
Machine Learning at the Wireless Edge: Distributed

Stochastic Gradient Descent Over-the-Air

Mohammad Mohammadi Amiri and Deniz Gündüz

Electrical and Electronic Engineering Department, Imperial College London, London SW7 2BT, U.K.

Email: {m.mohammadi-amiri15, d.gunduz}@imperial.ac.uk

Abstract—We study collaborative machine learning at the
wireless edge, where power and bandwidth-limited devices (work-
ers), with limited local datasets, implement distributed stochastic
gradient descent (DSGD) over-the-air with the help of a remote
parameter server (PS). We consider a wireless multiple access
channel (MAC) from the workers to the PS for communicating
the local gradient estimates. We first introduce a digital DSGD
(D-DSGD) scheme, assuming that the workers operate on the
boundary of the MAC capacity region at each iteration of the
DSGD algorithm, and digitize their estimates within the bit bud-
get allowed by the employed power allocation. We then introduce
an analog scheme, called A-DSGD, motivated by the additive
nature of the wireless MAC, where the workers send their
gradient estimates over the MAC through the available channel
bandwidth without employing any digital code. Numerical results
show that A-DSGD converges much faster than D-DSGD. The
improvement is particularly compelling at low power and low
bandwidth regimes. We also observe that the performance of
A-DSGD improves with the number of workers, while D-DSGD
deteriorates, limiting the ability of the latter in harnessing the
computation power of many edge devices.

I. INTRODUCTION

Many emerging technologies involve massive amount of

data collection, and collaborative intelligence that can process

this data. The current trend of many machine learning algo-

rithms focuses on centralized algorithms, where a powerful

learning technique, often a neural network, is trained on a

massive dataset. In the case of wireless edge devices, sending

the collected data to a central processor in a reliable manner

may be too costly in terms of energy and bandwidth. This

might also be undesirable due to privacy concerns. Also,

communication is typically more costly than processing; thus,

a much more desirable alternative is to develop distributed ma-

chine learning techniques that can exploit the local processing

capabilities of edge nodes, requiring limited communications.

In this paper, we consider machine learning at the wireless

network edge, where distributed nodes with local data samples

and connected to a central processing unit through a shared

wireless medium, jointly train a learning model.

Machine learning problems often require the minimization

of the empirical loss function F (θ) = 1
N

∑N
n=1 f (θ,un),

where θ ∈ R
d denotes the model parameters to be optimized,

un is the n-th training data sample, n ∈ {1, . . . , N} , [N],
and f(·) is the loss function defined by the learning model. The

This work was supported in part by the Marie Sklodowska-Curie Action
SCAVENGE (grant agreement no. 675891) and by the European Research
Council (ERC) Starting Grant BEACON (grant agreement no. 725731).

minimization of F (θ) is typically carried out through iterative

stochastic gradient descent (SGD), in which the model param-

eter at iteration t, θt, is updated with a stochastic gradient

θt+1 = θt − ηt · g (θt), which satisfies E [g (θt)] = ∇F (θt),
where ηt is the learning rate. SGD also allows parallelization

when the dataset is distributed across multiple computation

servers, called the workers. In distributed SGD (DSGD), at

each iteration, worker m computes a gradient vector based on

the global parameter vector with respect to its local dataset,

denoted by Bm, and sends the result to the parameter server

(PS), which updates the global parameter vector according to

θt+1 = θt − ηt
1

M

∑M

m=1
gm (θt) , (1)

where M denotes the number of workers, and gm (θt) ,
1

|Bm|
∑

un∈Bm

∇f (θt,un), m ∈ [M]. Ideally, the data par-

allelism with DSGD should speed up the process M times

providing linear scalability. But, in practice, it suffers from

extensive communications from the workers to the PS [1]–

[4], and this will be an even bigger hurdle in wireless edge

learning due to stringent bandwidth and energy constraints.

