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Abstract

Guaranteeing perfect data privacy seems to be incom-
patible with the economical and scientific opportunities
provided by extensive data collection and processing. This
paper tackles this challenge by studying how to disclose la-
tent features of data sets without compromising the privacy
of individual data samples. We leverage counter-intuitive
properties of the multivariate statistics of data samples, and
propose a technique to disclose collective properties of data
sets while keeping each data sample confidential. For a
given statistical description of the data set, we show how to
build an optimal disclosure strategy/mapping using linear
programming techniques. We provide necessary and suffi-
cient conditions that determine when our approach is feasi-
ble, and illustrate the optimal solution in some simple sce-
narios. We observe that the disclosure strategy may be in-
dependent of the latent feature in some scenarios, for which
explicit expressions for the performance are provided.

1. Introduction

The explosive developments in sensing, storage and net-
working technologies are allowing institutions to capture
and exchange massive amounts of data, providing an un-
precedented potential for important scientific and economic
opportunities. For example, neuroimaging data can nowa-
days be shared effortlessly between researchers to allow
parallel analyses, or consumer preferences can be extracted
from online activity to aid the design of new products and
services. However, recent issues related to the misuse of
user data (e.g. the well-known case of Cambridge Analyt-
ica) are raising major concerns about information privacy,
which is becoming a preeminent topic with important so-
cial, legal, and business consequences. Within this context,
a key question that motivates this work is how to satisfy
sufficient privacy requirements while still benefiting from
extensive data sharing in a digital society.

∗equal contribution

The central intuition that drives our work comes from a
key distinction between appropriate and inappropriate ex-
ploitation of user data: while the former just looks for sta-
tistical regularities, the latter is concerned about properties
of specific entries/users. This suggests that a possible ap-
proach to preserve privacy would be to extract and share
global properties of data, while keeping information about
specific samples confidential. This manuscript is an attempt
to formalize this intuition.

1.1. Scenario and related work

We consider a scenario where a user has a private data
set, denoted by X = (X1, . . . , Xn), which is correlated
with a latent variable of interest W that the user wishes to
share with an analyst. For example, X may represent mea-
surements of a patient’s vital signals, while W may be a
unique health indicator, e.g., the risk of heart attack. While
it would be desirable for the patient to share W with a re-
mote assessment unit to provide alerts in case of an emer-
gency, she may not want to share the data samples them-
selves as this could reveal unintended personal information.

We follow the framework for privacy against inference
attacks [14], [4], which proposes to disclose a variable Y
that is obtained through a mapping from the data set. In
this context, the highest privacy standard is the perfect sam-
ple privacy; that is, we would like Y to not provide any
useful information to foster statistical inference on partic-
ular samples of the data set, Xi, ∀i. This is equivalent to
considering only those mappings whereby Y and Xi be-
come statistically independent ∀i, whileW −X−Y form a
Markov chain. To quantify the quality of Y as an estimator
ofW , we consider the mutual information between the two,
I(Y ;W ). This quantity is an adequate proxy (with more at-
tractive algebraic properties) for the classification error rate
[6, 8], which is a central performance metric for many ma-
chine learning tasks.

Note that the above conditions are not equivalent to im-
posing statistical independence between the disclosed vari-
able Y and the whole data set X . In fact, if X and Y
are independent then the data-processing inequality leads to
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I(Y ;W ) ≤ I(X;Y ) = 0, implying that under this condi-
tion the analyst would be unable to receive any information
about W . At this point, it is useful to recall an intriguing
but largely underexploited feature of multivariate statistics:
variables that are pairwise independent can still be globally
interdependent [9]. Said differently, although I(Y ;X) = 0
implies I(Y ;Xi) = 0 for i = 1, . . . , n, the converse does
not hold. For example, it is well-known that if X1 and X2

are two independent fair coins, then Y = X1 ⊕ X2 (i.e.,
their exclusive OR) is independent of each of them, while
I(X1, X2;Y ) > 0 [15]. Therefore, in this case Y reveals
a collective property (whether the entries of X are equal or
not), while saying nothing about the individuals X1 or X2.

A related problem to the one considered here is the pri-
vacy funnel, in which the goal is to reveal the data set X
within a given accuracy under some utility measure, while
keeping the latent variable W as private as possible [10].
Perfect privacy in the privacy funnel setting has been stud-
ied in [5,12]. Also, various metrics for quantifying the qual-
ity of the disclosure strategy has been studied in [1, 12, 13].

