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Abstract—We introduce deep learning based com-
munication methods for successive refinement of im-
ages over wireless channels. We present three different
strategies for progressive image transmission with deep
JSCC, with different complexity-performance trade-
offs, all based on convolutional autoencoders. Numer-
ical results show that deep JSCC not only provides
graceful degradation with channel signal-to-noise ratio
(SNR) and improved performance in low SNR and low
bandwidth regimes compared to state-of-the-art digital
communication techniques, but can also successfully
learn a layered representation, achieving performance
close to a single-layer scheme. These results suggest
that natural images encoded with deep JSCC over
Gaussian channels are almost successively refinable.

I. Introduction

We consider progressive transmission of images over a
point-to-point wireless channel. In this scenario, an image
is transmitted in multiple stages, with each realization
improving its quality. Typically, we expect the first layer
to be low-quality, but enough to convey the main elements
of the content being transmitted. Following layers are
then used to enhance the image originally received, by
adding more details and components to it [1]. Progressive
transmission can be applied to scenarios in which com-
munication is either expensive or urgent. For example, in
surveillance applications it may be beneficial to quickly
send a low-resolution image to detect a potential threat
as soon as possible, while a higher resolution description
can be later received for further evaluation or archival
purposes. It is also possible that the higher layers can be
received by only a subset of the receivers. This may be the
case in wireless multicasting of the same image to devices
with different resolutions. Progressive transmission would
allow low-resolution devices to receive and decode only
a limited portion of the channel resources, saving energy,
while high-resolution receivers can recover a better quality
reconstruction by receiving additional channel resources.

Information theoretically, this problem corresponds to
hierarchical joint source-channel coding (JSCC), studied
in [2], where the optimality of separation is proven; that
is, it is optimal to compress the image into multiple layers
using successive refinement source coding [3], where the
rate of each layer is dictated by the capacity of the channel

it is transmitted over. In general, successive refinement
introduces losses compared to single-layer compression at
the highest possible resolution; that is, the adaptation to
channel bandwidth comes at a price, although some ideal
source distributions are known to be successively refinable
under certain performance measures, which means that
they can be progressively compressed at no rate loss, e.g.,
Gaussian sources over Gaussian channels. On the other
hand, it is known that in practical scenarios JSCC can
provide gains compared to separate source and channel
code design.

Here, following our previous work [4], we use deep
learning (DL) methods, in particular, the autoencoder
architecture [5], for the design of an end-to-end progressive
image transmission system. In [4], we introduced a novel
end-to-end DL-based JSCC scheme for image transmission
over wireless communication channels, called the deep
JSCC, where encoding and decoding functions are pa-
rameterized by convolutional neural networks (CNNs) and
the communication channel is incorporated into the neural
network (NN) architecture as a non-trainable layer. This
method achieves remarkable performance in low signal-
to-noise ratio (SNR) and limited channel bandwidth, also
showing resilience to mismatch between training and test
channel conditions and channel variations similarly to
analog communications.

DL-based methods are receiving significant attention for
the design of novel and efficient coding and modulation
techniques. In particular, the similarities between the
autoencoder architecture and the digital communication
systems have motivated many studies including decoder
design for existing channel codes [6], [7], blind channel
equalization [8], learning physical layer signal representa-
tion for SISO [9] and MIMO [10] systems, OFDM systems
[11], [12], JSCC of text messages [13], and JSCC for analog
storage [14]. Similar methods have also recently shown
notable results in image compression [15]–[17].

We propose three different architectures for progressive
deep JSCC with different complexities. The results are
remarkable in the sense that progressive transmission in
multiple layers introduces a limited performance loss (in
terms of average PSNR) compared to single-layer trans-
mission; that is, deep JSCC allows adding new layers with
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Fig. 1. Progressive wireless image transmission with two layers.

almost no penalties on the performance of the existing
layers. This result suggests that natural images trans-
mitted with deep JSCC are successively refinable over
Gaussian channels under the PSNR performance measure.
This also suggests that deep JSCC not only provides
natural adaptation to the channel quality [4], but also
to the bandwidth. It is shown in [4] that deep JSCC has
better or comparable performance to separate source and
channel coding (JPEG2000 followed by high performance
channel codes) in single-layer transmission. Here we show
that the advantages of deep JSCC extend to progressive
transmissions as well.