Numerous studies have been dedicated to reduce the com-

munication load of DSGD, where three main approaches,

namely quantization, sparsification, and local updates, and

their various combinations have been considered in the liter-

ature. Quantization methods implement lossy compression of

the gradients by quantizing each of their entries to a finite-

bit low precision value [1], [3], [5]. Sparsification reduces

the communication time by sending only some values of the

gradients [2], [6]–[8]. Another approach is to reduce the fre-

quency of communication from the workers by allowing local

parameter updates [2], [9], [10]. However, these works ignore

the communication channel, and simply focus on reducing the

amount of data transmitted by each worker to the PS.

In this paper, we consider DSGD over-the-air; that is, we

consider a wireless shared medium from the workers to the

PS, and treat each iteration of the DSGD algorithm as a

distributed over-the-air computation problem. We will provide

two distinct approaches for this wireless DSGD problem,

based on digital and analog computation approaches, referred

to as the D-DSGD and A-DSGD, respectively. We will show

that A-DSGD can significantly speed up wireless DSGD,

particularly in bandwidth-limited and low-power settings, typ-

ically experienced by wireless edge devices.

A similar over-the-air computation approach is considered

in the federated learning context in two parallel works [11],

[12] focusing on aligning the vectors received from different

workers to have the same power level by performing power

control and worker selection.

Notations: R represents the set of real values. For positive

integer i, we let [i] , {1, . . . , i}. N
(

0, σ2
)

denotes a zero-

mean normal distribution with variance σ2. We denote the

cardinality of set A by |A|, and l2 norm of vector x by ‖x‖2.

II. SYSTEM MODEL

We consider distributed edge learning, where M nodes,

called the workers, employ SGD with the help of a remote PS,

to which they are connected through a noisy wireless MAC.

Let Bm denote the set of data samples available at worker

m, m ∈ [M], and gm (θt) ∈ R
d be the stochastic gradient

computed by worker m using local data samples. At iteration

t of the DSGD algorithm in (1), the local gradient estimates

of the workers are sent to the PS over s uses of a Gaussian

MAC, characterized by:

yt =
∑M

m=1
xm,t + zt, (2)

where xm,t ∈ R
s is the length-s channel input vector sent

by worker m, yt ∈ R
s is the channel output received by the

PS, and zt ∈ R
s is the additive white Gaussian noise vector

with each entry independent and identically distributed (i.i.d.)

according to N
(

0, σ2
)

. The channel input vector of worker

m at iteration t is a function of the current parameter vector

θt, the local dataset Bm, and the current gradient estimate at

worker m, gm (θt), m ∈ [M]. For a total of T iterations, the

following total average transmit power constraint is imposed:

1

MT

∑T

t=1

∑M

m=1
||xm,t||22 ≤ P̄ . (3)

The goal is to recover the average of the locally computed

gradients 1
M

∑M

m=1 gm (θt) at the PS, which then updates the

model parameter as in (1). However, due to the pre-processing

performed at each worker and the noise added by the wireless

channel, the PS uses a noisy estimate to update the model

parameter vector; i.e., we have θt+1 = φ(θt,yt) for some

update function φ : R
d × R

s → R
d. The updated model

parameter is then multicast to the workers by the PS through

an error-free shared link. We assume that the PS is not limited

in power or bandwidth, so the workers receive a consistent

parameter vector for their computations in the next iteration.

Note that due to the channel noise and finite power con-

straint at the workers, they cannot transmit their local gradient

estimates to the PS in a lossless fashion. The transmission of

the local gradient computations to the PS with the goal of PS

reconstructing their average can be considered as a distributed

function computation problem over a MAC [13]. We will

consider both a digital approach treating computation and

communication separately, and an analog approach that does

not use any coding, and instead applies gradient sparsification

followed by a linear transformation to compress the gradients,

which are then sent simultaneously in an uncoded fashion.

