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Abstract—Repair of multiple partially failed cache nodes is
studied in a distributed wireless content caching system, where
r out of a total of n cache nodes lose part of their cached data.
Broadcast repair of failed cache contents at the network edge
is studied; that is, the surviving cache nodes transmit broadcast
messages to the failed ones, which are then used, together with
the surviving data in their local cache memories, to recover
the lost content. The trade-off between the storage capacity
and the repair bandwidth is derived. It is shown that utilizing
the broadcast nature of the wireless medium and the surviving
cache contents at partially failed nodes significantly reduces the
required repair bandwidth per node.

I. INTRODUCTION

Caching popular contents closer to end-users, particularly
in the available storage space at the wireless network edge, is
attracting a lot of attention in the recent years as a promising
method to alleviate the increasing burden on the backhaul
links of wireless access points, e.g., small cell base stations,
and to improve the quality of service, particularly by reducing
the latency [1], [2], or energy consumption [3]. The literature
on distributed coded caching systems focuses mostly on the
code design or resource allocation for efficient storage of
popular contents, assuming reliable cache nodes. However,
storage devices are often unreliable and prone to failures;
thus, efficient repair techniques that guarantee continuous data
availability are essential for a successful implementation of
distributed caching and content delivery techniques in practice.

Maximum distance separable (MDS) codes are typically
used for distributed caching of contents at multiple access
points [1], [2], [4]. MDS codes provide flexibility for storage
so that users with different connectivity or mobility patterns
can download a file from only a subset of the access points.
In particular, an (n, k) MDS code encodes a file of size M
bits by splitting it into k equal-size fragments, and encoding
them into n fragments which are stored at n cache nodes.
The original file can be recovered by accessing any k out
of n fragments from k distinct access points. When some
nodes partially or fully fail, their cache contents need to be
regenerated to be able to continue serving users. An important
objective of edge caching in wireless networks is to reduce
the backhaul link loads; therefore, we will consider cache
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recovery at the edge; that is, rather than updating the failed
cache contents from a central server through backhaul links,
the failed cache contents are regenerated with the help of
surviving cache nodes. The total amount of data transferred
from the surviving nodes to repair the failed nodes is called the
repair bandwidth. Traditional MDS codes have high storage
efficiency, but their repair bandwidth is large [5]. The data of
one node is repaired by accessing and transferring data from
k nodes, i.e., by recovering the whole content library.

Dimakis et al. showed in [5] that there is a fundamen-
tal trade-off between the storage and repair bandwidth by
mapping the repair problem in a distributed storage system
to a multicasting problem over an information flow graph.
The analysis focuses on a single node repair; that is, losing
one of the nodes triggers the repair process. Regenerating
codes achieve any point on the optimal trade-off curve, while
minimum-storage regenerating (MSR) codes and minimum-
bandwidth regenerating (MBR) codes operate on the two
extremes of this trade-off curve.

It was observed in [6] that multiple node repair; that is, the

repair process starts only after r nodes fail, is more efficient in
terms of the repair bandwidth per node, compared to repairing
each node as it fails. In [7] and [8], the authors introduce
cooperative regenerating codes, which repair multiple failures
cooperatively by allowing each of the r nodes being repaired
to collect data from the n — r non-failed nodes, and then to
cooperate with the other » — 1 nodes being repaired. Instead,
similarly to [9], we will consider broadcast repair; that is,
transmissions from each node are received in an error-free
manner by all the other nodes. The storage-repair bandwidth
trade-off for the broadcast repair of multiple fully failed nodes
is investigated in [10], while [11] considers an equivalent
centralized repair model.
In this paper, we consider the partial repair problem, studied
in [9], in which the repair process starts after multiple node
failures, but each of the failing cache nodes loses only a part
of its contents, and the remainder of the cache contents should
be used along with the transmissions from the surviving nodes
to make sure that the repaired nodes can still continue to serve
user requests (i.e., functional repair). We will see that partial
repair further reduces the repair bandwidth.

In [9], the authors derive a lower bound on the number of
packet transmissions at the MSR point for error-free partial
broadcast repair, and provide an explicit code construction for
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Fig. 1: Information flow graph G with n =4,k = 2, r = 2, one repair round and two cuts x; and xo.

a special case. The information flow graph construction in
[9] does not capture the relation between storage capacity per
node and the repair bandwidth, thus focusing only on the MSR
point on the storage-repair bandwidth trade-off curve. In this
paper, we study the entire optimal trade-off curve. Through
specific examples we show that the MSR point from [9], where
each node stores M /i bits, is not feasible with a finite repair
bandwidth for all cases.

