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Abstract—Lossy transmission of Gaussian sources over energy-
limited Gaussian point-to-point and broadcast channels is studied
under the infinite bandwidth regime, i.e., when the number of
channel uses is unlimited. Using previously known asymptotic
achievability and converse results, the energy-distortion exponent,
defined as the rate of decay of the square-error distortion
as the available energy-to-noise ratio increases without bound,
is completely characterized for both the point-to-point and
broadcast channel cases. Turning then to the scenario of zero-
delay transmission, where outage events with arbitrarily small
probability are allowed, it is shown that the same energy-
distortion exponent as in the infinite-delay case can be achieved
in all the studied scenarios.

Index Terms—Broadcast channels, energy-distortion exponent,
energy-distortion tradeoff, energy-limited transmission, joint
source-channel coding, zero-delay.

I. INTRODUCTION

In information theory, performance of a communication
system is typically analyzed under the average power con-
straint per unit bandwidth (i.e., Joules/second/Hertz), which
automatically translates into infinite energy consumption per
source sample when the bandwidth is unlimited. This does not
correspond to a meaningful setting for sensor networks which
are limited by the total energy available in finite-size batteries,
while the relative channel bandwidth per source sample is
abundant when the source signal changes slowly over time
and each source sample can be transmitted over many uses of
the channel. A more appropriate performance measure for the
sensor network scenario is the energy-distortion tradeoff [8],
[9], which characterizes the minimum average reconstruction
distortion that can be achieved under a total energy constraint
(per source sample) without any limitation on the channel
bandwidth.

In this paper, we introduce the energy-distortion exponent
as the exponential rate of decay of the square-error distortion
as the energy-to-noise ratio (ENR) approaches infinity. Our
motivation for defining this measure is the same as in typical
high signal-to-noise ratio (SNR) analyses that appear in the
literature: in the absence of a completely characterized energy-
distortion tradeoff, energy-distortion exponent will provide us
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with a rough benchmark to strive for when designing practical
systems.

Two prominent examples where the energy-distortion char-
acterization is not fully known are (i) the transmission of a
single Gaussian source over a Gaussian broadcast channel
where each receiver reconstructs its own estimate of the source
(see [15] and [17] for inner and outer bounds derived for
average power constraint and finite bandwidth), and (ii) the
transmission of a pair of correlated Gaussian sources over a
Gaussian broadcast channel, where each receiver is interested
in reconstructing only one of the sources (similarly, see [2],
[3], [5], [10], [18], [19], [20] for existing results). In both
cases, the tradeoff is between two distortion levels achieved
at each receiver for a given energy budget. Similarly, there
will be a tradeoff between energy-distortion exponents at each
receiver.

Our first result is a closed-form characterization of the
achievable pairs of energy-distortion exponents in the first
scenario. More specifically, we show that the achievability
and converse results in [17] coincide in the energy-distortion
regime for very high ENR.

For the second scenario we prove a similar result. Namely,
we show that the converse result in [2], when translated into
the energy-distortion tradeoff, yields a pair of energy-distortion
exponents that can be achieved using a simple energy splitting
scheme.

For both of the broadcast scenarios, as well as the point-
to-point channel, we then investigate the energy-distortion
exponents in the extreme case of zero-delay1. Zero-delay
transmission is relevant in applications where delay could not
be tolerated, such as smart-grid systems where smart-meter
measurements are used for monitoring the grid for energy
outages. In a typical smart meter scenario, one measurement
is taken every 15 minutes and must be transmitted as soon as
possible to the central control unit [12]. With the same moti-
vation, energy-distortion tradeoff for zero-delay transmission
over a Gaussian broadcast channel with perfect channel output
feedback was studied in [13].

Our last result is that, in the zero-delay regime, if we allow
for a small outage event whose probability is vanishingly
small, the same energy-distortion exponent(s) can be achieved
as in the aforementioned infinite delay scenarios.

The rest of the paper is organized as follows. Section II
is dedicated to preliminaries and notation. In Section III,
achievable energy-distortion exponents are derived for both of
the broadcast scenarios under the infinite-delay regime. Then,

1To clarify, in our terminology zero-delay refers to transmission being
complete before the next source sample is generated. In other words, zero
source delay is incurred.
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in Section IV, we focus on zero-delay transmission for both
point-to-point and broadcast channels, and show that the same
energy-distortion exponents as in the infinite delay regime can
be achieved with distortion outages.