III. DIGITAL DSGD (D-DSGD)

In this section, we present DSGD at the wireless network

edge utilizing digital compression and transmission over the

MAC, referred to as the D-DSGD algorithm. Since the vari-

ances of the gradient estimates at different workers are not

known, the power is allocated equally among the workers, so

that worker m sends xm,t with power Pt, i.e., ||xm,t||22 = Pt,

where, for a total of T iterations, Pt is chosen to satisfy
∑T

t=1 Pt ≤ T P̄ . Due to the intrinsic symmetry of the model,

we assume that the workers transmit at the same rate at

each iteration (while the rate may change across iterations

depending on the allocated power, Pt). Accordingly, the total

number of bits that can be transmitted by each worker over s
uses of the Gaussian MAC in (2), is upper bounded by

Rt =
s

2M
log2

(

1 +
MPt

sσ2

)

, (4)

where MPt/s is the sum-power per channel use. Note that

this is an upper bound since it is the Shannon capacity of the

underlying Gaussian MAC, and we further assumed that the

capacity can be achieved over a finite blocklength of s.

We will adopt the scheme proposed in [8] for gradient

compression at each iteration of the DSGD algorithm, as it

provides the state-of-the-art in convergence speed with the

minimum number of bits sent by each worker at each iter-

ation. However, we modify this scheme by allowing different

numbers of bits to be sent by the workers at each iteration.

At each iteration the workers sparsify their gradient esti-

mates as described below. In order to retain the accuracy of

their local gradient estimates, workers employ error accumu-

lation [3], where the accumulated error vector at worker m
until iteration t is denoted by ∆m,t−1 ∈ R

d, where we set

∆m,0 = 0, ∀m ∈ [M]. Hence, after computing gm (θt),
worker m updates its estimate with the accumulated error as

gm (θt)+∆m,t−1, m ∈ [M]. At iteration t, worker m sets all

but the highest qt and the smallest qt of the entries of its gradi-

ent estimate vector gm (θt)+∆m,t−1 to zero, where qt ≤ d/2
(to have a communication-efficient scheme, in practice, the

goal is to have qt ≪ d). Then, it computes the mean values

of all the remaining positive entries and all the remaining

negative entries, denoted by µ+
m,t and µ−

m,t, respectively. If

µ+
m,t >

∣

∣µ−
m,t

∣

∣, then it sets all the entries with negative values

to zero and all the entries with positive values to µ+
m,t, and

vice versa. We denote the resulting sparse vector at worker m
by ĝm (θt), and worker m updates the local accumulated error

vector as ∆m,t = gm (θt) +∆m,t−1 − ĝm (θt), m ∈ [M]. It

then aims to send ĝm (θt) over the channel by transmitting its

mean value and the positions of its non-zero entries. For this

purpose, we use a 32-bit representation of the absolute value of

the mean (either µ+
m,t or

∣

∣µ−
m,t

∣

∣) along with 1 bit indicating its

sign. To send the positions of the non-zero entries log2
(

d
qt

)

bits

are sufficient at each worker. Thus, with the D-DSGD scheme,

the total number of bits sent by each worker at iteration t is

given by rt = log2
(

d
qt

)

+33, where qt is chosen as the highest

integer satisfying rt ≤ Rt.

Algorithm 1 A-DSGD

1: Initialize θ1 = 0 and ∆1,0 = · · · = ∆M,0 = 0
2: for t = 1, . . . , T do

• Workers do:

3: for m = 1, . . . ,M in parallel do

4: Compute gm (θt) with respect to ui ∈ Bm

5: gec
m (θt) = gm (θt) +∆m,t−1

6: gsp
m (θt) = sparsek (g

ec
m (θt))

7: ∆m,t = gec
m (θt)− gsp

m (θt)
8: EPA:

9: g̃m (θt) = Asg
sp
m (θt)

10: xm,t (θt) =
√
αtg̃m (θt)

11: UPA:

12: g̃m (θt) = As−1g
sp
m (θt)

13: xm,t (θt) =
[√

αm,tg̃m (θt)
T √

αm,t

]T

14: end for

• PS does:

15: EPA:

16: ĝEPA (θt) = AMPAs

(

1
M

√
αt

y (θt)
)

