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Abstract—A cache-aided K-user Gaussian broadcast channel
(BC) is studied. The transmitter has a library of N files, from
which each user requests one. The users are equipped with
caches of different sizes, which are filled without the knowledge
of the user requests in a centralized manner. Differently from the
literature, it is assumed that each file can be delivered to different
users at different rates, which may correspond to different quality
representations of the underlying content, e.g., scalable coded
video segments. Accordingly, instead of a single achievable rate,
the system performance is characterized by a rate tuple, which
corresponds to the vector of rates users’ requests can be delivered
at. The goal is to characterize the set of all achievable rate tuples
for a given total cache capacity by designing joint cache and
channel coding schemes together with cache allocation across
users. Assuming that the users are ordered in increasing channel
quality, each file is coded into K layers, and only the first k
layers of the requested file are delivered to user k, k = 1, . . . ,K.
Three different coding schemes are proposed, which differ in the
way they deliver the coded contents over the BC; in particular,
time-division, superposition, and dirty paper coding schemes are
studied. Corresponding achievable rate regions are characterized,
and compared with a novel outer bound. To the best of our
knowledge, this is the first work studying the delivery of files at
different rates over a cache-aided noisy BC.

I. INTRODUCTION

In the coded caching framework introduced in [1], transmis-
sion is performed over two phases: in the placement phase,
which takes place during off-peak hours, users fill their caches
without knowing the particular demands. Once the demands
are revealed, they are satisfied simultaneously over the delivery
phase. Here, we consider a Gaussian broadcast channel (BC)
from the server to the users during the delivery phase. Cache-
aided Gaussian BC is studied in [2] with and without fading,
and in [3], [4] focusing on the high SNR regime. A packet-
erasure BC is considered in [5] and [6]. A degraded BC is
considered in [7], where the placement phase is performed in
a centralized manner with the full knowledge of the channel
during the delivery phase. In [8] delivery over a Gaussian BC
is studied from an energy efficiency perspective, assuming
that the channel conditions in the delivery phase are not
known during the placement phase, for both centralized and
decentralized caching scenarios.

In most of the existing literature on coded caching, the key
assumption is that the files in the library are coded at a single
common rate, and each user requests one file from the library
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in its entirety. Accordingly, the objective function in [5]–[7]
is to maximize the common rate of the messages that can be
delivered to all the users, and the supremum of the achievable
rates is defined as the capacity of the caching network. In [9],
the authors relaxed this assumption and allowed each user
to request the files at a different quality, and equivalently,
at a different rate. However, the required rates at which the
contents must be delivered are assumed to be given as part
of the problem definition in [9], and the goal is to find the
minimum number of bits that must be delivered over an error-
free shared delivery channel [9]. In this work, similarly to
[9], we allow the users to request the files at different rates;
however, differently from [9], considering a Gaussian BC in
the delivery phase, we aim at characterizing the rate tuples at
which the requested contents can be delivered to the users.

We argue that this formulation allows us to better exploit
the asymmetric resources available to users for content de-
livery over a noisy BC. To see the difference between the
scalar capacity definition used in [7] and the capacity region
formulation proposed here, consider a Gaussian BC without
any caches, i.e., M = 0. In this case, the capacity as defined
in [7] is limited by the rate that can be delivered to the worst
user, whereas with our formulation any rate tuple within the
capacity region of the underlying BC is achievable, providing
a much richer characterization of the performance for cache-
aided delivery over a noisy BC.

The motivation here is to deliver the contents at higher
rates to users with better channels, rather than being limited
by the weak users. As proposed in [9], the multiple rates
of the same file may correspond to the video files in the
library encoded into multiple quality layers using scalable
coding, so the user with a higher delivery rate receives a better
quality description of the same file. Accordingly, each file
in the library is coded into K layers, K being the number
of users, ordered in increasing channel qualities, where user
k receives layers 1 to k of its request, k = 1, . . . ,K. We
consider a centralized placement phase, and assume that the
channel qualities of the users in the delivery phase are known
in advance. Moreover, following [7], we consider a total
cache capacity in the network as a constraint, and optimize
cache allocation across the users and different layers of the
files. Contents cached during the placement phase provide
multicasting opportunities to the server to deliver the missing
parts in the same layer of the files to different users. When
delivering these coded contents to users over the underlying



BC, we consider three different techniques. Corresponding
coding schemes are called joint cache and time-division coding
(CTDC), joint cache and superposition coding (CSC), and joint
cache and dirty paper coding (CDPC). We also present an
outer bound on the rate region when the placement phase
is constrained to uncoded caching, and compare it with the
achievable rate tuples obtained though the proposed coding
schemes.