II. PRELIMINARIES AND NOTATION

A. Point-To-Point Transmission

Let XM ∼ N (0, IM ) be an independent and identically
distributed (i.i.d.) Gaussian source sequence to be transmitted
over the channel

V N = UN +WN , (1)

where UN and V N are the channel input and output, re-
spectively, and the channel noise WN ∼ N

(
0, σ2

W IN
)

is
independent of UN . The encoder

φM,N : RM −→ RN (2)

maps XM into UN , and the receiver

ψM,N : RN −→ RM (3)

estimates XM as X̂M . The ratio κ = N
M is usually referred

to as the bandwidth expansion factor, and it is measured in
channel uses per source symbol.

Definition 1. A pair (D,E) is achievable for point-to-point
transmission if for any ε > 0, there exists large enough M ,
N , and a corresponding encoder-decoder pair (φM,N , ψM,N ),
such that

1

M
E
[
||UN ||2

]
≤ E + ε

1

M
E
[
||XM − X̂M ||2

]
≤ D + ε .

As usual, we denote by D(E) the minimum possible distortion
such that (D,E) is achievable.

Note that in the above definition, the expended energy is
measured per source symbol. This is in contrast with power-
limited transmission where the channel power is measured per
channel symbol. However, by expressing the energy constraint
alternatively as

1

N
E
[
||UN ||2

]
≤ E

κ
+ ε′ ,

one can utilize existing power-constrained channel transmis-
sion results. For instance, it directly follows from the separa-
tion theorem that (D,E) is achievable if and only if

R (D) ≤ sup
κ>0

κC

(
E

κ

)
(4)

where C (P ) is the capacity with power constraint

C (P ) =
1

2
log2

(
1 +

P

σ2
W

)
,

and R (D) is the rate-distortion function given by

R (D) =
1

2
log2

1

D
.

Translating (4) then yields

D (E) = inf
κ>0

(
1 +

E

κσ2
W

)−κ
= lim

κ→∞

(
1 +

E

κσ2
W

)−κ
= e

− E

σ2
W . (5)

To emphasize the fact that the minimum achievable distortion
D(E) depends only on the energy-to-noise ratio (ENR),
defined as

γ
∆
=

E

σ2
W

,

we write (5) in the sequel as

D (E) = e−γ . (6)

In all the scenarios we consider in the sequel, we will
observe similar energy-distortion behaviors as E → ∞. That
motivates us to define

lim
E→∞

− 1

γ
lnD(E)

as the energy-distortion exponent for each scenario. Therefore,
when we say that a receiver achieves an energy-distortion
exponent of β, it is equivalent to stating that the average
distortion at that receiver decays to zero as e−βγ in the high-
energy high-bandwidth regime. Thus, we observe that the
energy-distortion tradeoff D(E) in (6) achieves an exponent
of 1.

B. Transmission of a Single Source Over a Broadcast Channel

Let the i.i.d. Gaussian source XM be transmitted over the
Gaussian broadcast channel

V Ni = UN +WN
i (7)

for i = 1, 2, where UN and V Ni are the channel input and
output at the ith receiver, respectively, and the channel noise
sequences WN

i ∼ N
(
0, σ2

Wi
IN
)

are independent of UN and
each other.

Let the encoder be the same as given in (2). At the ith
receiver, the decoder

ψ
(i)
M,N : RN → RM (8)

maps the observation V Ni into the estimation X̂M
i =

ψ
(i)
M,N

(
V Ni
)
. We refer the reader to Fig. 1 for the block

diagram of the system.

Definition 2. An energy-distortion triplet (D1, D2, E) is
achievable if for any ε > 0, there exists large enough M,N
and (φM,N , ψ

1
M,N , ψ

2
M,N ) such that

1

M
E
[
||UN ||2

]
≤ E + ε

1

M
E
[
||XM − X̂M

i ||2
]
≤ Di + ε

for i = 1, 2.
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Figure 1. The block diagram for transmission of a single Gaussian source
sequence XM over the Gaussian broadcast channel V Ni = UN + WN

i ,
i = 1, 2. Each receiver estimates its version X̂M

i of the source.

As in the point-to-point case, for a fixed energy budget E,
the tradeoff between D1 and D2 will depend only on the ENR
values γi = E

σ2
Wi

. Without loss of generality, we assume that

the second receiver is the “better” one, i.e., σ2
W1

= gσ2
W2

for
some g > 1. This also implies γ2 = gγ1 for all E.