1.2. Contributions

This paper presents an information disclosure technique
that guarantees perfect sample privacy, which we call “syn-
ergistic information disclosure” as the mapping carries in-
formation about the whole data set (i.e., about X), but not
about any of its constituting elements (i.e.,Xi’s). We derive
necessary and sufficient conditions that determine when in-
formation about a latent feature can be disclosed under per-
fect sample privacy, and present a simple upper bound on
the performance of the best-case scenario. Moreover, we
show that the optimal disclosure mapping can be build via
linear programming (LP). We illustrate these findings on a
simple scenario where the data set X consists of two binary
samples, for which we provide an explicit expression for the
performance of the optimal synergistic disclosure mapping.

The rest of the paper is structured as follows. Section 2
introduces the notion of perfect sample privacy, and devel-
ops the conditions and bounds that characterize the private
disclosure capacity. Subsequently, Section 3 proves that the
optimal mapping can be found through an LP, and develops
the case where the data set consists of two binary samples.
Finally, Section 4 conveys our final remarks.

2. Definition and basic properties
2.1. Notations and Preliminaries

Random variables are denoted by capital letters, their re-
alizations by lower case letters, and their alphabets/supports
by capital letters in calligraphic font. Matrices and vectors
are denoted by bold capital and bold lower case letters, re-
spectively. For two random variables X and Y , X ⊥⊥ Y
indicates that they are statistically independent. For inte-

gers m ≤ n, we define the discrete interval [m : n] ,
{m,m+ 1, . . . , n}. For an integer n ≥ 1, 1n denotes an n-
dimensional all-one column vector. For a random variable
X ∈ X , with finite |X |, the probability simplex P(X ) is
the standard (|X | − 1)-simplex given by

P(X ) =

{
v ∈ R|X |

∣∣∣∣1T|X | ·v = 1, vi ≥ 0, ∀i ∈ [1 : |X |]
}
.

To each probability mass function (pmf) on X , denoted
by pX(·) (or written simply as pX ), corresponds a proba-
bility vector pX ∈ P(X ), whose i-th element is pX(xi)
(i ∈ [1 : |X |]). Likewise, for a pair of random variables
(X,Y ) with joint pmf pX,Y , the probability vector pX|y
corresponds to the conditional pmf pX|Y (·|y),∀y ∈ Y , and
PX|Y is an |X | × |Y| matrix with columns pX|y,∀y ∈ Y .
For matrix Pm×k, the null space, rank, and nullity are
denoted by Null(P), rank(P), and nul(P), respectively,
where rank(P) + nul(P) = k.

The next lemma, which is used in the sequel, links sta-
tistical independence within a Markov chain with algebraic
properties of matrices.

Lemma 1. Let X , Y and Z be discrete random variables,
which form a Markov chain X − Y − Z. In this set-
ting, X and Z are statistically independent if and only if(
pY − pY |z

)
∈ Null(PX|Y ), ∀z ∈ Z .

Proof. X and Z are independent if and only if pX(·) =
pX|Z(·|z), or equivalently, pX = pX|z, ∀z ∈ Z . Fur-
thermore, due to the Markov chain assumption, we have
pX|z = PX|Y pY |z, ∀z ∈ Z , and in particular, pX =
PX|Y pY . Therefore, the condition pX = pX|z , ∀z ∈ Z , is
equivalent to

PX|Y
(
pY − pY |z

)
= 0, ∀z ∈ Z,

or equivalently,
(
pY − pY |z

)
∈ Null(PX|Y ), ∀z ∈ Z .

2.2. Private disclosure capacity

Consider the random variables W,X1, . . . , Xn dis-
tributed according to a given joint distribution pW,X1,...,Xn .
We focus on the case where |W|, |Xi| < ∞, ∀i ∈ [1 : n].
Let X , (X1, . . . , Xn), whose support is given by

X =

{
(x1, . . . , xn) ∈

n∏
i=1

Xi
∣∣∣∣pX(x1, . . . , xn) > 0

}
.

Define the set of admissible stochastic mappings from
the data set X to alphabet Y that satisfy perfect sample pri-
vacy as

AX =

{
pY |X

∣∣∣∣ Y ⊥⊥ Xi,∀i ∈ [1 : n]

}
. (1)



The private disclosure capacity for a latent variable W un-
der perfect sample privacy is then defined as

Is , max
pY |X∈AX :
W−X−Y

I(W ;Y ). (2)

The optimal mapping that maximizes the above expression
is denoted by p∗Y |X .

