
Progressive Transmission of High-Dimensional Data
Features for Inference at the Network Edge

Qiao Lan1, Qunsong Zeng1, Petar Popovski2, Deniz Gündüz3, and Kaibin Huang1
1Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

2Department of Electronic Systems, Aalborg University, Aalborg, Denmark
3Department of Electrical and Electronic Engineering, Imperial College London, London, UK
Email: {qlan, qszeng, huangkb}@eee.hku.hk, petarp@es.aau.dk, d.gunduz@imperial.ac.uk

Abstract—Uploading high-dimensional features from edge de-
vices to an edge server over wireless channels creates a commu-
nication bottleneck for edge inference. To tackle the challenge,
we propose the progressive feature transmission (ProgressFTX)
protocol, which minimizes the overhead by progressively trans-
mitting features until a target confidence level is reached. The
control of the protocol to accelerate inference is designed with
two key operations. The first, importance-aware feature selection,
guides the server to select the most discriminative feature
dimensions. The second is transmission-termination control such
that the feature transmission is stopped when the incremental
uncertainty reduction by further transmission is outweighed by
its communication cost. The indices of the selected features and
transmission decision are fed back to the device in each slot.
The sub-optimal policy is obtained for classification using a
convolutional neural network. Experimental results on a real-
world dataset shows that ProgressFTX can substantially reduce
the communication latency compared to conventional feature
pruning and random feature transmission.

Index Terms—Edge computing, edge AI, progressive transm-
sision.

I. INTRODUCTION

Recent years have witnessed the extensive deployment of
artificial intelligence (AI) technologies at the network edge
to gain fast access to and processing of mobile data. This
gives rise to two active research challenges: (1) edge learning,
where AI models are trained via distributed machine learning;
and (2) edge inference, which is the theme of this work
and deals with operating of such models at edge servers to
provide inference services [1], [2]. To reduce communication
overhead and protect data privacy, the state-of-the-art edge
inference algorithms build upon an architecture termed split
inference, in which the model is partitioned into device and
server sub-models [3]. Using the device sub-model, an edge
device extracts features from a raw data sample and uploads
them to a server, which then uses these features to compute an
inference result and sends it back to the device. However, it is
challenging to upload high-dimensional features over resource-
constrained wireless channels. To improve the communication
efficiency, we propose and optimize a simple protocol, termed
progressive feature transmission (ProgressFTX).

This work was partly supported by the Villum Investigator Grant “WATER”
from the Velux Foundation, Denmark, and partly supported by the UK EPSRC
(EP/T023600/1) under the CHIST-ERA program (CHISTERA-18-SDCDN-
001).

The current research tackling the communication bottleneck
in edge inference can be categorized into two main directions:
joint source-and-channel coding and feature pruning. The
key of the former is utilizing an autoencoder architecture,
consisting of an encoder for the device and an decoder for the
server sub-models, jointly trained to simultaneously perform
inference and efficient transmission [4], [5]. For the latter,
the principle is to discard features according to their various
importance levels. A series of importance evaluation methods
have been presented, including observing the effect of remov-
ing a feature on the inference performance [6], and Taylor
expansion of the error induced by pruning [7]. The proposed
ProgressFTX targets split inference and aims at achieving a
higher efficiency than these existing one-shot feature pruning
techniques by employing, in addition to importance awareness,
a stochastic control mechanism according to the channel state.

We consider the scenario in which split inference is de-
ployed for classification tasks. Based on the ProgressFTX
protocol, a device progressively transmits selected features
to improve classification accuracy, until a target accuracy is
reached or the expected communication cost becomes too
high, as informed by the server. The principle of progressive
transmission also underpins hybrid automatic repeat request
(HARQ) [8], a basic mechanism for communication reliability.
ProgressFTX substantially differs from HARQ as our protocol
is a cross-disciplinary design targeting both high classification
accuracy and low communication overhead. In addition, the
incremental redundancy in ProgressFTX refers to the use of
increasing number of features, rather than punctured versions
of the encoder output in HARQ. The HARQ operations of
punctured error control coding, combining, and error detection
are replaced with feature extraction, feature cascading, and
classification, respectively, in the context of ProgressFTX.