II. Background and Problem Formulation
We consider progressive wireless transmission of images,

where the input image x ∈ Rn is transmitted in L layers.
Let zi, ẑi ∈ Ck denote the complex channel input and
output vectors for the ith layer, i ∈ [L] , [1, . . . , L]. The
receiver outputs a different image reconstruction x̂i after
receiving the ith layer (using the first i layers). Equiva-
lently, we can consider L virtual receivers corresponding
to each layer. See Figure 1 for an illustration of the system
model for L = 2. We will call the image dimension n as
the source bandwidth, and the channel dimension ki as the
bandwidth of channel i. We will refer to the ratio ki/n as
bandwidth compression ratio for the ith layer. An average
power constraint is imposed on the transmitted signal at
each layer zi, 1

ki
E[zi

∗zi] ≤ P .
The reconstruction after receiving the first i layers is

denoted by x̂i ∈ Rn. Its performance is evaluated by the
peak signal to noise ratio (PSNRi), which is the inverse of
the mean square error (MSE), defined as:

MSEi = 1
N

N∑
i=1
||x− x̂i||2; PSNRi = 10 log10

MAX2

MSEi
,

where MAX is the maximum value a pixel can take, which
is 255 in our case. Two channel models, the additive white
Gaussian noise (AWGN) channel and the slow Rayleigh
fading channel, are considered in this work.

The experimental sections explore different schemes
for encoding and decoding strategies, but they all share
the same CNN architecture for the encoder and decoder
components, shown in Figure 2. Once the model is cre-
ated, the encoder(s) and decoder(s) are trained jointly as
unsupervised learning, while the channel is incorporated
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Fig. 2. The encoder and decoder components used in this paper.

to the model as a non-trainable layer, producing random
values at every realization. We implement our models
in TensorFlow and use the Cifar10 dataset in all the
experiments. Previous work [4] demonstrated the efficiency
of this architecture for JSCC, creating encoders capable of
directly mapping pixels to channel inputs, and decoders
that retrieve the underlying image directly from the noisy
channel outputs, achieving better or comparable perfor-
mance compared to the state-of-the-art digital separation-
based transmission schemes. In the next sections, we will
present different strategies for progressive JSSC of images
over wireless channel, and present numerical results.

III. Multiple Decoders
In the first model we consider a single encoder NN

generating at once the complete channel input vector
z = [z1 · · · zL], which is transmitted in L stages. Then
L independent decoder NNs are considered, where the ith
decoder uses

∑i
j=1 kj channel output symbols to output

a distinct reconstruction of the input image.
The system is modelled as an autoencoder with one

encoder and L decoder NNs, with the loss defined as:

L = 1
L

1
N

L∑
i=1

N∑
j=1

d(xj , x̂i,j), (1)

where d(x, x̂) is the MSE distortion.

A. Two-layer model
We first focus on the scenario with L = 2 layers,

thus requiring the training of only one encoder and two
decoders. The second decoder receives the output of both
transmissions; and hence, should achieve a better perfor-
mance.

1) AWGN Channel: First, we consider an AWGN chan-
nel, with k1/n = 1/12 and k2/n = 1/12. Our experiments
consider different channel qualities (specified by the SNR).
Thus, a set of encoder and decoders are trained and
optimized for each target channel SNR. The results are
shown in Figure 3a. Each colour represents the same model
trained for a specific SNR, with one curve corresponding



(a) (b)

(c) (d)
Fig. 3. Performance of multiple decoders scheme on CIFAR-10 test images, with respect to the channel SNR for (a) AWGN channel,
k1/n = k2/n = 1/12; (b) fading channel, k1/n = k2/n = 1/12; (c) five decoders, AWGN channel, with ki/n = 1/12 for i ∈ {1 . . . 5}; (d)
performance for two first layers of models trained with different values of L.

to the decoder receiving only the base layer, while the
other the decoder receiving both layers. Although the
model is optimized for a specific SNR, our results show,
for each trained model, evaluations in a range of test
SNRs (1-25dB). We see that in all cases, average PSNR2
is consistently higher than PSNR1 by 2 to 3 dB, showing
that the successive refinement has been achieved.