17: θt+1 = θt − ηt · ĝEPA (θt)
18: UPA:

19: ĝUPA (θt) = AMPAs−1

(

1
ys(θt)

ys−1 (θt)
)

20: θt+1 = θt − ηt · ĝUPA (θt)
21: end for

IV. ANALOG DSGD (A-DSGD)

Next, we propose an analog DSGD (A-DSGD) algorithm,

in which all the workers transmit their gradient estimates

simultaneously without employing any digital coding. This is

motivated by the fact that the PS is only interested in the

average of gradient vectors, and the underlying MAC naturally

provides the sum of the gradients. See Algorithm 1 for a

description of the A-DSGD scheme.

Similarly to D-DSGD, workers employ error accumulation.

Hence, after computing gm (θt), worker m updates its esti-

mate as gec
m (θt) , gm (θt) +∆m,t−1, m ∈ [M]. In order to

reduce the dimension of the gradient vector to that of the chan-

nel, the workers apply gradient sparsification. In particular,

worker m sets all but k elements with the highest magnitudes

of vector gec
m (θt) to zero, and obtain a sparse vector gsp

m (θt),
m ∈ [M]. This k-level sparsification is represented by function

sparsek in Algorithm 1, i.e., gsp
m (θt) = sparsek (g

ec
m (θt)).

Worker m, m ∈ [M], then updates ∆m,t = gec
m (θt)−gsp

m (θt).
To transmit the sparse vectors, workers will employ a random

projection matrix, similarly to compressive sensing.

Assuming datasets with identical distributions across work-

ers, the local gradient estimates computed by different workers

also follow identical distributions; hence, they are expected

to have a similar sparsity pattern. A pseudo-random matrix

As̃ ∈ R
s̃×d, for some s̃ ≤ s, with each entry i.i.d. according

to N (0, 1/s̃), is generated and shared between the PS and the

workers before starting the computations. At each iteration

t, worker m computes g̃m (θt) , As̃g
sp
m (θt) ∈ R

s̃, and

transmits xm,t (θt) ,

[√
αm,tg̃m (θt)

T
am,t

T
]T

, where

am,t ∈ R
s−s̃, over the MAC, m ∈ [M], while satisfying the

average power constraint (3). The PS receives

y (θt) =

[

As̃

∑M

m=1

√
αm,tg

sp
m (θt)

∑M

m=1 am,t

]

+ zt. (5)

Next, we propose two schemes for this analog transmission

approach employing different scaling coefficients, or equiva-

lently, different power allocation schemes across workers.

A. Equal Power Allocation (EPA)

In the EPA scheme, we set s̃ = s, and at iteration t, worker

m computes g̃m (θt) = Asg
sp
m (θt), m ∈ [M], and scales it by

factor
√
αt, which is known by the workers and the PS, and

sends xm,t (θt) =
√
αtg̃m (θt), i.e., am,t = ∅. The scaling

factor
√
αt is chosen to satisfy the following average power

constraint over T iterations of A-DSGD algorithm

1

MT

∑T

t=1

∑M

m=1
αt ‖g̃m (θt)‖22 ≤ P̄ . (6)

Thus, the received vector at the PS is given by

y (θt) =
√
αt

∑M

m=1
g̃m (θt) + zt. (7)

Since αt is known also at the PS, it performs:

1

M
√
αt

y (θt) = As

1

M

∑M

m=1
gsp
m (θt) +

1

M
√
αt

zt. (8)

The PS employs the approximate message passing (AMP)

algorithm [14] to recover 1
M

∑M
m=1 g

sp
m (θt) from its noisy

observation above. The AMP algorithm is denoted by the

AMPAs
in Algorithm 1. The estimate ĝEPA (θt) is used to

update the model parameters as θt+1 = θt − ηt · ĝEPA (θt).