The contribution of this work is the design of ProgressFTX
protocol and its sub-optimal control policy. The trade-off be-
tween uncertainty reduction and communication cost increase
due to transmitting more features motivates the optimization
of ProgressFTX, which is formulated as a problem of optimal
stochastic control with the dual objective: minimizing the un-
certainty and communication cost, respectively. The problem
is solved for general convolutional neural network (CNN)
models by two practical algorithms for importance-aware



Feature Extraction Using
Device Sub-model

Transmitter

Controller
• Feature Selection
•Stopping

Classification Using
Server Sub-model

ReceiverInput Sample

Trained  Inference  Model

Split Point

Device Server

Server Sub-modelDevice Sub-model

Control
Signals Inferred Label

Features

① Transmission Decisions
② Selected Feature Indices
③ Inferred Label

{Control 
Signals

Fig. 1. An edge inference system.

feature selection and stopping control, respectively. First, we
evaluate the importance of a feature map using the gradients
of associated model parameters readily available from training.
Second, we advocate the use of a low-complexity regression
model that is trained to predict the incremental inference un-
certainty. The model with close-to-optimal performance allows
for a simple linear search to find the sub-optimal stopping
time of ProgressFTX. Experimental results demonstrate the
gain of ProgressFTX beyond conventional one-shot feature
pruning and random feature selection schemes in terms of
communication latency.

II. MODELS AND METRICS

We consider the edge inference system in Fig. 1, where
local data at an edge device are compressed into features and
sent to a server for remote inference on a trained model.
A. CNN Classification Model

A CNN model comprises multiple convolutional (CONV)
layers followed by multiple fully-connected (FC) layers. To
implement split inference, the model is divided into device
and server sub-models, which are represented by functions
fd(·) and fs(·), respectively. Following existing designs [3],
[6], the splitting point is chosen right after a CONV layer.
Let N denote the number of CONV filters in the last layer
of fd(·), each of which outputs a feature map with height Lh

and width Lw. The set of all feature-map indices is denoted
as W = {1, 2, ..., N}. The tensor of all feature maps from an
arbitrary input sample is denoted as X 2 RN⇥Lh⇥Lw , and the
n-th map is X(n). Let Xk denote the tensor of cumulative
feature maps received by the server by slot k, and Wk is the
corresponding index set of feature maps. Then, Xk can be
related to X by

Xk(n) =

(
X(n), n 2 Wk,

0, otherwise.
(1)

In slot k, the server sub-model can compute the posteriors
Pr(`|Xk) for the input Xk via the forward propagation [1].
Then, the label ˆ̀ is estimated by posterior maximization:
ˆ̀= argmax` Pr(`|Xk). As a metric of inference performance,
inference uncertainty is measured using the entropy of pos-
teriors commonly adopted for deep neural network (DNN)
classifiers [9]. Given the input Xk, the metric, denoted as
H (Xk), is given as

H(Xk) , �
LX

`=1

Pr(`|Xk) log Pr(`|Xk). (2)

InitializationInitialization

Feature Selection
Stopping ControlSignaling (Transmit-new-features)

Feature Transmission

Signaling (Stop)

Termination
Server Inference

Feature Selection
Stopping Control

Connection Establishment

PCA Feature Space

Fig. 2. Illustration of the ProgressFTX protocol.