As a baseline, we compare our results to a single layer
transmission scheme, with the same channel bandwidth as
the sum of the individual layers, that is k = k1 + k2. We
see that the progressive JSCC scheme can approach the
same performance as the single layer, showing that there
are no significant losses in the transmission efficiency when
the model is adapted for successive refinement schemes.

The evaluation in multiple SNRs, including lower SNRs
than the trained SNR, shows that the scheme is robust
against channel deterioration, not suffering from the cliff
effect, but instead presenting graceful degradation. This
analog property of the model was already observed in the
single layer case in [4]. This behaviour is valid for all other
results presented in this paper. However, due to a space
limitation, those results will not be explicitly shown.

2) Fading channel: We move on to consider the same
model on a slow Rayleigh fading channel. Figure 3b shows
results for an architecture similar to the one used in
Figure 3a. We see that, although the PSNRs are lower
than those in the AWGN case due to channel variations,
the overall properties of graceful degradation and analog
behaviour are still present. Besides, the performance of
the deep-JSCC scheme is significantly superior than the
state-of-art separation based schemes in the case of fading
channels, despite the lack of explicit pilots or channel
estimation [4].

Although all the models exhibit similar behaviour over
fading channels, we will limit our attention to the AWGN
channel in the rest of the paper due to space limitation.
B. Multiple layers

Next, we extend the model to multiple layers. Figure 3c
shows the results for five layers, each with bandwidth
compression equal to 1/12. For each test SNR, only the
highest PSNR obtained is plotted (i.e., the convex hull of
the previous plots).

The results show that the addition of new layers in-
creases the overall quality of the transmitted image at
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Fig. 4. Performance of different schemes on CIFAR-10 test images, with respect to the channel SNR. (a) Residual transmission scheme,
AWGN channel, k1/n = k2/n = 1/12; (b) Single decoder scheme, AWGN channel, k1/n = k2/n = 1/12.

every step; although the amount of improvement is di-
minishing, as the model is able to transmit the main
image features with the lower layers, leaving only marginal
contributions to the additional layers.

We notice that the introduction of additional layers in
the training model has very low impact on the performance
of the first layers, if compared to models with smaller
values of L. This can be seen in Figure 3d, which compares
the performance of the first layer for models trained with
L ∈ {2, 3, 4, 5}, showing that the loss of adding new layers
is negligible. This is rather surprising, given that the code
of the first layer is shared by all the layers and is optimized
for all layers, as in Eq. 1. The results. therefore, suggest
that there is performance independence between layers,
justifying the use of as many layers as desired, as long as
there are available resources.

IV. Residual Transmission

x Encoder
(fθ1) channel Decoder1

(gφ1) x̂1

Base Layer

x− x̂′1
Encoder

(fθ2) channel Decoder2
(gφ2) + x̂2

Refinement Layer

z1 ẑ1
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Fig. 5. Residual transmission scheme with two layers.

We proceed our investigation by proposing an alterna-
tive scheme. Now, as seen in Figure 5, each transmission is
performed by an independent encoder/decoder pair that
act in sequence. The first pair (the base layer) is designed
to transmit the original image x, retrieving x̂1. Then,
each subsequent layer computes an estimate of the image
reconstructed at the receiver side using all the previous
layers, so it can transmit only a residual image:

xres
i = x−

i−1∑
j=1

x̂′j .