B. Unequal Power Allocation (UPA)

With the UPA scheme, we set s̃ = s − 1, which re-

quires s ≥ 2. At iteration t, we set am,t =
√
αm,t,

and worker m computes g̃m (θt) = As−1g
sp
m (θt), and

sends xm,t (θt) =
[√

αm,tg̃m (θt)
T √

αm,t

]T

with transmit

power Pt = ||xm,t (θt) ||22 satisfying the average power

constraint
∑T

t=1 Pt ≤ T P̄ , for m ∈ [M]. Accordingly, scaling

factor
√
αm,t is given by

αm,t =
Pt

‖g̃m (θt)‖22 + 1
, for m ∈ [M]. (9)

Since ‖g̃m (θt)‖22 may vary across workers, so can the scaling

factor
√
αm,t. Accordingly, at iteration t, worker m dedicates

one channel use to provide the value of
√
αm,t to the PS

along with its scaled low-dimensional gradient vector g̃m (θt),
m ∈ [M]. The received vector at the PS is given by

y (θt) =

[

As−1

∑M
m=1

√
αm,tg

sp
m (θt)

∑M
m=1 αm,t

]

+ zt. (10)

We define, for i ∈ [s],

yi (θt) , [y1 (θt) · · · yi (θt)]
T , (11a)

zi
t , [zt,1 · · · zt,i]T , (11b)

where yj (θt) and zt,j denote the j-th element of y (θt) and

zt, respectively. Thus, we have

ys−1 (θt) = As−1

∑M

m=1

√
αm,tg

sp
m (θt) + zs−1

t , (12a)

ys (θt) =
∑M

m=1
αm,t + zt,s. (12b)

Note that the goal is to recover 1
M

∑M
m=1 g

sp
m (θt) at the PS,

while, from ys−1 (θt) the PS observes a noisy version of
∑M

m=1

√
αm,tg

sp
m (θt) projected to a low-dimensional vector

through As−1. According to (9), each value of ‖g̃m (θt)‖22
results in a distinct scaling factor αm,t. However, since the

gradient estimates follow identical distributions, for large

enough d and |Bm|, the values of ‖g̃m (θt)‖22 , ∀m ∈ [M],
are not going to be too different across workers. As a result,

scaling factors
√
αm,t, ∀m ∈ [M], are not going to be very

different either. Accordingly, to diminish the effect of scaled

gradient vectors, we choose to scale down the received vector

ys−1 (θt) at the PS with the sum of the scaling factors, i.e.,
∑M

m=1

√
αm,t, whose noisy version is received by the PS as

ys (θt). The resulting scaled vector at the PS is given by

1

ys (θt)
ys−1 (θt) = As−1

∑M

m=1

√
αm,t

∑M
i=1

√
αi,t + zt,s

gsp
m (θt)

+
1

∑M

i=1

√
αi,t + zt,s

zs−1
t . (13)

The PS then tries to recover 1
M

∑M

m=1 g
sp
m (θt) from

ys−1 (θt) /ys (θt), and it estimates ĝUPA (θt) using the AMP

algorithm. The estimate ĝUPA (θt) is then used to update the

model parameter as θt+1 = θt − ηt · ĝUPA (θt).

V. EXPERIMENTS

Here we evaluate the performances of the A-DSGD and

D-DSGD algorithms for image classification. We run experi-

ments on MNIST dataset [15] with N = 60000 training and

10000 test samples, and train a single layer neural network

with d = 7850 parameters utilizing ADAM optimizer [16]. A

random set of ⌊N/M⌋ data samples is assigned to each worker,

ans we assume σ2 = 1. The performance is measured as the

accuracy with respect to the training dataset versus iteration

count t, and the final accuracy with respect to the test samples,

i.e., test accuracy, is also provided based on the parameter

vector obtained after 50 training iterations.

In Fig. 1, we compare the performance of the A-DSGD

algorithm with both EPA and UPA with that of D-DSGD

algorithm for two different values of average transmit power

P̄1 = 127 and P̄2 = 422. Since we need rt ≤ Rt for the

digital approach, we set number of channel uses s and P̄ to

relatively high values and number of workers M to a relatively

small value to make sure that qt ≥ 1, ∀t. Accordingly,

we consider M = 25 workers and s = d/2 channel uses.