Definition 3. An energy-distortion exponent pair (β1, β2) is
achievable if there exist functions D1(E) and D2(E) such that
(D1(E), D2(E), E) is achievable for all E > 0 and

lim
E→∞

− 1

γi
lnDi (E) = βi

for i = 1, 2.

C. Transmission of a Bivariate Source Over a Broadcast
Channel

Consider the transmission of an i.i.d. bivariate zero-mean
Gaussian source

(
XM

1 , XM
2

)
over the same channel given in

(7), where (X1,mX2,m) ∼ N (0,Σ) with covariance matrix

Σ =

[
1 ρ
ρ 1

]
and |ρ| < 1. The encoder (2) is modified as

φM,N : RM × RM −→ RN (9)

which maps
(
XM

1 , XM
2

)
into UN , and at the ith receiver the

decoder
ψ

(i)
M,N : RN → RM (10)

estimates the ith source as X̂M
i = ψ

(i)
M,N

(
V Ni
)
. See Fig. 2

for the pictorial description of the system.

Definition 4. An energy-distortion triplet (D1, D2, E) is
achievable if for any ε > 0, there exists large enough M,N
and (φM,N , ψ

1
M,N , ψ

2
M,N ) such that

1

M
E
[
||UN ||2

]
≤ E + ε

1

M
E
[
||XM

i − X̂M
i ||2

]
≤ Di + ε

for i = 1, 2.

Definition of achievable energy-distortion exponent pairs for
this scenario is exactly as given in Definition 3.

Figure 2. The block diagram for transmission of a bivariate Gaussian source
sequence (XM

1 , XM
2 ) over the Gaussian broadcast channel V Ni = UN +

WN
i , i = 1, 2. Each receiver estimates only one source.

III. ACHIEVABLE ENERGY-DISTORTION EXPONENTS

We begin by characterizing the energy-distortion exponent
pair for the transmission of a single Gaussian source over a
Gaussian broadcast channel. To that end, we utilize the inner
and outer bounds on the achievable distortion region given
in [17] for a fixed bandwidth expansion factor κ and average
channel input power P . In particular, the bounds coincide
when translated into the energy-distortion exponent regime.
We note in passing that even though the inner bound of [17]
was improved in [15], the former suffices for our purposes.

Theorem 5. The set of achievable energy-distortion exponent
pairs for the transmission of a single Gaussian source over a
Gaussian broadcast channel is given as

Bsingle =

{
(β1, β2)

∣∣∣∣0 ≤ β1 ≤ 1, 0 ≤ β2 ≤
β1

g
+ (1− β1)

}
as shown in Fig. 3.

1

1

Figure 3. The region of all achievable energy-distortion exponent pairs
(β1, β2) for transmission of a single Gaussian source over a Gaussian
broadcast channel.

Proof: We first show that all energy-distortion exponent
pairs in Bsingle are achievable. For a fixed bandwidth expan-
sion factor κ and an average power budget P per channel use,
the scheme in [17] achieves

D1 =
1

1 + P
σ2
W1

(
1 +

αP

σ2
W1

+ (1− α)P

)1−κ

(11)

D2 =
1

1 + P
σ2
W2

(
1 +

αP

σ2
W1

+ (1− α)P

)1−κ

·
(

1 +
(1− α)P

σ2
W2

)1−κ

(12)
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D2 ≥ sup
m>0

m(
σ2
W1

σ2
W2

[
δ +m

(
P
σ2
W1

+ 1

)κ]1/κ

−
(
σ2
W1

σ2
W2

− 1

)
(1 +m)

1/κ

)κ
− 1

. (13)

for all 0 ≤ α ≤ 1.
Substituting in (11) and (12) the identity P = E

κ , and letting
κ→∞, we obtain

D1 = lim
κ→∞

1

1 + γ1
κ

(
1 +

αγ1

κ+ (1− α) γ1

)1−κ

= lim
κ→∞

(
1 +

αγ1

κ+ (1− α) γ1

)1−κ

= lim
κ′→∞

(
1 +

1

κ′

)1+(1−α)γ1−αγ1κ′

= lim
κ′→∞

(
1 +

1

κ′

)1+(1−α)γ1

lim
κ′→∞

(
1 +

1

κ′

)−αγ1κ′
= lim

κ′→∞

(
1 +

1

κ′

)−αγ1κ′
= e−αγ1 (14)

where κ′ = κ+(1−α)γ1
αγ1

, and

D2 = lim
κ→∞

[
1

1 + γ2
κ

(
1 +

αγ1

κ+ (1− α) γ1

)1−κ

·
(

1 + (1− α)
γ2

κ

)1−κ
]