B. Communication Model
Consider uplink transmission of feature maps for remote

inference at the server. Each feature map is quantized with a
sufficiently high resolution of Q bits such that quantization
errors are negligible. The basic unit of transmitted data is a
feature map, which is a Lh ⇥ Lw matrix. The time of the
communication channel is divided into slots, each spanning
T seconds. The device is allocated a narrow-band channel
with the bandwidth denoted as B and the gain in slot k as
gk. We consider a Gaussian channel, where gk = g0 for
all k and is known to both the transmitter and receiver. The
transmit signal-to-noise ratio (SNR) is fixed as ⇢ and the rate is
matched to the channel as R0 = B log2(1+⇢g0). Accordingly,
the transmission rate (in feature-maps/slot) for a slot can be
written as Y0 = b R0T

QLhLw
c.

III. PROGRESSFTX PROTOCOL AND CONTROL PROBLEM

A. ProgressFTX Protocol
The ProgressFTX protocol implements a time window of

continuous progressive feature transmission of a single data
sample. If the remote inference fails to achieve the target
accuracy, the task is declared a failure for a latency sensitive
application (e.g., autonomous driving) or otherwise another
instance of progressive transmission may be attempted after
some random delay. The steps in the ProgressFTX protocol
are illustrated in Fig. 2 and described as follows.

1) Feature selection: At the beginning of a slot intended
for feature transmission, the server selects the (indices
of) feature maps and informs the device to transmit the
corresponding features. The selection of feature maps
depends on their importance levels (as elaborated in
Section IV-A), which are available from the training
phase and used in the ensuing edge inference phase.
This method is data-sample independent; and hence, it
can be efficiently implemented at the server which does
not have access to the samples. Specifically, the server
records received feature maps in Xk and their indices
in Wk ✓ W . The indices of selected features maps
are stored in Sk, where Sk ✓ W \ Wk. A subset Sk

satisfying this constraint is termed an admissible subset.
Moreover, the number of features to be transmitted, |Sk|,
is limited by the number of untransmitted features and
the transmission rate: |Sk| = min{N � |Wk|, Y0}.

2) Stopping control: The number of features of a particular
sample needed for remote classification to meet the



accuracy requirement is sample-dependent. Neither the
device nor the server has prior knowledge of this number
since each has access to either the sample or the model
but not both. Online stopping control aims at minimizing
the number of transmitted features under the said re-
quirement. Its procedure is described as follows while its
optimization problem is formulated in Section III-B and
solved in Section IV-B. Let bk indicate the server’s de-
cision on whether the device should transmit features in
slot k (i.e., bk = 1), or stop the progressive transmission
(i.e., bk = 0). The decision is made using a regression
model for uncertainty prediction (see Section IV-B). If
the decision is to transmit, proceed to the next step;
otherwise, go to Step 6.

3) Feedback: The decisions on feature selection and stop-
ping control are communicated to the device by feed-
back: (a) If bk = 1, the feedback contains a transmit-
new-features signal and the indices of the features in Sk

that the server wants the device to transmit in the current
slot. (b) If the server decides to stop the transmission
(i.e., bk = 0), a stop signal is fed back to instruct the
device to terminate feature transmission.

4) Feature transmission: Upon receiving a transmit-new-
features signal with indices Sk, the device transmits the
incremental feature tensor comprising selected features:

�Xk =
⇥
X(n1),X(n2), ...,X(n|Sk|)

⇤T
, (3)

where n1, ..., n|Sk| are indices in Sk. At the end of
slot-k, the server updates the set of received features
Wk+1 = Wk

S
Sk and the partial feature tensor

Xk+1 = fa (Xk, �Xk), where the assemble operator
fa works as follows. For n 2 Wk, fa copies the already
received feature maps from Xk as Xk+1(n) = Xk(n);
for n 2 Sk, it retrieves the newly received feature maps
as Xk as Xk+1(n) = �Xk(n0) where n

0 is index of the
element in the sequence [n1, n2, ..., n|Sk|] that equals to
n; Xk+1(n) = 0 otherwise.

5) Server inference: The server infers an estimated label ˆ̀

and its uncertainty level using the partial feature tensor
Xk and a trained model as discussed in Section II-A.
Then we restart ProgressFTX for another data sample.