Notations: For any arbitrary non-empty set G with car-
dinality |G|, we denote the

(|G|
i

)
i-element subsets of G

by SiG,1, . . . ,SiG,(|G|i )
, for i = 1, ..., |G|. For g /∈ G, we

define {G, g} ∆
= G

⋃
{g}, and for H ⊂ G, G\H represents

{j : j ∈ G, j /∈ H}. For two integers i and j, j ≥ i, [i : j]
denotes the set {i, i + 1, ..., j}. For any positive real number
q, we define [q] , {1, . . . , dqe}. We define, for two real
values p ≥ 0 and q > 0, Cpq

∆
= 1

2 log2 (1 + p/q), and

p̄
∆
= 1−p. Notation ⊕̄ represents bitwise XOR operation where

the arguments are first zero-padded to have the same length
as the longest argument.

II. SYSTEM MODEL AND PRELIMINARIES

We consider cache-aided content delivery over a K-user
Gaussian BC. The transmitter has a library of N files, W ∆

=

W1, ...,WN . File Wj is coded into K layers W (1)
j , . . . ,W

(K)
j ,

such that layer W (l)
j is distributed uniformly over the set[

2nR
(l)
]
, where R(l) represents the rate of the l-th layer and n

denotes the blocklength, for j = 1, ..., N , and l = 1, ...,K. We
denote the i-th layers of all the files by W(i) ∆

= W
(i)
1 , ...,W

(i)
N ,

for i ∈ [K].
Assume that user k, k ∈ [K], has a cache of capacity nMk

bits, which is filled during the placement phase without the
knowledge of the user demands. User demands are revealed
and satisfied simultaneously in the delivery phase. Each user
requests a single file from the library, where Wdk , dk ∈ [N ],
denotes the file requested by user k ∈ [K]. For a demand
vector d ∆

= (d1, ..., dK), the users are served by a common
message Xn(W)

∆
= (X1(W), . . . , Xn(W)) satisfying the

average power constraint. User k, k ∈ [K], receives Y nk (W)
∆
=

(Yk,1(W), . . . , Yk,n(W)) through a Gaussian channel

Y nk (W) = Xn(W) + Znk , (1)

where Znk
∆
= (Zk,1, . . . , Zk,n), and Zk,i is the independent

zero-mean real Gaussian noise with variance σ2
k at user k at

the i-th channel use. Without loss of generality we order the
users in increasing channel quality, i.e., we assume that σ2

1 ≥
σ2

2 ≥ · · · ≥ σ2
K . We define σ

∆
= (σ1, . . . , σK).

Placement phase is performed in a centralized manner
assuming σ is known. An

(
n,R(1), . . . , R(K),M1, . . . ,MK

)
code consists of the following:
• K caching functions φk, k ∈ [K], where φk maps W and
σ to the cache content Uk of user k, i.e., Uk = φk (W,σ).

• An encoding function ψ, which generates the channel
input as Xn(W) = ψ (W,σ,d), for demand vector d,

satisfying the average power constraint 1
n

n∑
i=1

X2
i (W) ≤

P .
• K decoding functions µd,k, k ∈ [K], where, for a demand

vector d, µd,k reconstructs the layers Ŵ
(1)
dk
, . . . , Ŵ

(k)
dk

from the channel output Y nk and cache content Uk.

The probability of error is defined as Pe
∆
=

Pr

{ ⋃
d∈[N ]K

K⋃
k=1

k⋃
i=1

{
Ŵ

(i)
dk
6= W

(i)
dk

}}
.