= lim
κ→∞

(
1 +

αγ1

κ+ (1− α) γ1

)1−κ

· lim
κ→∞

(
1 + (1− α)

γ2

κ

)1−κ

= e−αγ1e−(1−α)γ2

= e−γ2[
α
g +1−α] . (15)

It follows from (14) and (15) that all energy-distortion pairs
in the set Bsingle are indeed achievable.

For the converse, we use the outer bound for the finite band-
width power-constrained problem given in [17] as follows. For
any achievable (D1, D2) such that

D1 = δ

(
1 +

P

σ2
W1

)−κ
,

with δ > 1, D2 must satisfy (13) shown at the top of this
page.

In the energy-distortion regime, this bound translates to

D1 = lim
κ→∞

δ
(

1 +
γ1

κ

)−κ
= δe−γ1 (16)

and
D2 ≥ sup

m>0

m

(1 +m)L(m)− 1
(17)

where

L (m) =
1

1 +m
lim
κ→∞

(
g
[
δ +m

(
1 +

γ1

κ

)κ]1/κ
− (g − 1) (1 +m)

1/κ

)κ

= lim
κ→∞

1 + g

(δ +m
(
1 + γ1

κ

)κ
1 +m

) 1
κ

− 1

κ

.

Now, for f(κ) non-decreasing in κ, and h(θ, κ) non-
decreasing in θ, we can write

h(f(κ−), κ) ≤ h(f(κ), κ) ≤ h(f(κ+), κ) (18)

for any κ− ≤ κ ≤ κ+. Moreover, the inequality chain in (18)
remains intact if we first let κ+ → ∞, then let κ → ∞, and
finally κ− →∞, to obtain

lim
κ−→∞

lim
κ→∞

h(f(κ−), κ)

≤ lim
κ→∞

h(f(κ), κ)

≤ lim
κ→∞

h
(

lim
κ+→∞

f(κ+), κ
)

(19)

whenever the above limits exist. Setting

f(κ) =
δ +m

(
1 + γ1

κ

)κ
1 +m

and
h(θ, κ) =

(
1 + g

[
θ

1
κ − 1

])κ
,

together with the observation that

lim
κ→∞

f(κ) =
δ +meγ1

1 +m

and
lim
κ→∞

h(θ, κ) = θg

for any fixed θ, we notice that the upper and lower bounds in
(19) collapse and yield

L(m) =

(
δ +meγ1

1 +m

)g
.

Therefore (17) is the same as

D2 ≥ sup
m>0

m

(1 +m)
(
δ+meγ1

1+m

)g
− 1

.

The supremum above is difficult to compute. However, sub-
stitution of any m > 0 obviously results in a (looser) lower
bound on the achievable D2. In particular, it is easy to show
after some algebra that the choice

m =
δ

(g − 1)eγ1 − δg
.
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results in

D2 ≥
δ

(g − 1)(eγ1 − δ)
(
δg
g−1

)g
− (g − 1)eγ1 + δg

(20)

for any fixed D1 = δe−γ1 .
Note that we are interested in the asymptotic behavior of

achievable (D1, D2) as E → ∞. To that end, let D1(E) =
δ(E)e−γ1 for some arbitrary δ(E) > 1 such that

lim
E→∞

− 1

γ1
lnD1(E) = β1 (21)

for some 0 ≤ β1 ≤ 1. This implies that for any such δ(E),

lim
E→∞

− 1

γ1
ln δ(E) = β1 − 1 ,

or in other words, δ(E) must grow as eγ1(1−β1). For the second
energy-distortion exponent, (20) then translates to the upper
bound

lim
E→∞

− 1

γ2
lnD2(E)

≤ lim
E→∞

{
− 1

γ2
ln δ(E)

+
1

γ2
ln

[
(g − 1)(eγ1 − δ(E))

(
δ(E)g

g − 1

)g
− (g − 1)eγ1 + gδ(E)

]}
=

β1 − 1

g

+ lim
E→∞

1

γ2
ln

[
gg

(g − 1)g−1
[eγ1 − δ(E)]δ(E)g

− (g − 1)eγ1 + gδ(E)

]
(a)
=

β1 − 1

g
+

1

g
+ 1− β1

=
β1

g
+ 1− β1 (22)

where (a) follows from the fact that [eγ1−δ(E)]δ(E)g grows
as eγ1+γ2(1−β1), which is faster than the other terms eγ1 and
δ(E). The proof is therefore complete because (21) and (22)
implies that Bsingle is indeed an outer bound to achievable
energy-distortion exponents.