6) Termination: Upon receiving a stop signal, the device
terminates the process of progressive transmission. The
latest estimated label is downloaded to the device.

In summary, feature selection, stopping control, feature
transmission and uncertainty evaluation are executed sequen-
tially in each slot. The transmission is terminated at the time
when the uncertainty is evaluated to fall below the target
or uncertainty reduction is outweighed by the corresponding
communication cost.

B. Control Problem Formulation
ProgressFTX has two objectives: 1) maximize the uncer-

tainty reduction (or equivalently, improvement in inference ac-
curacy), and 2) minimize the communication cost. The optimal
stochastic control is formulated as a dynamic programming

problem as follows. We define the system state observed by
the server at the beginning of slot k as the following tuple

✓k , (Xk, Wk) . (4)

Recall that Xk represents the received partial feature tensor,
and Wk the indices of received features maps. The control
policy, denoted as ⌦, maps ✓k to the feature-selection action,
Sk, and stopping-control action, bk, ⌦ : ✓k ! (Sk, bk). The
net reward of transitioning from ✓k to ✓k+1 is the decrease in
inference uncertainty minus the communication cost, which
can be written as u(✓k, ⌦) = H (Xk) � H (Xk+1) � bkc0,

where c0 denotes the transmission cost of one slot. For sanity
check, u(✓k, ⌦) = 0 if bk = 0. The net reward for slot
k requires server’s evaluation based on transmitted features
if the control decision is proceeding transmission; and thus,
is unknown before making the decision for the slot. Hence,
the expected net reward should be considered as the utility
function. Without loss of generality, consider K slots with the
current slot set as slot 1. Then the system utility is defined as
the expectation of the sum rewards over K slots conditioned
on the system state and control policy:

U(✓1, ⌦) , E{✓k}K
k=2

"
KX

k=1

u(✓k, ⌦)

����� ✓1, ⌦

#
. (5)

The ProgressFTX control problem can be readily formulated
as the following dynamic program:

(P1)

max
⌦

U(✓1, ⌦)

s.t. bk 2 {0, 1}, k = 1, 2, ..., K,

bk+1  bk, k = 1, 2, ..., K � 1,

|Sk| = min{N � |Wk|, Y0}, k = 1, 2, ..., K,

Sk ✓ (W \ Wk) , k = 1, 2, ..., K.

The complexity of solving Problem P1 using a conventional
iterative algorithm (e.g., value iteration) is prohibitive due to
the curse of dimensionality as the state space in (5) is not only
high dimensional but also partially continuous. The difficulty
is overcome in the sequel via two practical algorithms.

IV. PROGRESSFTX FOR CNN CLASSIFIERS

Given the complex architecture of a CNN model, Progress-
FTX for a CNN classifier cannot be directly designed by an
optimization approach. To overcome the difficulty, we leverage
the following two principles, namely importance-aware feature
selection and optimal stopping, to design the ProgressFTX
control algorithms for the CNN model.

A. Importance-aware Feature Selection
Consider the feature selection step in the ProgressFTX pro-

tocol in Section III-A. We propose the use of a suitable metric
of feature importance presented in [7], which is introduced
next. Consider the parameters {wm} of the last CONV layer
of the device sub-model. Let @L

@wm
denote the m-th entry of the

gradient, i.e., the partial derivative of the learning loss function
L w.r.t. parameter wm, which is available from the last round



of model training as computed using the back-propagation
algorithm. Then its importance can be measured using the
associated reduction in learning loss from retaining wm, ap-
proximated by the following first-order Taylor expansion of the
squared loss of prediction errors [7]: Ĩ(m) =

⇣
@L

@wm
· wm

⌘2
.

The importance of the n-th feature map is defined to be the
summed importance of parameters in the n-th filter outputting
the map: g(n) =

P
wm 2 the n-th filter Ĩ(m). Since

�
@L

@wm

 

are readily available in training, the server is able to obtain
the value of {g(n)} after training fd(·) and form a lookup
table for reference during ProgressFTX control. Given {g(n)},
importance-aware feature selection for each slot is performed
by selecting Y0 most important filters, whose feature maps
will be transmitted in the slot. It should be reiterated that
the number of selected feature maps is communication-rate
dependent and may vary over slots.