Note that the generated code implicitly assumes that user
k is interested only in the first k layers of its demand, i.e.,
W

(1)
dk
, . . . ,W

(k)
dk

, for k ∈ [K]. Therefore, its cache contents
depend only on W(1), . . . ,W(k). In a more general formula-
tion, we could instead consider an arbitrary ordering of the
rates among the users, but here the goal is to deliver a higher
rate to a user with a better channel.

For a given total cache capacity M , we say that the rate tuple
(R1, . . . , RK) is achievable if for every ε > 0, there exists an(
n,R(1), . . . , R(K),M1, . . . ,MK

)
code, which satisfies Pe <

ε, Rk ≤
∑k
l=1R

(l), and
∑K
k=1Mk ≤M . For average power

constraint P and a total cache capacity M , the capacity region
C(P,M) of the caching system described above is defined as
the closure of the all achievable rate tuples. Our goal is to find
inner and outer bounds on C(P,M).

Next, we present some definitions that will simplify our
ensuing presentation. For a fixed value of t, t ∈ [K − 1], we
define gl

∆
=
∑l
j=1

(
K−j
t

)
, ∀l ∈ [K − t], and let g0 = 0. We

note that gK−t =
(
K
t+1

)
. We denote the set of users [l : K] by

Kl, for l ∈ [K]. We label (t+ 1)-element subsets of users in
K1, so that the subsets with the smallest element l are labelled
as

St+1
K1,1+gl−1

, . . . ,St+1
K1,gl

, for l = 1, ...,K − t. (2)

Thus, we have, for l ∈ [K − t],{
St+1
K1,1+gl−1

\{l}, . . . ,St+1
K1,gl
\{l}

}
={

StKl+1,1
, . . . ,StKl+1,(K−lt )

}
, (3)

i.e., the family of all (t+ 1)-element subsets of K1 excluding
l, which is their smallest element, is the same as the family
of all t-element subsets of Kl+1. We note that the number of
subsets of users in both sets in (3) is

(
K−l
t

)
, l ∈ [K − t].

Without loss of generality, we label the subsets of users so
that, for l ∈ [K − t],

St+1
K1,i+gl−1

\{l} = StKl+1,i
, for i ∈

[(
K−l
t

)]
. (4)

III. ACHIEVABLE SCHEMES

Here we present three different inner bounds on C(P,M).

A. Joint Cache and Time-Division Coding (CTDC)

With CTDC, the missing bits corresponding to the layers in
W(l) are delivered in a coded manner exploiting the cached
contents as in the standard coded caching framework. The
coded contents are transmitted over the BC using time-division



among layers. We elaborate on the placement and delivery
phases of the CTDC scheme in the longer version of the paper
[10].

Proposition 1. For the system described in Section II with
average power P and total cache capacity M , the rate tuple
(R1, ..., RK) is achievable by the CTDC scheme, if there exist
t1, . . . , tK , where tl ∈ [0 : K − l], ∀l ∈ [K], non-negative
R(1), . . . , R(K), and non-negative λ(1), . . . , λ(K), such that
Rk =

∑k
l=1R

(l),
∑K
l=1 λ

(l) = 1, ∀k ∈ [K], and

R(l) ≤ λ(l)

∑(K−l+1
tl

)
i=1

∏
k∈Kl\S

tl
Kl,i

CP
σ2
k

∑(K−l+1
tl+1 )

i=1

∏
k∈Kl\S

tl+1

Kl,i

CP
σ2
k

, for l ∈ [K], (5a)

M = N
∑K

l=1
tlR

(l). (5b)

Corollary 1. The following rate region for a total cache
capacity M and average power P can be achieved by the
CTDC scheme:

Cb(P,M) =
⋃

λ(1),...,λ(K):
∑K
l=1 λ

(l)=1

({R1, . . . , RK} :

(R1, . . . , RK) and M satisfy (5)) . (6)

Remark 1. Let (R̂1, . . . , R̂K) ∈ Cb(P,M) and
(R̃1, . . . , R̃K) ∈ Cb(P,M). Then, for any λ ∈ [0, 1],
(λR̂1 + λ̄R̃1, . . . , λR̂K + λ̄R̃K) ∈ Cb(P,M). This can be
shown by joint time and memory-sharing. The whole library
is divided into two parts according to λ, and the delivery
of the two parts are carried out over two orthogonal time
intervals of length λn and λ̄n using the codes for the two
achievable tuples. Thus, for a fixed total cache capacity M ,
the rate pairs in the convex-hull of Cb(P,M) are achievable.