In the next theorem, we characterize the achievable energy-
distortion exponent pairs for the transmission of bivariate
Gaussian sources over the Gaussian broadcast channel. As
in the single source case, we utilize an existing outer bound
introduced in [2] on achievable (D1, D2) pairs for a given
channel input power P and bandwidth expansion factor κ.
Interestingly, a very simple coding scheme achieves the same
energy-distortion exponents as the outer bound.

Theorem 6. The set of achievable energy-distortion exponent
pairs for the transmission of a bivariate Gaussian source over
a Gaussian broadcast channel is given as

Bbivariate = {(β1, β2) |0 ≤ β1 ≤ 1, 0 ≤ β2 ≤ 1− β1 }

as shown in Fig. 4.

1

1

Figure 4. The region of all achievable energy-distortion exponent pairs
(β1, β2) for transmission of a bivariate Gaussian source over a Gaussian
broadcast channel.

Proof: We start with the converse. It follows from the
outer bound derived in [2] that for fixed channel input power
P and bandwidth expansion factor κ, (D1, D2) is achievable
only if there exists 0 ≤ α ≤ 1 such that

D1 ≥
(

1 +
αP

(1− α)P + σ2
W1

)−κ
(23)

D2 ≥
(
1− ρ2

)(
1 +

(1− α)P

σ2
W2

)−κ
. (24)

In the energy-distortion framework, this implies that for any
fixed energy budget E per source symbol, there must exist
0 ≤ α ≤ 1 such that

D1 ≥ lim
κ→∞

(
1 +

αγ1

(1− α) γ1 + κ

)−κ
= e−αγ1

D2 ≥ lim
κ→∞

(
1− ρ2

)(
1 +

(1− α)γ2

κ

)−κ
=

(
1− ρ2

)
e−(1−α)γ2 .

Thus, for any D1(E) and D2(E) such that
(D1(E), D2(E), E) is achievable, we must have

lim
E→∞

− 1

γ1
lnD1(E) ≤ α

lim
E→∞

− 1

γ2
lnD2(E) ≤ 1− α

for some 0 ≤ α ≤ 1, proving that Bbivariate is indeed an outer
bound for all achievable exponent pairs (β1, β2).

To prove achievability of any (β1, β2) ∈ Bbivariate, it
suffices to simply send the source pair with two rounds of
transmission, where in each round i = 1, 2, we transmit XM

i

with energy βiE and bandwidth expansion factor κi. Note that
(i) β1E + β2E ≤ E, and therefore this is a feasible choice,
and (ii) the individual κi can be arbitrarily taken to infinity,
resulting in

D1(E) = e−β1γ1

D2(E) = e−β2γ2

which follows from (6). The proof is therefore complete.
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IV. ZERO-DELAY COMMUNICATION WITH DISTORTION
OUTAGE

In this section we focus on the extreme case of zero source
delay, i.e., M = 1. In other words, a single random variable
X is mapped into the channel input UN where the channel,
the encoder, and the decoder(s) are in the same form in each
aforementioned scenario. We have κ = N , and once again,
we are interested in the energy-distortion tradeoff when the
bandwidth is not limited, i.e., N →∞. However, we slightly
change the achievability definition for distortion by allowing
a vanishingly small probability of distortion outage, and
evaluating the expected distortion conditioned on no distortion
outages.

The motivation behind this change is as follows. While one
should ultimately search for an analog mapping between X
and UN , that proves a difficult task for even moderate values
of N [1], [4], [7], [21], let alone N → ∞. That leaves the
alternative of either digital coding or hybrid digital/analog
coding. On the other hand, any coding scheme that transmits
some digital information through the channel is prone to error
in decoding of that information. Regardless of how small
the probability of incorrect decoding is, the overall expected
distortion might still be very adversely affected.