B. Stopping Control Based on Uncertainty Prediction

The optimal stopping control for a CNN model is stymied
by the difficulty in finding a tractable yet accurate approxima-
tion of the expected classification uncertainty. To tackle the
challenge, we resort to an algorithmic approach in which a
regression model is trained to predict the uncertainty function
of feature maps to be transmitted in the following K slots
given the feature maps already received. One particular archi-
tecture of regression models in the literature is adopted [10].
To be able to predict the uncertainty of a future partial feature-
map tensor, both the current partial feature-map tensor and the
selected index subset are needed. Since the prediction is based
on the current partial feature maps, ProgressFTX control for
CNN models is sample-dependent. The architecture contains
concatenation of two streams of regression features extracted
from the feature-map tensor, Xk, and the index subset Sk, into
one intermediate feature map, fed into the deeper layers of the
regression model (see Fig. 3).

To train the regression model, a training dataset and a
prediction loss function need to be properly designed, given
the trained classification model and its dataset. The training
dataset on the server, denoted as D, comprises labeled samples
{Di, Hi}, each with the a tuple of Di = (X(i), S(i)) and
a scalar label Hi, i = 1, 2, ..., |D|. Consider a tensor of
all feature maps extracted by the server sub-model fd(·)
from an arbitrary sample, denoted by X. The first entry
in Di, X(i), is a tensor of arbitrary partial feature maps
drawn from X, which represents the feature maps already
received by the server. The second entry S(i) is an admissible
subset of indexes representing feature maps to be transmitted
(hence not in X(i)). Then the label Hi is the exact inference
uncertainty generated by the server sub-model fs(·) for the
input of a tensor X0

(i) comprising both feature maps in X(i)

and the feature maps indexed in S(i) drawn from X, i.e.,
Hi = �E`

h
Pr
⇣
`|X0

(i)

⌘
log Pr

⇣
`|X0

(i)

⌘i
. Next, to train the

prediction model, the loss function is designed to be the mean-
square error between the predicted result and the ground-truth.
A stochastic gradient descent (SGD) optimizer is adopted to

R
es
ha
pe

FC

C
on
ca
te
na
te

FC FC

R
es
ha
pe

FC

<latexit sha1_base64="0yByBjc+zlAlP16SUA82wVSHUrs=">AAACJ3icbVDLSsNAFJ3UV62vqks3g0Wom5KIoisp6sJlBfuAJoTJdNIOnTyYuRFKyN+48VfcCCqiS//ESVt8tB4YOJxzLnPv8WLBFZjmh1FYWFxaXimultbWNza3yts7LRUlkrImjUQkOx5RTPCQNYGDYJ1YMhJ4grW94WXut++YVDwKb2EUMycg/ZD7nBLQkls+993UVj6WGbYF86GK7YDAwPPTq8zl2Naz8C21s5+w5P0BHLrlilkzx8DzxJqSCpqi4Zaf7V5Ek4CFQAVRqmuZMTgpkcCpYFnJThSLCR2SPutqGpKAKScd35nhA630sB9J/ULAY/X3REoCpUaBp5P5xmrWy8X/vG4C/pmT8jBOgIV08pGfCAwRzkvDPS4ZBTHShFDJ9a6YDogkFHS1JV2CNXvyPGkd1ayTmnlzXKlfTOsooj20j6rIQqeojq5RAzURRffoEb2gV+PBeDLejPdJtGBMZ3bRHxifX1Tzpjs=</latexit>

fr (Di|Wr)

Fig. 3. Illustration of the architecture for regression models.

