus on chan-
nel coding, we are interested in the end-to-end performance,
and consider the sensitive information to be different from
the underlying source (yet correlated with it).

We consider a fully convolutional autoencoder architec-
ture to transmit U¥. The autoencoder pair, in addition to op-
timizing the end-to-end reconstruction quality, also aims at
preventing the leakage to the eavesdropper, modeled through
an adversarial neural network. Due to the difficulty of esti-
mating the mutual information, we use a variational approx-
imation [15], and train the autoencoder with the combined
objective of maximizing the reconstruction quality at the le-
gitimate receiver while minimizing the adversarial loss. We
apply our approach to secure image transmission, where the
legitimate transmitter aims to share images with the legiti-
mate receiver over a wireless channel, while the eavesdropper
tries to classify them. We show that the adversarially trained
communication scheme allows to achieve reasonable quality
at the legitimate receiver, while confusing the eavesdropper.

2. PROBLEM FORMULATION

Consider the communication scenario illustrated in Fig. 1:
()lice wants to reveal some information U* to (B)ob over n
uses of a noisy communication channel. (E)ve eavesdrops the
channel, and receives a noisy version of the A’s signal through
another channel. The goal of A is to reveal U* to B with mini-
mum distortion under a given distortion measure d(-, -), while
preventing some sensitive information S, correlated with U*
with pyr g, leaking to E. Information leakage to E is mea-
sured by the mutual information 1(S; Z™). Source U* is en-
coded by A into a codeword X" by employing a potentially
stochastic encoding function f4, i.e., X" = fa(U k). Note
that, we assume that A does not directly observe S. The code-
word X" is transmitted over the channel, which is character-
ized by the joint conditional distribution

n
pynznixn(y", 2"|2") = HPYZ\X(yi,Zz‘\l"i)- ey
i=1

Channel outputs Y™ and Z" are received by B and E, respec-
tively. B estimates the input sequence with a decoding func-
tion fg, ie., U* = fp(U¥).

We can formulate the optimization problem as

min  E[d(U*, ﬁk)] 2

Pxnyk:fa.fB
s.t. I(S;Z™) < ¢,
S UY 5 X" 5 Yy" - Uk
S UF = X" — 27,

where ¢ > 0 is the secrecy constraint. Estimating the mu-
tual information I(.S; Z™) is known to be challenging; hence,
we will use a variational lower bound commonly employed
[15,16], and write the optimization problem in (2) in the un-
constrained form as follows:

min max {E[d(U*, U*)] + oE[log asizn]},  (3)

Pxnjyk:fa,fB ds|zn

where @ > 0 is the parameter regulating the privacy-
distortion trade-off, and gg|z» can be considered as the
estimated distribution of S at the adversary based on its
observation Z".

The problem in (3) is a minimax game between the A and
B pair, and E. While E wants to maximize the leakage, mea-
sured by the negative log-loss term, by choosing the posterior
distribution gg|z», A and B jointly decide on the encoding
and decoding functions, f4 and fp, respectively, to minimize
a weighted sum of the distortion and the leakage.

To solve the optimization problem in (3), we will realize
all three components to be optimized as neural networks. The
autoencoder pair at A and B will be parameterized by 64 and
05, respectively, while E’s network will be parameterized by
0. Then, the loss function to be minimized is

Lr(04,05,08) =E[dU",fp0,(Y™))]
+ aEllog go, (S|12™)],  (4)

where X™ = f4.,(U").

Following the standard approach in generative adversar-
ial networks (GANSs), these network parameters will be opti-
mized by iteratively training them: each joint training step of
the autoencoder pair (04, 05) will be followed by a training
step of O by the eavesdropper.

3. IMPLEMENTATION

While the above formulation is generic, and can be applied to
any type of information source and wiretap channel, and any
distortion measure at the legitimate receiver, in the rest of the
paper we will focus on secure transmission of images over an
additive white Gaussian noise (AWGN) wiretap channel. We
impose an average power constraint on the length n transmit-
ted codewords. More specifically, we fix the power constraint
to 1, i.e., % Zi:l xf < 1, but allow different noise variances,
and hence the signal-to-noise-ratio (SNR) values, at the legit-
imate receiver and the eavesdropper, which will be denoted
by Ap and Ag, respectively. We use the peak SNR (PSNR)
as the distortion measure at the legitimate receiver, defined as

1 2552
N k
PSNR = E Zi:l ].0 loglo (W) .
For the autoencoder (6 4, ) that represent the legitimate

JSCC encoder and decoder pair, we employed the network
structure described in [11], consisting of five convolutional
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Fig. 2: The architecture of the network employed by the ad-
versary. The number written above each layer is the number
of components in the output.

neural network layers. We will fix the bandwidth ratio be-
tween the available channel bandwidth n and the input image
size k asn/k = 1/6.

The adversary’s network 0, as illustrated in Fig. 2, con-
sists of a predictor that takes as input the vector Z" of n real
valued channel outputs, and applies first a dense layer with
rectified linear unit (ReLU) activation, followed by another
dense layer with softmax activation, whose output dimension
is equal to the number of classes, m. Finally, although that
is not part of the network itself, we add a final stage where
a guess is taken as the argmax of the distribution, so that we
can assess the effectiveness of the adversary network by mea-
suring its accuracy, i.e., that fraction of correct guesses.