0 10 20 30 40 50
Iteration co nt, t

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
c
ra
cy

A-DSGD, EPA, ̄P̄ ̄P1
A-DSGD, UPA, ̄P̄ ̄P1
D-DSGD, distinct Pt, ̄P̄ ̄P2
D-DSGD, Pt̄ ̄P, ̄P̄ ̄P2
D-DSGD, distinct Pt, ̄P̄ ̄P1
D-DSGD, Pt̄ ̄P, ̄P̄ ̄P1

Fig. 1: Performance of the A-DSGD and D-DSGD algorithms

for different P̄ values.

We set a fixed ratio k = ⌊s/2⌋ for sparsification. The test

accuracy of different DSGD algorithms is given in Table I.

We observe that the analog approach significantly outperforms

the standard digital approach of separating computation from

communication. We did not include the performance of the

A-DSGD algorithm for P̄ = P̄2 since it is very close to the

one with P̄ = P̄1 for both power allocation schemes. Bearing

this in mind, we observe that, unlike the A-DSGD scheme, the

performance of D-DSGD significantly deteriorates by reducing

P̄ for both power allocation schemes under consideration.

Thus, analog computation approach is particularly attractive

for learning across low-power devices as it allows them to

align their limited transmit powers to dominate the noise term.

For the UPA, we set Pt = P̄ , ∀t, and for the EPA, we set

αt = 100 + 10t/3 and αt = 300 + 10t resulting in P̄ = P̄1

and P̄ = P̄2, respectively. We consider two different power

allocation schemes with D-DSGD: in the first scheme, we set

Pt = P̄ , ∀t, and in the second, we let Pt to be the same as

the sum-power consumed by the workers at iteration t of the

A-DSGD algorithm with EPA. Observe that, for the D-DSGD

algorithm, letting Pt vary over time improves the performance.

In Fig. 2, we compare the performance of A-DSGD with

UPA and D-DSGD, where, for both algorithms, we set Pt =
P̄ = 1100, ∀t, for different M and s values. We consider two

different values of M ∈ {20, 40}, and two different values of

s ∈ {0.3d, 0.5d}, and a fixed ratio k = ⌊s/2⌋. We present the

final test accuracy of different DSGD algorithms in Table II.

As it can be seen, for s = 0.3d, increasing M by a factor

of 2 deteriorates the performance of D-DSGD. Accordingly,

the performance of D-DSGD algorithm is vulnerable to a

relatively small increase in M , as well as a decrease in the

average transmit power P̄ , whose effect was observed in Fig.

1. We can conclude that the digital scheme prefers to have

a smaller number of workers, which means that it cannot

harvest the computation power of many edge devices. On

the other hand, we observe that the performance of A-DSGD

improves with M , and is significantly superior compared to

TABLE I: Final test accuracy for various DSGD schemes considered in Fig. 1

D-DSGD

Pt = P̄ , P̄ = P̄1

D-DSGD

distinct Pt, P̄ = P̄1

D-DSGD

Pt = P̄ , P̄ = P̄2

D-DSGD

distinct Pt, P̄ = P̄2

A-DSGD

UPA, P̄ = P̄1

A-DSGD

EPA, P̄ = P̄1

0.459 0.501 0.698 0.705 0.811 0.812

TABLE II: Final test accuracy for various DSGD schemes considered in Fig. 2

D-DSGD

M = 40, s = 0.3d
D-DSGD

M = 20, s = 0.3d
D-DSGD

M = 20, s = 0.5d
A-DSGD

M = 20, s = 0.3d
A-DSGD

M = 40, s = 0.3d
A-DSGD

M = 20, s = 0.5d
0.704 0.729 0.76 0.811 0.816 0.828

0 10 20 30 40 50
Iteration count, t

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

A-DSGD, UPA, M=20, s=0.5d
A-DSGD, UPA, M=40, s=0.3d
A-DSGD, UPA, M=20, s=0.3d
D-DSGD, Pt= P, M=20, s=0.5d
D-DSGD, Pt= P, M=20, s=0.3d
D-DSGD, Pt= P, M=40, s=0.3d

Fig. 2: Performance of the A-DSGD and D-DSGD algorithms

for different (M, s) pairs.