According to Remark 1, a rate vector R∗ ∆
= (R∗1, . . . , R

∗
K)

is on the boundary surface of Cb(P,M), if there exist non-
negative coefficients w1, . . . , wK ,

∑K
i=1 wi = 1, for which

R∗ is a solution to the following optimization problem:

max
λ(1),...,λ(K),R1,...,RK

∑K

i=1
wiRi,

subject to {R1, ..., RK} ∈ Cb(P,M). (7)

In the other words, for given weights w1, . . . , wK , and to-
tal cache capacity M , R∗ solves the problem in (7), if
R(1), . . . , R(K) is a solution of the following problem:

max
λ(1),...,λ(K),R(1),...,R(K)

∑K

i=1
wi
∑i

l=1
R(l),

subject to (5a) and (5b),∑K

l=1
λ(l) = 1, (8)

and

R∗k =
∑k

l=1
R(l), for k = 1, . . . ,K. (9)

B. Joint Cache and Superposition Coding (CSC) and Joint
Cache and Dirty Paper Coding (CDPC)

Here we present the achievable rate regions for the CSC and
CDPC schemes. We introduce r1 and r2 to distinguish between
the two, where we set r1 = 0 and r2 = 1 for CSC, while
r1 = 1 and r2 = 0 for CDPC. We briefly highlight here that,
with the CSC scheme, the coded packets of different layers are
delivered over the Gaussian BC through superposition coding,
while the CDPC scheme uses dirty paper coding to deliver the
coded packets of different layers. The CSC scheme along with
an example highlighting the main techniques and the CDPC
scheme are elaborated in the longer version of the paper [10].

Theorem 1. For the system described in Section II with
average power P and total cache capacity M , rate tuple
(R1, ..., RK) is achievable, if there exist t ∈ [K − 1], and
non-negative R(1), . . . , R(K), such that Rk =

∑k
l=1R

(l), for
k ∈ [K], and

R(l) =


∑(Kt )
i=1 R

(1)

StK1,i
, if l = 1,∑(K−l+1

t−1 )
i=1 R

(l)

St−1
Kl,i

, if l = 2, ...,K − t+ 1,

0, otherwise,

(10a)

and, for i ∈ [1 + gl−1 : gl] and l ∈ [K − t],

R
(1)

St+1
K1,i
\{k1}

≤ λiCαiPᾱiPr2+σ2
k1

, ∀k1 ∈ St+1
K1,i

, (10b)

R
(l+1)

StKl+1,i−gl−1
\{k2} ≤ λiC

ᾱiP
αiPr1+σ2

k2

, ∀k2 ∈ StKl+1,i−gl−1
,

(10c)

and

M = N

(
tR(1) + (t− 1)

∑K−t+1

l=2
R(l)

)
, (10d)

for some

0 ≤ αi ≤ 1, (10e)

0 ≤ λi ≤ 1, for i = 1, ...,
(
K
t+1

)
, (10f)∑( K

t+1)

i=1
λi = 1. (10g)

Corollary 2. The following rate region for a total cache
capacity M and average power constraint P can be achieved:

Cc(P,M) =
⋃

α,λ:
∑( K

t+1)
i=1 λi=1

({R1, . . . , RK} :

(R1, . . . , RK) and M satisfy (10)) ,
(11)

where α
∆
= α1, . . . , α( K

t+1)
, and λ

∆
= λ1, . . . , λ( K

t+1)
.