Ideally, the termination condition of the iterative training
procedure should be attaining a predetermined convergence
margin, but we decided to fix the number of epochs in ad-
vance, and average the results across several trials.

4. LIKELIHOOD EQUALIZATION

Minimizing E[log gg|z~] means minimizing the value of the
adversary’s estimated likelihood corresponding to the correct
value of S. When the iterative adversarial training approach
is taken, the function E[log ¢g|z»] can be easily minimized by
the legitimate autoencoder pair by performing a permutation
of the encoding scheme. Suppose, for instance, we switch
the codewords 27 and z§ corresponding to two different real-
izations of the input sequence: the adversary likelihood esti-
mation can be easily brought down without any impact on the
decoding distortion. Nonetheless, the permutation can be eas-
ily recovered by the adversary in its own training phase, again
increasing the leakage. This leads to the saw-tooth behaviour
which is shown in Fig. 3.

We therefore consider a different approach, which we
call likelihood equalization. The main idea behind likelihood
equalization is to get the likelihood estimation of the adver-
sary as close as possible to a uniform distribution, rather than
minimizing the likelihood related to the correct prediction,
in order to make their prediction unreliable. We hence em-

Accuracy

Training epoch
Fig. 3: Stability comparison between the naive approach and

the likelihood equalization approach, with a = 1, A =
10dB and A = 5dB.

Table 1: Parameters used for training

Parameter Symbol  Value
Iterations in Phase 1 Ny 30000
Iterations in Phase 2 Ny 30000
Number of epochs Nepoch 40
Main network iterations Ny 500
Adversary network iterations Ng 2000
Main receiver SNR Ap 10dB
Adversary SNR Ag 5dB
Learning rate n 10~4
Size of training batch Match 32
Size of test set Mest 10000

ployed a new objective function for security, which consists
of the cross-entropy between a uniform distribution p and
the likelihood estimation gg|z», i.e., H(p, qs|Zn). As can
be seen in Fig. 3, the latter approach yields a more stable
behaviour. The former likelihood minimization approach will
be referred to as the naive approach.

5. RESULTS

We applied our solution to the CIFAR-10 dataset, which con-
sists of INV; = 60000 (50000 for training and 10000 for test)
coloured images of size 32 x 32 pixels, divided into k¥ = 10
classes. We first fixed the SNR of the channels and trained
the adversarial network with different values of the trade-off
parameter ov. We measured the level of privacy using the ac-
curacy of the adversary predictions, i.e., the fraction of im-
ages whose class was correctly identified, while measured the
quality of the reconstructed images via PSNR.

The results in Fig. 4 show that the approach can provide
either good quality in the transmission, when « is small, or
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Fig. 4: Steady-state PSNR and adversarial accuracy vs the
tradeoff parameter «, with Ag = 10dB and A = 5dB.

high privacy, when « is large. Observe that 1/m = 0.1 rep-
resents an ideal lower bound to the adversary accuracy as it
corresponds to uniform guess, independent of the actual trans-
mitted image. The PSNR and accuracy curves show a similar
behaviour. Hence, we fixed o« = 1, which is a value that
provides low accuracy without compromising the PSNR, and
saved the weights of the network trained with Ay = 10dB
and A = 5dB.

We then tested the adversarial network by varying the
actual SNR of the adversary channel Ag, with respect to a
fixed training value Ag. Fig. 5 shows that the accuracy of
the adversary predictor drops significantly when the SNR is
brought below the training value, and is even moderately re-
duced when the SNR is higher. We note here that the drop
beyond 5dB is because the adversary’s network is trained for
5dB. The parameters employed in the training phase are re-
ported on Table 1. Please see Fig. 6 for examples of transmit-
ted and reconstructed images.
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Fig. 5: Accuracy of the adversary with varying A g performed
after training with « = 1, Az = 10dB and Ag = 5dB.

Fig. 6: Examples of images transmitted by A (above) and re-
constructed by B (below) using the likelihood equalization ap-
proach, with &« = 1, Ag = 10dB and A = 5dB.

6. CONCLUSION

We have developed a neural network-based framework to
learn coding schemes to achieve security over a noisy wiretap
channel. We have adopted an adversarial formulation that
leads to the solution of a minimax game where a legitimate
autoencoder network and an adversary network compete. We
have tested our approach for secure transmission of images
from the CIFAR-10 dataset.

The network is able to guarantee a privacy-distortion
trade-off, which becomes more advantageous when the dis-
turbance in the adversary channel is increased. We have first
adopted a naive approach, which aims at maximizing the
adversary’s cross-entropy, but also considered a more stable
approach which aims to take the adversary softmax output
close to a uniform distribution.

Future work will include random encoding functions as
opposed to the deterministic approach used here. We will also
consider other types of objective functions at the legitimate
receiver which may allow further secrecy if this is not aligned
with eavesdropper’s objective.
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