train the model, denoted as fr(·|Wr) with parameters Wr, by
minimizing the loss function:

min
Wr

1

|D|

|D|X

i=1

[fr(Di|Wr) � Hi]
2
. (6)

Given the current state ✓1 and the trained inference uncertainty
predictor fr(·|Wr), the online stopping control problem is

min
k⇤2{0,1,...,K}

fr

  
X1,

k⇤[

k=1

S?
k

!����Wr

!
+ c0k

⇤
. (7)

The sub-optimal stopping time from the current slot, namely

k
? = arg min

k⇤2{0,1,..,K}
fr

  
X1,

k⇤S
k=1

S?
k

!����Wr

!
+ c0k

⇤, can be

determined by linear search. Then the stopping decision in
the current slot is b

?
1 = min{1, k

?}. Even for a Gaussian
channel, the number of transmission slots for different samples
differ due to their requirements of feeding different numbers
of features into classifier to reach the same target confidence
level if possible.

V. PERFORMANCE EVALUATION

A. Experimental Settings

The experimental setups are designed as follows, unless
specified otherwise. Each feature is quantized at a high reso-
lution, Q = 64 bits/feature. The horizon in online scheduling
is set as K = 5 slots. We use the popular MNIST dataset
of handwritten digits for training and testing the well-known
CNN model LeNet as in [7]. The Gaussian channel has a
bandwidth of B = 2.6 MHz, the slot duration of T = 10
milliseconds, and the channel SNR = 4 dB. The corresponding
transmission rate is Y0 = 4 feature-maps/slot. As illustrated
in Fig. 3, the uncertainty predictor designed in Section IV
comprises two input layers. The first one reshapes an input
tensor for partial feature maps into a 512 ⇥ 1 vector. The
second one reshapes the feature selection input into a 256⇥ 1
vector, where the coefficient is 1 if the corresponding feature
map index is selected or 0 otherwise. These two vectors are
concatenated and then fed into three FC layers with 100, 40,
and 10 neurons, respectively. There is one neuron in the last
output layer providing a prediction of uncertainty. The test
mean-square error of the uncertainty predictor trained for 50
epochs is low to 0.1.

Two benchmarks are considered. The first one, termed one-
shot compression, uses the classic approach of model compres-
sion: given importance-aware feature selection, the number of
features to transmit, Y0k

?, is determined prior to transmission
such that it meets an uncertainty requirement H0. The value of



5 10 15 20 25 30
0

20

40

60

80

100

0

0.5

1

1.5

2

(a) Effect of the Number of Received Feature Maps

0 0.2 0.4 0.6 0.8 1
3.5

4

4.5

5

5.5

6

60 65 70 75 80 85 90 95 100
3.5

4

4.5

5

5.5

6

(b) Inference Uncertainty

0 0.2 0.4 0.6 0.8 1
3.5

4

4.5

5

5.5

6

60 65 70 75 80 85 90 95 100
3.5

4

4.5

5

5.5

6

(c) Inference Accuracy

Fig. 4. Effect of the number of received feature maps on CNN classification (a), and comparison of average communication latency between ProgressFTX
and benchmarks with varying target (b) inference uncertainty or (c) inference accuracy.

k
? is solved from argmink⇤ fr

⇣⇣
0,
Sk⇤

k=1 S?
k

⌘ ��Wr

⌘
� H0.

This scheme lacks transmit/stop feedback. The second one,
termed random-feature optimal stopping, modifies the sub-
optimal ProgressFTX by removing feature importance aware-
ness and instead selecting features randomly.

B. CNN Classification
To implement split inference, the split point of LeNet is

chosen to be right after the second CONV layer in the model.
As a result, the device can choose from 32 4⇥4 feature maps
for transmission to the server. Given these settings, at most
8 slots are required to transmit all maps. First, the curves
of inference performance (i.e., accuracy and uncertainty) ver-
sus the number of transmitted feature maps, selected with
importance awareness, are plotted in Fig. 4(a). Particularly,
the accuracy is observed to rapidly grow and the uncertainty
quickly reduces as this number increases. The result validates
the effectiveness of importance-aware feature selection for
shortening the communication duration given target inference
accuracy (or expected uncertainty).