We assume that the estimated output x̂′j is equal to
the actual receiver output during the training phase (i.e.,
x̂′j = x̂j); however, during evaluation, we consider the
receiver is deployed and inaccessible, so the estimation
is obtained by averaging independent realizations of the
channel and decoder models (i.e., x̂′l = 1

m

∑m
i=1 x̂, where

m is the number of independent channel realizations used
to estimate receiver’s output).

Each encoder/decoder pair is optimized separately, us-
ing the result of the previous layers. Although this solution
is more computationally expensive, this allows design flex-
ibility, as new layers can be added to the model as they are
required, without the need of any change on the previous
trained parts. Figure 4a considers a similar scenario as Fig-
ure 3a, with AWGN channel and k1/n = k2/n = 1/12. As
expected, the performance of this scheme is significantly
worse than the previous one.

A. Feedback channel
Note that the residual encoder does not know the actual

realization of the channel of the first transmission, so it has
to estimate the residual based on the channel model. The
better the estimate of the decoded image of the previous
layer is, the better is the quality of the residual transmis-
sion. We have estimated the residual image by emulating
the channel m times, and encoding the average of the
residuals. In Table I we present the model’s performance
for different m values, and observe that the estimation
accuracy increases with m.

The last column in Table I corresponds to the perfor-
mance when the encoder has perfect channel output feed-
back; and hence, it can perfectly reconstruct the residual.
We see that the performance with perfect channel output
feedback is close to the one with two decoders trained
jointly. This is in line with the information theoretical
results stating that feedback, in general, does not improve
the end to end average reconstruction quality in this
setting, but it can allow simpler more flexible schemes to
be implemented.



TABLE I
Performance of residual transmission strategy for

different channel estimation counts m, for
SNRtrain = SNRtest = 13dB

Realizations 1 10 100 1000 direct feedback
PSNR 29.04 29.68 29.73 29.75 30.64

V. Single Decoder
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Fig. 6. Single decoder scheme with two layers.

A down side of the model described in the previous
sections is the fact that a separate encoder and/or de-
coder needs to be trained for each layer. Here we try an
alternative model that uses a single encoder and a single
decoder for all transmissions, as described in Figure 6.
This represents a considerable reduction in the algorithm’s
complexity, both in memory and in processing, as the
model size is constant regardless of the number of layers.

In order to retrieve information from partial codes, the
decoder has to be trained for different code sizes. We
achieve that by keeping a fixed loss function that compares
inputs and outputs, while randomly varying the length of
the code transmitted, at every batch. In practical terms,
that meant creating a CNN model with fixed channel
bandwidth k =

∑L
i=1 ki, but randomly masking regions of

the received message ẑ with zeros. In this way, the network
could learn to specialize different regions of the code, using
the initial parts to encode the main image content and the
extra (often erased) parts for additional layers.

The results show that the performance of the single
decoder scheme is surprisingly powerful, as can be seen
in Figure 4b. The values are comparable to the multiple
decoder case, making this scheme attractive.

VI. Summary and Conclusions
This work explored the use of deep learning based

methods for the development of progressive JSCC strate-
gies for image transmission. Building on recent results
showing that artificial neural networks can be very effec-
tive in learning end-to-end JSCC algorithms, we explored
whether the network can be extended to also learn succes-
sive refinement strategies, which would provide additional
flexibility. To the best of our knowledge, no such hierar-
chical JSCC scheme has been previously developed and
tested for practical information sources and channels.

We presented different strategies and models for pro-
gressive refinement - namely the use of multiple decoders,
the transmission of residual images, and the use of a

single encoder. The results not only reproduce the effects
observed in the previous work, such as impressive per-
formance at low SNRs, limited bandwidth, and graceful
degradation with test SNR, but also show the ability of
neural networks in enabling progressive image transmis-
sion with almost no loss in the performance.

The best performance is obtained when a combination
of one encoder and multiple receivers are trained jointly;
however, alternative, less expensive strategies such as the
communication of residuals instead of complete images
and the use of a single decoder also showed comparable
results, being viable options depending on the needs of
the deployed system.
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