We generalize this “error event” as the outage region in the
product space of (X,WN ), and formally define the energy-
distortion-outage tradeoff. We then show that in each scenario
we consider, zero-delay communication with distortion outage
achieves the same energy-distortion exponent as in the infinite-
delay case discussed in the previous section2.

A. Point-to-Point Transmission

Definition 7. A triple (D,E, δ) is achievable for zero-delay
point-to-point transmission with distortion outage if for any
ε > 0, there exist a large enough N , an encoder-decoder pair
(φ1,N , ψ1,N ), and an outage region O ∈ R× RN such that

E
[
||UN ||2

]
≤ E + ε

Pr
[(
X,WN

)
∈ O

]
≤ δ

E
[
(X − X̂)2

∣∣∣Oc] ≤ D + ε .

Also denote by D(E, δ) the minimum possible distortion such
that (D,E, δ) is achievable.

It should be clear that the region of all achievable (D,E, 0)
coincides with the set of achievable (D,E) as in Definition 1,
and therefore this is a more general achievability concept.

We modify the definition of energy-distortion exponents
accordingly as follows.

Definition 8. An energy-distortion exponent β is achievable
for zero-delay point-to-point transmission with distortion out-

2For point-to-point transmission, one can alternatively consider the more
popular criterion of vanishingly small excess distortion probability as in [11],
and observe the same energy-distortion exponent for the case of M = 1
as in the asymptotics of M → ∞. However, for the broadcast scenarios
we consider, the asymptotic results depend heavily on expected distortion. In
particular, it is not immediately clear how the converses in [17] and [2] can
be adapted to excess distortion probability.

age if

β = lim
δ→0

lim
E→∞

− 1

γ
lnD(E, δ)

where, as before, γ = E
σ2
W

.

In what follows we show that we can achieve β = 1 just as
in the infinite-delay case (6).

Theorem 9. β = 1 is an achievable energy-distortion expo-
nent for zero-delay point-to-point transmission of a Gaussian
source with distortion outage.

Proof: We quantize the single random variable X with
N � 1 levels and use orthogonal signaling to transmit
the quantization index. At the receiver, we use maximum
likelihood decoding, and classify incorrect decoding as the
distortion outage event.

It is well-known [6] that the optimal high-resolution quan-
tizer has the point density function λ (x) given by

λ (x) =
fX (x)

1
3

´∞
−∞ fX (x′)

1
3 dx′

(25)

which, for X ∼ N (0, 1), boils down to a Gaussian with
zero mean and variance 3. The resultant distortion can be
approximated using the Bennett integral [6] as

D ≈ 1

12N2

ˆ ∞
−∞

fX(x)

λ (x)
2 dx

=
1

12N2

(ˆ ∞
−∞

fX (x′)
1
3 dx′

)3

=

√
3π

2N2
. (26)

One can formalize this approximation by

D ≤
√

3π

2N2
+ ε (27)

for arbitrarily small ε > 0 and large enough N .
The quantized indices are mapped into orthogonal channel

input vectors UN such that

Ut =

{√
E t = k (X)

0 t 6= k (X)

where 1 ≤ k(X) ≤ N is the integer quantization index. Note
that

∥∥UN∥∥2
= E always. At the receiver end, upon receiving

V N = UN +WN , the decoder simply selects

K̂ = arg max
1≤i≤N

Vi

and then outputs
X̂ = rK̂

where rk is the kth reconstruction level of the quantizer. Thus,
the distortion outage event is given by

O =
{
k(X) 6= K̂

}
.
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ln N

2

Figure 5. The upper bound on the probability of distortion outage as a
function of lnN for a fixed ENR γ. The maximum allowed lnN to guarantee
Pr[O] ≤ δ when δ ≥ 2e−

γ
8 is also shown.

Since the analysis of the probability of decoding error for
orthogonal signaling can be found in the literature (for exam-
ple, see [16, Section 6.6]), we include it only for convenience
and defer it to Appendix A3. The analysis yields

Pr[O] ≤

{
2e(lnN− γ4 ) lnN < γ

8

2e−
1
2 (
√
γ−
√

2 lnN)
2

γ
8 ≤ lnN ≤ γ

2

. (28)

This upper bound is depicted in Fig. 5, for a given ENR γ.
Now, for a given δ > 0 and ENR γ, we need to use the

maximum possible number of quantization levels Nmax(γ, δ)
such that Pr[O] ≤ δ to minimize the distortion (see Fig. 5).
It follows from (28) that

Nmax(γ, δ) =

{
δ
2e

γ
4 4 ln 2

δ < γ < 8 ln 2
δ

e
1
2

(√
γ−
√

2 ln 2
δ

)2

γ ≥ 8 ln 2
δ

.