We define the average communication latency of a trans-
mission scheme as the average number of transmission slots
required to meet the target inference accuracy or expected un-
certainty. The average communication latency of ProgressFTX
and two benchmarks are compared for varying target accuracy
and expected uncertainty levels in Fig. 4. ProgressFTX is
observed to outperform the benchmarks over the considered
ranges of inference uncertainty and accuracy. For instance,
given 4 transmission slots on average, ProgressFTX achieves
the uncertainty of 0.13 and accuracy of 93% which are at
least 65% lower and 6.9% higher than the benchmarks. For
the target accuracy of 93%, one can observe from Fig. 4(c)
that ProgressFTX requires on average 4 slots while one-shot
compression requires 5 slots, corresponding to 20% latency
reduction for the former.

We define the transmission probability of a feature map
as the fraction of samples whose accurate inference requires
the transmission of that feature map. For further comparison,
the transmission probabilities of different feature maps are
plotted against their importance levels in Fig. 5. One can
observe that the transmission probability is almost uniform
over unpruned/all feature dimensions for the one-shot/random-

0

0.5

1

0

0.5

1

0

0.5

1

Fig. 5. The transmission probabilities of feature maps for the case of CNN
classification and Gaussian channel with target inference accuracy of 98.5%.

feature optimal stopping scheme. This indicates their lack of
feature importance awareness. In contrast, the probabilities for
ProgressFTX are highly skewed with higher probabilities for
more important feature maps and vice versa. The skewness
arises from the importance-aware feature selection as well
as the stochastic control of transmissions which are the key
reasons for the performance gain of ProgressFTX over the
benchmark schemes.

REFERENCES

[1] M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and
H. V. Poor, “Distributed learning in wireless networks: Recent progress
and future challenges,” IEEE J. Sel. Areas Commun., vol. 39, no. 12,
pp. 3579–3605, 2021.

[2] G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, and K. Huang, “Toward
an intelligent edge: Wireless communication meets machine learning,”
IEEE Commun. Mag., vol. 58, no. 1, pp. 19–25, 2020.

[3] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge AI: On-demand acceler-
ating deep neural network inference via edge computing,” IEEE Trans.
Wireless Commun., vol. 19, no. 1, pp. 447–457, 2020.

[4] J. Shao and J. Zhang, “Communication-computation trade-off in
resource-constrained edge inference,” IEEE Commun. Mag., vol. 58,
no. 12, pp. 20–26, 2020.

[5] M. Jankowski, D. Gündüz, and K. Mikolajczyk, “Wireless image re-
trieval at the edge,” IEEE J. Sel. Areas Commun., vol. 39, no. 1, pp.
89–100, 2021.

[6] J. Guo, W. Ouyang, and D. Xu, “Channel pruning guided by classifica-
tion loss and feature importance,” in Proc. AAAI Conf. Artificial Intell.
(AAAI), New York, NY, USA, Feb. 7-11, 2020.

[7] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, and J. Kautz, “Importance
estimation for neural network pruning,” in Proc. IEEE/CVF Conf.
Comput. Vision Pattern Recogn. (CVPR), Long Beach, CA, USA, Jun.
16-20, 2019.

[8] S. Lin and P. Yu, “A hybrid ARQ scheme with parity retransmission
for error control of satellite channels,” IEEE Trans. Commun., vol. 30,
no. 7, pp. 1701–1719, 1982.

[9] D. Liu, G. Zhu, Q. Zeng, J. Zhang, and K. Huang, “Wireless data
acquisition for edge learning: Data-importance aware retransmission,”
IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 406–420, 2021.

[10] D. F. Specht, “A general regression neural network,” IEEE Trans. Neural
Netw., vol. 2, no. 6, pp. 568–576, 1991.