In [12], the authors derive the storage-repair bandwidth
trade-off considering partial node failure in a wired distributed
storage system. They show that the repair bandwidth can
be reduced by two-layer coding; however, this comes at the
expense of increased storage redundancy. Reference [13] in-
vestigates the storage-repair bandwidth trade-off for clustered
storage networks, where multiple nodes within a cluster fail.
This is close to the partial failure model that is considered
here, since each cluster could model multiple memory units
within a node, and multiple memory units failing is equivalent
to partial failure in a node. However, we consider partial
failures at multiple nodes, i.e., multiple clusters, and broadcast
transmissions from the surviving nodes.

Notations. For two integers i < j, we denote the set {i,7+

1,...,7} by [¢ : j], while the set [1 : j] is denoted in short by
[4]- Sets are denoted with the calligraphic font, while vectors
and matrices are denoted with bold letters.

II. SYSTEM MODEL

Consider a wireless caching network with n nodes, denoted
by N £ {1,...,n}, each equipped with a storage capacity
of « bits. The nodes collaboratively store a file of size M
bits; such that, a user connected to any k of these n nodes
can recover the file. Here the file represents a popular content
cached by n access points at the wireless network edge, which
a mobile user should be able to recover after connecting
to an arbitrary subset of the k access points. The nodes,
corresponding to the cache-equipped Access Points (APs), are
assumed to be fully connected wirelessly; that is, broadcast

transmissions from any node are assumed to be correctly
received by all the other nodes in the network. We also
assume orthogonal channels for data transmission; that is, no
interference among these broadcast transmissions.

We consider a scenario in which a portion of the stored bits
in some storage nodes is subject to being lost. We refer to
these nodes as the faulty nodes, and to the surviving nodes
that do not experience any losses as the complete nodes. We
assume that the repair occurs in rounds, and a repair round is
initiated when r nodes experience partial failure; i.e., each of
these r nodes loses o« — vy of it s stored bits, where ay £ pa,
p € [0, 1]. Thus, a single repair round repairs r partially faulty
nodes. There is no loss in a repair round, during which the lost
bits in the faulty nodes are repaired with the help of transmitted
bits from the complete nodes and the remaining bits that have
not been lost in each of the faulty nodes. In general, the repair
is functional, i.e., the repaired portion may not be the same
as the original, but it satisfies the same property that any &
nodes are sufficient to reconstruct the whole file.

A. Information flow graph

The repair dynamics of the network can be represented by
an information flow graph that evolves over time. See Fig. 1
and Fig. 2 for illustrations. It is a directed acyclic graph con-
sisting of six types of nodes: a single source node S, storage
nodes z¢,,z! ... x® .. helpers h;, and a data collector node
DC. Each complete storage node z’,i € [n], is represented by
two vertices: an input vertex x!, and an output vertex r,,,
which are connected by a dlrected edge %, — x},, with
capacity c. A faulty node is represented by four vertices: an
input vertex zi . an intermediate vertex xm .4 that is connected
to xj, by a directed edge xj, — w,,, of capacity «, an
output vertex z!,, thatis connected toz! ., bya directed edge

thid — Toue Of capacity aq, and a failed vertex x' that is
connected to z¢ ., by a directed edge z? ,, — % of capacity
o — «y. The failed vertex represents the corrupted portion
of the data in the storage node. The justification for such a



representation is that any node can be represented arbitrarily
as the sum of two virtual nodes of capacities a; and o — o,
without loss of generality. Thus, there are 2n virtual storage
nodes at each round, n with storage capacity «; and n with
capacity a— «y. The way in which the division into the virtual
nodes is done does not affect the flow arguments.

Each vertex in the graph at any given time has two modes,
active or inactive, depending on its availability. Initially, the
source node S is active and it transmits data to n storage nodes
such that the DC can retrieve the file from any & nodes. This
is modeled by adding edges of capacity co from S to the input
vertices of all the storage nodes, S — i € [n]. . From this
point onwards, the source node becomes inactive, and the n
storage nodes become active.

When 7 nodes experience partial failure of a@ — «a; bits
each, in the s-th round, the repair process is triggered and r
newcomers join the system. Note that a newcomer represents
the corresponding node being repaired. A newcomer z° where
i = sn+j,7 € [n], represents the node z7 after the s-
th round. The lost data is regenerated at the newcomers
by receiving functions of the stored data from the n — r
complete storage nodes through the helper nodes. The n — r
complete storage nodes are connected to the corresponding
helper nodes with a directed edge @7, — h’ of capacity f3,
which denotes the number of bits broadcasted by x'. Each
helper node h’ is connected with infinite capacity links to all
the newcomers. This represents the broadcast nature of the
transmission medium.

Definition 1. The repair bandwidth v = (n—r)( is defined as
the total number of bits the complete storage nodes broadcast
in a repair round.