For a fixed total cache capacity M , the convexity of region
Cc(P,M) is followed through the same argument as Remark 1,
for both the CSC and CDPC schemes. As a result, for a given
total cache capacity M , and for given non-negative coefficients
w1, . . . , wK , such that

∑K
i=1 wi = 1, a rate vector R∗ is on

the boundary surface of the achievable rate region Cc(P,M),



if R(1), . . . , R(K) is a solution of the following problem:

max
α,λ,R(1),...,R(K−t+1)

∑K

i=1
wi
∑i

l=1
R(l),

subject to R(1), . . . , R(K−t+1) satisfy (10a),

R(1) satisfy (10b),

R(2), . . . ,R(K−t+1) satisfy (10c),
M satisfies (10d),
α and λ satisfy (10e)-(10g), (12a)

where

R(1) ∆
= R

(1)

StK1,1
, . . . , R

(1)

St
K1,(Kt )

, (12b)

R(l) ∆
= R

(l)

StKl,1
, . . . , R

(l)

St
Kl,(K−l+1

t−1 )
, for l ∈ [2 : K − t+ 1],

(12c)

and

R∗k =
∑k

l=1
R(l), for k = 1, . . . ,K. (13)

Remark 2. Let R̃ ∆
= (R̃1, . . . , R̃K) and R̂ ∆

= (R̂1, . . . , R̂K)
be two achievable rate tuples for total cache capacities M̃
and M̂ , respectively. Then, βR̃ + β̄R̂ can be achieved through
joint time and memory-sharing for a total cache capacity
βM̃ + β̄M̂ , for some β ∈ [0, 1]. For M = 0, the system
under consideration is equivalent to the Gaussian BC without
user caches, where user k requests a file of rate

∑k
l=1R

(l),
k ∈ [K], and rate tuple Rz

∆
= (Rz1 , ..., RzK ) is achievable by

superposition coding, where

Rzk = CγkP∑K
i=k+1 γiP+σ2

k

, for k = 1, ...,K, (14)

for some non-negative coefficients γ1, . . . , γK , such that∑K
i=1 γi = 1. Hence, rate tuples βRz + β̄R̃ and βRz + β̄R̂

are also achievable for total cache capacities β̄M̃ and β̄M̂ ,
respectively, through time sharing.

IV. OUTER BOUND

In the following, we present an outer bound on the capacity
region C(P,M), whose proof can be found in the longer
version of the paper [10, Appendix C].

Theorem 2. Consider the system described in Section II with
average power P , where user k has a cache capacity of Mk,
k ∈ [K]. If the placement phase is constrained to uncoded
caching, for any non-empty subset G ⊂ [K], we have, for
k = 1, . . . , |G|,

RπG(k) ≤ C
ηπG(k)P∑|G|
i=k+1 ηπG(i)P+σ2

πG(k)

+
1

N

∑k

i=1
MπG(i), (15)

for some non-negative coefficients ηπG(1), . . . , ηπG(|G|), such
that

∑|G|
i=1 ηπG(i) = 1, where πG is a permutation of the

elements of G, such that σ2
πG(1) ≥ σ

2
πG(2) ≥ · · · ≥ σ

2
πG(|G|).

Remark 3. The outer bound is not tight in general, particu-
larly when the channel qualities are more skewed. This is due

R
(1)

0 0.1 0.2 0.3 0.4 0.5

R
(2
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0.4
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0.7

Outer bound

CSC scheme

CTDC scheme

CDPC scheme

Fig. 1. Achievable rate pair
(
R(1), R(2)

)
for a caching system with K =

N = 4, and M = 2.5, where R(3) = 0, t = 2 and t1 = 2, t2 = t3 = 1,
and t4 = 0. The noise variance at user k is σ2

k = 5 − k, for k = 1, ..., 4,
and we set P = 2.

to the nature of the underlying model, where cache allocation
is allowed, and the capacity is characterized as a function of
the available total cache capacity, whereas the outer bound is
specified for a particular cache allocation. Moreover, unlike
the model studied in [7], the asymmetry due to different rate
delivery to different users increases the gap between the outer
bound and the achievable schemes.

V. NUMERICAL RESULTS

In this section, we compare the achievable rate regions of
the CTDC, CSC, and CDPC schemes for a caching system
with K = N = 4. We set the average power constraint to
P = 2, and the noise variance at user k is assumed to be
σ2
k = 5− k, for k ∈ [4]. We assume a total cache capacity of
M = 2.5.