Following the literature on information-theoretic pri-
vacy, this approach assumes that an adequate statistical de-
scription of the database and the latent feature is available,
and that adversaries do not posses additional information
that could aid an inference attack [16]. Statistical descrip-
tions of data are commonly estimated using analytic or nu-
merical methods from the Bayesian or machine learning lit-
erature [3, 7]. However, one should keep in mind that esti-
mation errors (e.g. due to insufficient training data) could
potentially compromise the guarantees of perfect privacy.

2.3. Fundamental properties

We first investigate the conditions under which employ-
ing a synergistic disclosure strategy is feasible. Proposi-
tion 1 answers this by characterizing the necessary and suf-
ficient conditions for having Is > 0. Define matrix P as

P ,

PX1|X
...

PXn|X


G×|X|

, (3)

where G ,
∑n
i=1 |Xi| (note that in general |X | 6=

Πn
i=1|Xi|). Note that P is a binary matrix, as Xi’s are de-

terministic functions of X . Examples of matrix P are pre-
sented in Section 3.

Proposition 1. We have Is > 0 if and only if nul(P) 6= 0
and Null(P) 6⊂ Null(PW |X).

Proof. As a preliminary remark, note that Xi − X − Y
form a Markov chain for any index i ∈ [1 : n]. There-
fore, from Lemma 1, Xi and Y are independent if and only
if (pX−pX|y) ∈ Null(PXi|X),∀y ∈ Y . This results in the
following equivalence:

Xi ⊥⊥ Y, ∀i ∈ [1 : n]⇐⇒ (pX−pX|y) ∈ Null(P),∀y ∈ Y,
(4)

where matrix P is defined in (3).
For the first direction in the statement of the propo-

sition, we proceed as follows. If Is > 0, we have
W 6⊥⊥ Y . Therefore, there exist y1, y2 ∈ Y , where
y1 6= y2, such that pW |y1 6= pW |y2 , and hence, pX|y1 6=
pX|y2 . Since Xi ⊥⊥ Y, ∀i ∈ [1 : n], (4) implies that
(pX − pX|y1), (pX − pX|y2) ∈ Null(P), which results
in nul(P) 6= 0. Also, Null(P) 6⊂ Null(PW |X), since oth-
erwise PW |X(pX − pX|y1) = PW |X(pX − pX|y2) = 0,
which implies pW |y1 = pW |y2 leading to a contradiction.

The second direction in the statement of the Proposi-
tion is proved as follows. If nul(P) 6= 0 and Null(P) 6⊂
Null(PW |X), there exists a non-zero vector v ∈ Null(P),
such that v 6∈ Null(PW |X). Let Y = {y1, y2}, Y ∼
Bern( 1

2 ), and for sufficiently small ε > 0, let pX|y1 = pX+
εv and pX|y2 = pX − εv. This construction is possible as
pX lies in the interior of P(X ), and 1T|X | ·v = 1TG ·Pv = 0,
which follows from 1T|X | = 1TG ·P, and v ∈ Null(P). Ac-
cordingly, since pX − pX|yi ∈ Null(P), i = 1, 2, from
(4), we have Xi ⊥⊥ Y, ∀i ∈ [1 : n]. Also, in the con-
struction of the pair (X,Y ), pX is preserved, as speci-
fied in pW,X , therefore, we have W − X − Y . Finally,
since v 6∈ Null(PW |X), from pW |y = PW |XpX|y , we get
pW |y1 6= pW |y2 , or equivalently, Is > 0.

In what follows, we propose an upper bound on Is, which
is tight as shown in Example 2.

Proposition 2. The following upper bound holds for Is:

Is ≤ min
j∈{1,...,n}

I(W ;X−j |Xj), (5)

where X−j , {X1, . . . , Xn}\Xj .

Proof. Let j ∈ [1 : n] be an arbitrary index. Then,

I(W ;Y ) = I(W ;X)− I(W ;X|Y ) (6)
= I(W ;X−j |Xj) + I(W ;Xj)

− I(W ;Xj |Y )− I(W ;X−j |Xj , Y )

= I(W ;X−j |Xj) + I(W ;Xj)

− I(W,Y ;Xj)− I(W ;X−j |Xj , Y ) (7)
= I(W ;X−j |Xj)− I(Y ;Xj |W )

− I(W ;X−j |Xj , Y )

≤ I(W ;X−j |Xj), (8)

where (6) follows from the Markov chain W −X − Y , and
(7) from the independence of Xj and Y . Since j is chosen
arbitrarily, (8) holds for all j ∈ [1 : n], resulting in (5).