We model a newcomer with two vertices z%, and z? ;, and
a directed edge xj, — x;,, with capacity a. The newcomer
z',1 = sn + j, uses the «; bits from the corresponding node

being repaired. This is captured in the flow graph by edges

Ty iq = Toues Where p = (s—1)n+j, of capacity as, followed
by edges 2%, — !, with infinite capacity between the output

vertices of the nodes being repaired and the input vertices of
corresponding newcomers.

A data collector node DC, corresponds to a request to
reconstruct the file. Data collectors connect to any subset of
k active nodes and retrieve all the stored data in these nodes,
represented with edges with infinite capacity.

A cut in the information flow graph is a subset of edges
such that there is no path from the source node S to the
data collector DC' that does not go through any of the edges
in the cut. We define the capacity of a cut as the sum of
its edge capacities, and the min-cut of a graph as the cut
with the minimum capacity among all possible data collectors
and all possible information flow graphs for different failure
patterns. The following proposition from [5] characterizes
the fundamental performance limits of a distributed storage

Note that adding an edge with capacity co means that all the information
in the node sending the data is available in the input vertices of the nodes
receiving the data.

system with node failures using its information flow graph
representation, modeling it as a multicast network coding
problem and by finding the min-cut as the capacity of the
network which ensures that there is enough information flow
from the source to any data collector to reconstruct the file.
However, [5] only presents the result for bounded number
of failure/repair rounds (finite information flow graph). A
later paper by the same authors [14] extends the proof for
unbounded number of failure/repair rounds, represented by an
infinite information flow graph.

Proposition 1. [5] Consider any given finite information
flow graph G, with a finite set of data collectors. If the min-
cut separating the source from each data collector is larger
than or equal to the file size M, then there exists a linear
network code defined over a sufficiently large finite field F
(whose size depends on the graph) such that all data collectors
can recover the original file. Further, randomized network
coding guarantees that all collectors can recover the file
with probability that can be driven arbitrarily close to 1 by
increasing the field size.

The existence of such linear codes can be shown by proving
that the MDS property of the code is preserved even after an
unbounded number of repairs (demonstrated in [14]). This can
be shown by induction and by exploiting the linearity of the
code and the repair process.

Following Proposition 1, using the information flow graph
construction in this paper, we will find the minimum cut of the
information flow graph over all possible failure combinations.
We enumerate cuts as X1, X2, - - - (see Fig. 1 and 2). In Section
3, we demonstrate how to find the min-cut for a specific
example.

III. STORAGE-BANDWIDTH TRADE-OFF FOR PARTIAL
REPAIR

Consider the scenario illustrated in Fig. 1, where n = 4, k =
2 and r = 2. The capacity of cut x; is 2a; + 25, while the
capacity of cut X2 is 2a. Then the min-cut is min{2a; +
2(3,2a}. From Proposition 1, to ensure that the file can be
reconstructed by the data collector, min{2a; +28,2a} > M.

Next we consider a scenario represented in Fig. 2 with
n =4,k = 3 and r = 2, where two repair rounds are required
to determine the min-cut. The number of repair rounds is
determined by ensuring that each of the k£ nodes serving the
DC go through at least one repair round, so that all the
different capacity edges occur at least once in the path, from S
to DC, through each node. Therefore, the minimum number
of repair rounds required is [*/r]. It is possible to show that
the min-cut is then given by min{3a; + 23,2a + a1}, and
the sufficient condition for the reconstruction of the file by the
DC' is min{3a; + 26,2a + a1} > M [15].

For each set of parameters (n, k, v, a, 7, p), there is a family
of information flow graphs, each of which corresponds to a
particular evolution of node failures/repairs. We denote this
family of directed acyclic graphs by G(n, k,v,a,r, p). An
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Fig. 2: Information flow graph G with n =4,k = 3,7 = 2, two repair rounds and three cuts 1, x2 and xs.

(n, k,7y,a,r, p) tuple is feasible, if a code with storage v and
repair bandwidth ~y exists.

Theorem 1. For any o > «*(n,k,v,r,p), the points
(n, k,7v,a,r,p) are feasible, and linear network codes suffice
to achieve them. It is information theoretically impossible to
achieve points with o < a*(n, k,~y,r,p). If v divides k, the
threshold function o*(n, k,~,r, p) is given by:

M v € [£(0),00) )
Moy e [£(), f(i — 1)

k—ir(1—p)

Oé*(n, k77a T, p) = {

where,forizl,Q,...,é—l,
NN 2M (1 —p)(n—7)
f(z)_(2k—r(z‘+1)(1—p))i+%(n—k)’ @

r

>

1
)& = (2n — 2k — j .
g(i) 2( n — 2k T+W)nfr 3)
Proof. Refer to [15]. |

Corollary 1. The minimum storage point is achieved by the
. _ (M Mr(n—r)(1—p)
pair (arMsR, YMSR) = .

ko k(n—k)
Corollary 2. The  minimum  repair  bandwidth
point is achieved by the pair (amMBR,Viigr) =
M—g'v} 2Mr(n—r)(1—p) B
( Ttr(ep) * B@n—R(1—p)—r(15)) where ¢ =

1 (k=r)(2n—k—2r)
2 n—r .