We evaluate the performance in terms of the rate of dif-
ferent layers of the files, i.e., R(1), . . . , R(K), where Rk =∑k
l=1R

(l), for k ∈ [K]. We examine the performance of the
CSC and CDPC schemes for t = 2. Thus, the achievable
rate tuple (R1, R2, R3, R4) presented in Theorem 1 can be
achieved by the CSC and CDPC schemes, for r1 = 0, r2 = 1,
and r1 = 1, r2 = 0, respectively, where R4 = R3 since
R(4) = 0. The boundary surface of the rate region achieved
by the CSC and CDPC schemes are computed through the
optimization problem given in (12). For the fairness of the
comparison, we consider caching factors t1 = 2, t2 = t3 = 1,
and t4 = 0. The boundary of the rate region achievable by
CTDC can be calculated by the optimization problem in (8),
where, in order to have a fair comparison, we set λ(4) = 0
leading to R(4) = 0 and R4 = R3.

We investigate the convex hull of the achievable rate tuples
calculated by the optimization problem corresponding to each
of the CTDC, CSC, and CDPC schemes. Since the presen-
tation of the three-dimensional rate region together with the



R
(1)

0 0.1 0.2 0.3 0.4 0.5

R
(3
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Outer bound
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Fig. 2. Achievable rate pair
(
R(1), R(3)

)
for a caching system with K =

N = 4, and M = 2.5, where R(2) = 0, and t = 2 and t1 = 2, t2 = t3 = 1,
and t4 = 0. The noise variance at user k is σ2

k = 5 − k, for k = 1, ..., 4,
and we set P = 2.

outer bound does not provide a clear picture, here we fix one
of the rates R(1), R(2) and R(3) and present the rate region
on the two-dimensional planes corresponding to the other two
rates. Two-dimensional plane of

(
R(1), R(2)

)
,
(
R(1), R(3)

)
and

(
R(2), R(3)

)
for R(3) = 0, R(2) = 0 and R(1) = 0

are illustrated in in Figures 1, 2 and 3, respectively, together
with the outer bound presented in Theorem 2. As it can be
seen from the figures, for relatively small values of R(1), the
CSC and CTDC schemes achieve higher values of R(2), while
the CSC scheme outperforms the latter. For higher values of
R(1), the improvement of the CSC scheme over CTDC and
CDPC is negligible. For a fixed R(1) value, CDPC achieves
higher values of R(3) compared to the other two achievable
schemes, and CSC outperforms CTDC. On the other hand,
given a relatively small value of R(2), CDPC improves upon
the CSC and CTDC in terms of the achievable rate R(3), and
CSC achieves higher values of R(3) than CTDC. As mentioned
in Remark 3, the outer bound is not tight in general; however,
for any achievable rate tuple (R1, . . . , R4), which is achieved
with a specific cache allocation M1, . . . ,M4, the outer bound
specialized to this cache allocation would be tighter.

VI. CONCLUSIONS

We have studied cache-aided content delivery over a Gaus-
sian BC, where each user is allowed to demand a file at
a distinct rate. To model this asymmetry, we have assumed
that the files are encoded into K layers corresponding to
K users in the system, such that the k-th worst user is
delivered only the k layers of its demand, k ∈ [K]. We have
considered a centralized placement phase, where the server
knows the channel qualities of the links in the delivery phase
in addition to the identity of the users. By allowing the users to
have different cache capacities, we have defined the capacity
region for a total cache capacity. We designed a placement
phase through cache allocation across the users and the files’
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R
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Outer bound
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Fig. 3. Achievable rate pair
(
R(2), R(3)

)
for a caching system with K =

N = 4, and M = 2.5, where R(1) = 0, and t = 2 and t1 = 2, t2 = t3 = 1,
and t4 = 0. The noise variance at user k is σ2

k = 5 − k, for k = 1, ..., 4,
and we set P = 2.

layers to maximize the rates allocated to different layers. We
have proposed three achievable schemes, which deliver coded
multicast packets, generated thanks to the contents carefully
cached during the placement phase, through different channel
coding techniques over the Gaussian BC. Although the coded
multicast packets are intended for a set of users with distinct
link capacities, channel coding techniques can be employed to
deliver requested files such that the users with better channels
achieve higher rates. We have also developed an outer bound
on the capacity region assuming uncoded caching. We are
currently working to reduce the gap between the inner and
outer bounds.
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