3. Finding the optimal mapping
3.1. General solution

This section presents the main result of this work, which
provides a practical method for computing the optimal la-
tent feature disclosure strategy/mapping under perfect sam-
ple privacy.

Theorem 1. The maximizer in (2), i.e., the optimal mapping
p∗Y |X , can be obtained as the solution to a standard LP.

Proof. In what follows, we assume that nul(P) 6= 0, since
otherwise we have from Proposition 1 that Is = 0, making
the result trivial.



The singular value decomposition (SVD) of P gives
P = UΣVT , where the matrix of right eigenvectors is

V =
[
v1 v2 . . . v|X |

]
|X |×|X| . (9)

By assuming (without loss of generality) that the singular
values are arranged in a descending order, only the first
rank(P) singular values are strictly positive. Therefore, it
is direct to check that the null space of P is given by

Null(P) = Span{vrank(P)+1, . . . ,v|X |}. (10)

Let A ,
[
v1 v2 . . . vrank(P)

]T
, which has the use-

ful property Null(P) = Null(A). Hence, from (4), having
Xi ⊥⊥ Y, ∀i ∈ [1 : n] is equivalent to

A(pX − pX|y) = 0, ∀y ∈ Y. (11)

Let S be defined as

S ,

{
t ∈ R|X |

∣∣∣∣At = ApX , t ≥ 0

}
, (12)

which is a convex polytope in P(X ). If W − X − Y
with pY |X ∈ AX , from (11), one can see that pX|y ∈
S, ∀y ∈ Y . On the other hand, for any pX,Y for which
pX|y ∈ S, ∀y ∈ Y , it is guaranteed that if one uses
the corresponding mapping pY |X to build a Markov chain
W −X−Y , then the condition Xi ⊥⊥ Y,∀i ∈ [1 : n] holds.
Hence, we have proven the following equivalence:

W −X − Y, pY |X ∈ AX ⇐⇒ pX|y ∈ S, ∀y ∈ Y. (13)

This leads us to

Is =H(W )− min
pY |X∈AX :
W−X−Y

H(W |Y ) (14)

=H(W )− min
pY (·),pX|y∈S, ∀y∈Y:∑

y pY (y)pX|y=pX

∑
y

pY (y)H
(
PW |XpX|y

)
,

(15)

where, since the minimization is over pX|y rather than
pY |X , the constraint

∑
y pY (y)pX|y = pX has been added

to preserve the distribution pX specified in pW,X .
Next, we present a result that allows us to further sim-

plify the optimization domain in (15).

Proposition 3. For minimizing H(W |Y ) over pX|y ∈ S in
(15), it is sufficient to consider only the extreme points of S.

Proof. Let p be an arbitrary point in S. p can be written
as1 p =

∑|X |
i=1 αipi, where αi ≥ 0 (∀i ∈ [1 : |X |]) and

1The set S is an at most (|X |− 1)-dimensional convex subset of R|X|.
Therefore, any point in S can be written as a convex combination of at most
|X | extreme points of S.
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Figure 1: Example 1, where X1 and X2 are observations of
W through a BSC(α) and a BEC(e), respectively.

∑|X |
i=1 αi = 1; points pi (∀i ∈ [1 : |X |]) belong to the ex-

treme points of S and pi 6= pj (i 6= j). From the concavity
of entropy, we have

H(PW |Xp) ≥
|X |∑
i=1

αiH(PW |Xpi). (16)

Therefore, from (16), it is sufficient to consider only the
extreme points of S in the minimization.

Using Proposition 3, the problem in (15) can be solved
in two steps: a first step in which the extreme points of set
S are identified, followed by a second step where proper
weights over these extreme points are obtained to minimize
the objective function.

For the first step, we first note that the extreme points of
S are the basic feasible solutions (see [2], [11]) of it, i.e., the
basic feasible solutions of the set{

t ∈ R|X |
∣∣∣∣At = b , t ≥ 0

}
,

where b = ApX . The procedure of finding the extreme
points of S is as follows. Pick a set B ⊂ [1 : |X |] of indices
that correspond to rank(P) linearly independent columns of
matrix A. Let AB be a rank(P) × rank(P) matrix whose
columns are the columns of A indexed by the indices in
B. Also, for any x ∈ S, let x̃ =

[
xTB xTN

]T
, where xB

and xN are rank(P)-dimensional and nul(P)-dimensional
vectors whose elements are the elements of x indexed by
the indices in B and [1 : |X |]\B, respectively.