Minimum-storage regenerating (MSR) and minimum-
bandwidth regenerating (MBR) codes attain the points in
Corollary 1 and Corollary 2, respectively.

Remark 1. For p = 0 and v = 1, i.e, complete failure
of exactly one node, the model is equivalent to that in [5],
and the trade-off curve from Theorem 1 coincides with the
trade-off curve in [5]. Similarly, for p = 0 and r > 1, i.e.,
multiple complete failures, the trade-off curve from Theorem
1 coincides with the one in [10].

Theorem 2. In the same context as in Theorem 1, if v does not
divide k, let p = |*/r| and ko = pr. Assume M <

MR S MSEHE for some 2 € [p— 2], or 0 < SEHTE <
"= for z = 0. Also define k' = kp 4 (1 — p)ko. Then the

threshold function o*(n, k,v,r, p) is given by:
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0<i<z-1
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M [g’(—)i—:(li;)r Iy P> 241,
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where 1 =0,1,..., % — 1, and f,g and f' are defined as
o0 1=—1
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g(l)é§(2n—2k0—r+zr)n_r (6)
2M (n—r)
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if z=0.

Proof. The proof follows the same principle as that of The-
orem 1 [15], except that now there is a small offset in the
thresholds due to the non-divisibility of k£ by 7. ]

IV. SPECIAL CASES

Example 1. Consider a network with the following param-
eterss n = 4, k = 3, r = 2 and oy = % (Fig. 2).
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Fig. 3: Trade-off curve between the repair bandwidth and
storage, M = 1,k = 8 and 10 helper nodes. For single node
failure » = 1 and for multiple node failures r = 2.

According to Eq. (6) in [9], the MSR point is achieved by
the pair (o,v) = (%, M). However, by constructing the
information flow graph as shown in Fig. 2 and finding the
minimum cutset, we find that the storage point of 2 is not

/ . 3 .
feasible, and instead the storage point @ = % is feasible,

and the corresponding repair bandwidth point is v = %
This is verified by Theorem 2, where z = 0 for this example,
and therefore f' = f(z — 1) = oo. Therefore @ = % is
not possible. Interestingly, when we substitute the value of

2M into Eq. (6) of [9], the repair bandwidth in [9]

a = =5
coincides with ours.
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Example 2. Consider the parameters: n = 4,k = 2,r =

1,a; = 5. According to Eq. (6) in [9], the MSR point is

achieved by the pair (v, 7) = (&, M). Our approach achieves
3M

v = =5, which is achievable using linear network codes in

GF(q), assuming q is large enough.

Example 3. Consider a network with n =4, k =2, r = 2
and oy = §. Reference [9] proposed a coding scheme for
this example. It can be verified from Corollary 2 that this
scheme achieves the minimum repair bandwidth, i.e., (o, y) =
(% %)
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V. RESULTS AND DISCUSSION

In Fig. 3, we plot the storage-repair bandwidth (per failed
node) trade-off for single-node repair with full node failure
[5], broadcast repair of multiple full node failures [10], and the
broadcast repair of multiple partial node failures (as derived
in Theorem 1). The gap between the top two curves in Fig.
3 is due to multiple node repair as well as the benefit from
broadcast repair. The further reduction in the repair bandwidth
in the bottom two curves in Fig. 3 comes from utilizing the
remaining portion of data that is not lost on a failed node. We
observe that the repair bandwidth reduces quickly for small

values of storage capacity «, and saturates at a fixed value
beyond a particular threshold value of «a, which corresponds
to the MBR point. This threshold value of o becomes smaller
for larger values of p. There is another threshold value of «
below which a finite repair bandwidth is not feasible any more,
which corresponds to the MSR point.

VI. CONCLUSIONS

We have considered the repair of multiple partial failures
through broadcast transmissions in a wireless distributed edge
caching system. We have derived the optimal storage-repair
bandwidth trade-off curve by constructing an information flow
graph to represent the evolution of the system over time, and
finding the min-cut across all failure combinations. Our results
show that partial failures can reduce the repair bandwidth
significantly thanks to the remaining correct bits in failed
nodes. We have also shown that some storage and repair
bandwidth pairs reported in the literature may not be feasible
in general. Future work will focus on designing explicit codes
achieving this trade-off, while also taking into account the
heterogeneity of wireless networks.
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