D-DSGD, and the improvement increases remarkably with M .

We further observe that reducing the available channel uses s
from s = 0.5d to s = 0.3d degrades the performance of the

D-DSGD algorithm considerably, whereas the sensitivity of

A-DSGD to channel bandwidth is much weaker.

In the longer version of the paper [17], we have included

more numerical results.

VI. CONCLUSIONS

We have studied distributed machine learning at the wireless

edge, where M workers aim to minimize a loss function by

performing DSGD with the help of a remote PS. Workers with

limited datasets communicate with the PS over a MAC. PS

updates the parameter vector, and shares it with the workers

through a noiseless shared link. We consider both a digital

approach (D-DSGD) that separates computation and commu-

nication, and an analog approach (A-DSGD) that exploits the

superposition property of the wireless channel to have the

average gradient at the PS computed over-the-air. In the D-

DSGD scheme, the amount of information bits sent by each

worker at each iteration can be adaptively adjusted with respect

to the average transmit power constraint P̄ . In the A-DSGD

scheme, we have proposed gradient sparsification followed by

compressive sensing employing the same measurement matrix

at all the workers in order to reduce the typically very large

parameter vector dimension to the limited channel bandwidth.

This analog approach allows a much more efficient use of the

limited channel bandwidth, and benefits from the beamforming

effect thanks to the identical distributions of the gradients

across the workers. Numerical results have shown significant

improvement in performance with the analog approach, par-

ticularly in the low-power and low-bandwidth regimes. We

have also observed that, unlike D-DSGD, the performance of

A-DSGD improves with the number of workers. Future work

will include extending this framework to fading channels, and

incorporating the computation time and energy.

REFERENCES

[1] D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic,
“QSGD: Communication-efficient SGD via randomized quantization and
encoding,” in NIPS, Long Beach, CA, Dec. 2017, pp. 1709–1720.

[2] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv:1712.01887v2 [cs.CV], Feb. 2018.

[3] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in INTERSPEECH, Singapore, Sep. 2014, pp. 1058–1062.

[4] M. M. Amiri and D. Gündüz, “Computation scheduling for distributed
machine learning with straggling workers,” arXiv:1810.09992 [cs.DC].

[5] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in ICML, Jul. 2015.

[6] N. Strom, “Scalable distributed DNN training using commodity gpu
cloud computing,” in INTERSPEECH, 2015.

[7] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” arXiv:1704.05021v2 [cs.CL], Jul. 2017.

[8] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse binary
compression: Towards distributed deep learning with minimal commu-
nication,” arXiv:1805.08768v1 [cs.LG], May 2018.

[9] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. AISTATS, 2017.

[10] T. Lin, S. U. Stich, and M. Jaggi, “Don’t use large mini-batches, use
local SGD,” arXiv:1808.07217v3 [cs.LG], Oct. 2018.

[11] G. Zhu, Y. Wang, and K. Huang, “Low-latency broadband analog
aggregation for federated edge learning,” arXiv:1812.11494 [cs.IT].

[12] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” arXiv:1812.11750 [cs.LG], Jan. 2019.

[13] M. Goldenbaum and S. Stanczak, “Robust analog function computation
via wireless multiple-access channels,” IEEE Trans. Commun., vol. 61,
no. 9, pp. 3863–3877, Sep. 2013.

[14] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-
rithms for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106,
no. 45, pp. 18 914–18 919, Nov. 2009.

[15] Y. LeCun, C. Cortes, and C. Burges, “The MNIST database of hand-
written digits,” http://yann.lecun.com/exdb/mnist/, 1998.

[16] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980v9 [cs.LG], Jan. 2017.

[17] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” arXiv:1901.00844

[cs.DC], Jan. 2019.