For any basic feasible solution x∗, there exists a set
B ⊂ [1 : |X |] of indices that correspond to a set of lin-
early independent columns of A, such that the correspond-
ing vector of x∗, i.e. x̃∗ =

[
x∗B

T x∗N
T
]T

, satisfies the
following

x∗N = 0, x∗B = A−1B b, x∗B ≥ 0.

On the other hand, for any set B ⊂ [1 : |X |] of indices that
correspond to a set of linearly independent columns of A,



if A−1B b ≥ 0, then
[
A−1B b

0

]
is the corresponding vector of

a basic feasible solution. Hence, the extreme points of S
are obtained as mentioned above, and their number is upper
bounded by

( |X |
rank(P)

)
.

For the second step, assume that the extreme points of S,
found in the first step, are denoted by p1,p2, . . . ,pK . Then
(15) is equivalent to

H(W )−min
u≥0

[
H(PW |Xp1) . . . H(PW |XpK)

]
· u

s.t.
[
p1 p2 . . . pK

]
u = pX , (17)

where u is a K-dimensional weight vector, and it can be
verified that the constraint 1TK · u = 1 is satisfied if the
constraint in (17) is met. The problem in (17) is a standard
LP.

The following example clarifies the optimization proce-
dure in the proof of Theorem 1.

Example 1. Let W ∼ Bern( 1
2 ) be the random variable

that the user wishes to share with an analyst, and assume
that the user has data samples denoted by X1 and X2,
which are, respectively, the observations of W through a
binary symmetric channel with crossover probability α, i.e.,
BSC(α), and a binary erasure channel with erasure proba-
bility e, i.e., BEC(e). Figure 1 provides an illustrative rep-
resentation of this setting. Set α = 2

3 , and e = 1
2 , which

results in pX = 1
12

[
1 3 2 2 3 1

]T
, and

PW |X =

[
1 2

3 0 1 1
3 0

0 1
3 1 0 2

3 1

]
. (18)

Matrix P in (3) is given by

P =


1 1 1 0 0 0
0 0 0 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 ,
and by obtaining an SVD of P, we obtain matrix A as

A =
1

104

 4082 4082 4082 4082 4082 4082
4082 4082 4082 −4082 −4082 −4082
−4677 5270 −593 −4677 5270 −593
−3385 −2385 5743 −3385 −2358 5743

 .
There are at most 15 ways of choosing 4 linearly indepen-
dent columns of A. From xB = A−1B ApX , and the condi-
tion xB ≥ 0, we obtain the extreme points of S as

p1 =



1
4
0
1
4
0
1
2
0

 ,p2 =


0
1
2
0
1
4
0
1
4

 ,p3 =



1
4
1
4
0
0
1
4
1
4

 ,p4 =


0
1
4
1
4
1
4
1
4
0

 .

Finally, the LP is given by

min
u≥0

[
H(PW |Xp1) . . . H(PW |Xp4)

]
· u = 0.9866 bits

s.t.
[
p1 p2 p3 p4

]
u = pX , (19)

where u∗ =
[
1
3

1
3 0 1

3

]T
. Therefore, the maximum

information that can be shared with an analyst about W ,
while preserving the privacy of the observations, is Is =
0.0134 bits, which is achieved by the following synergistic
disclosure strategy

P∗Y |X =

1 0 1
2 0 2

3 0
0 2

3 0 1
2 0 1

0 1
3

1
2

1
2

1
3 0

 . (20)

3.2. Two binary observations

To illustrate the above results, in what follows, we
consider the case where two binary (noisy) observations
X1, X2 of an underlying phenomenon W are available. As
before, the goal is to maximally inform an analyst aboutW ,
while preserving the privacy of both observations.

Consider the tuple (W,X1, X2) distributed according to
a given joint distribution pW,X1,X2

= pX1,X2
pW |X1,X2

.
In this setting, no condition is imposed on the condi-
tional pW |X1,X2

. Without loss of generality, pX1,X2 is
parametrized as

pX =
[
α− r r (β − α) + r (1− β)− r

]T
, (21)

where α, β ∈ (0, 1) are degrees of freedom that determine
the marginals , i.e., X1 ∼ Bern(α) and X2Bern(β), while
r ∈ [0, R] with R , min{α, 1−β} determines the interde-
pendency between X1 and X2. In particular, X1 ⊥⊥ X2, if
and only if r = α(1− β).

If r ∈ (0, R)2, we have X =
{(0, 0), (0, 1), (1, 0), (1, 1)}, and correspondingly one
finds that

P =


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

 .
A direct calculation shows that the Null(P) is spanned by
the single vector n =

[
1 −1 −1 1

]T
. As the null

space of P is one-dimensional, one can check that S has
only two extreme points given by a1 = pX − (R− r)n and
a2 = pX + rn (see Figure 2). Note that the original dis-
tribution can be recovered as a convex combination of these
two extreme points, i.e.,

pX =
r

R
a1 +

R− r
R

a2. (22)

2For the uninteresting cases where r ∈ {0, R}, we have |X | < 4 and
nul(P) = 0. Consequently, from Proposition 1, we get Is = 0.
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Figure 2: Diagram of private information disclosure for two
tuples (W1, X1, X2) and (W2, X1, X2), where (X1, X2)
are binary and distributed according to pX as given in (21),
and pW1|X 6= pW1|X . While their private disclosure capaci-
ties, i.e., Iis, i = 1, 2, are different, their optimal synergistic
disclosure strategies are the same, as regardless of the tu-
ples, we have pX = r

Ra1 + R−r
R a2.

Therefore, using (15), Is can be computed as

Is = H(W )− r

R
H(PW |Xa1)− R− r

R
H(PW |Xa2)

= H(pW )− r

R
H
(
pW − (R− r)PW |Xn

)
− R− r

R
H
(
pW + rPW |Xn

)
. (23)

From the last expression, it is direct to verify that, Is > 0
if and only if n 6∈ Null(PW |X). Finally, the optimal map-
ping P∗Y |X is derived as follows. Considering (22), let Y ,
{y1, y2}, and fix pY (y1) = r

R and pX|yi = ai, i = 1, 2.
Using these, a direct calculation results in the following op-
timal mapping

P∗Y |X =

[
r(α−R)
R(α−r) 1 r(β−α+R)

R(β−α+r)
r(1−β−R)
R(1−β−r)

α(R−r)
R(α−r) 0 (β−α)(R−r)

R(β−α+r)
(1−β)(R−r)
R(1−β−r)

]
.

(24)
Although the private disclosure capacity in (23) depends
on the choice of PW |X , the optimal synergistic disclosure
strategy in (24) is only a functional of pX (or equivalently,
α, β, r), and does not depend on PW |X . This observation
is formalized in the following proposition.

Proposition 4. For the tuple (W,X1, X2), in whichX1 and
X2 are binary latent variables, the optimal synergistic dis-
closure strategy, i.e., P∗Y |X , does not depend on pW |X1,X2

.

Proof. This follows from the fact that, in this setting, S has
only two extreme points, and the condition of preserving
pX suffices to define the probability masses of these ex-
treme points. Hence, the LP is solved already by its con-
straint. This is an example of the general case where there

is only one way of writing an interior point of a set as a
convex combination of its extreme points.

This result implies that the same strategy can provide an
optimal service in addressing any possible query over the
data, as given by a specific pW |X . In other words, opti-
mal processing of the data can be done in the absence of
knowledge about the query. However, pW |X plays a role in
determining the effectiveness of the disclosure strategy (i.e.
the magnitude of Is), as illustrated in Figure 2.

We finish this section with an example.

Example 2. Let us consider pX as given by (21) with α =
β = 1

2 and r = α(1 − β) = 1
4 , which corresponds to

the case where X1 and X2 are two independent fair coins.
From (24), one finds that

P∗Y |X =

[
0 1 1 0
1 0 0 1

]
, (25)

which proves that the optimal mapping for this case corre-
sponds to Y = X1 ⊕ X2. This, combined with Proposi-
tion 4, implies that Is ≤ H(Y ) = 1.

As the optimal Y is independent of pW |X , one can see
that the case W = X1 ⊕ X2, attains the maximal value
Is = 1. Moreover, a direct calculation shows that for this
case I(W ;X1|X2) = I(W ;X2|X1) = 1, showing that the
upper bound provided by Proposition 3 is attained.

4. Conclusions
This paper explored the idea of disclosing collective

properties of a data set while ensuring element-wise confi-
dentiality, which can be achieved by processing the data set
with an adequate synergistic disclosure mapping. For the
case of discrete variables that follow a known distribution,
we have provided a method to build an optimal mapping
that maximizes the mutual information with respect to a la-
tent variable of interest. Moreover, we presented a tight up-
per bound for the optimal performance, and provided nec-
essary and sufficient conditions that determine when this
approach is effective. We have also illustrated our ideas on
simple scenarios, and left the study of large data sets for a
future extension of this work.
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