It then follows by choosing N = Nmax(γ, δ) in (27) that for
any δ > 0,

E
[
||X − X̂||2

∣∣∣Oc] ≤ √3π

2
e
−
(√

γ−
√

2 ln 2
δ

)2

+ ε .

for arbitrarily small ε > 0 and large enough4 γ. Thus,

D(E, δ) ≤
√

3π

2
e
−
(√

γ−
√

2 ln 2
δ

)2

for any δ > 0 and large enough E, and therefore

lim
δ→0

lim
E→∞

− 1

γ
lnD(E, δ) ≥ 1

finishing the proof.

3We also refer the reader to [14] for a similar analysis.
4Large enough γ is necessary because (i) we need γ ≥ 8 ln 2

δ
, and (ii)

Nmax(γ, δ) must be large enough for the Bennett approximation (27) to be
valid.

B. Broadcasting of a Single Gaussian Source

Definition 10. A quadruple (D1, D2, E, δ) is achievable for
zero-delay broadcasting of a single source with distortion out-
age if for any ε > 0, there exist a large enough N , an encoder
φ1,N , decoders ψ(i)

1,N , and outage regions Oi ∈ R × RN for
i = 1, 2 such that

E
[
||UN ||2

]
≤ E + ε

Pr
[(
X,WN

i

)
∈ Oi

]
≤ δ

E
[
(X − X̂i)

2
∣∣∣Oci ] ≤ Di + ε .

Definition 11. An energy-distortion exponent pair (β1, β2)
is achievable for zero-delay broadcasting of a single source
with distortion outage if there exist functions D1(E, δ) and
D2(E, δ) such that (D1(E, δ), D2(E, δ), E, δ) is achievable
for all E > 0, δ > 0 and

lim
δ→0

lim
E→∞

− 1

γi
lnDi (E, δ) = βi

for i = 1, 2.

We are now ready to state and prove the following theorem.

Theorem 12. Any pair (β1, β2) ∈ Bsingle is achievable for
zero-delay broadcasting of a single Gaussian source with
distortion outage.

Proof: We quantize X with successive refinement with
N1 � 1 levels in the base layer and N2 � 1 levels in the
refinement layer. We then use orthogonal signaling and max-
imum likelihood decoding as in point-to-point transmission,
with the modification that the transmission is done in two
rounds: In the ith round, i = 1, 2, the channel is used Ni times
to transmit the ith layer quantization index. Although both
receivers have access to both rounds, only the second receiver
attempts to decode the refinement layer. We define O1 as the
event that receiver 1 decodes the base layer index incorrectly,
as in point-to-point transmission. On the other hand, we let O2

indicate that the second receiver incorrectly decodes either of
the quantization indices.

It is clear from (27) that if the point density function λ(x)
for the base layer is chosen as in (25), there exist large enough
N1 such that

E
[
(X − X̂1)2

∣∣∣Oc1] ≤ √3π

N2
1

+ ε (29)

for any ε > 0. We claim that for large enough N1 and N2,
one can simultaneously achieve (29) and

E
[
(X − X̂2)2

∣∣∣Oc2] =

√
3π

N2
1N

2
2

+ ε (30)

for any ε > 0. To that end, it suffices to recall that high-
resolution quantization is equivalent to mapping the sample
X onto the interval [0, 1] using G(x) =

´ x
−∞ λ(z)dz followed

by uniform quantization. Thus, not only does dividing the
interval [0, 1] into N1 equal-width intervals (followed by the
inverse mapping G−1) yield the optimal quantizer for the base
layer, but further dividing each subinterval into N2 equal-width
intervals yield the optimal quantizer for the refinement layer. In
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N2,max(g, α, γ1, δ) =


δ′

2 e
g(1−α)γ1

4 4 ln 2
δ′ < g(1− α)γ1 < 8 ln 2

δ′

e
1
2

(√
g(1−α)γ1−

√
2 ln 2

δ′

)2

g(1− α)γ1 ≥ 8 ln 2
δ′

. (31)

other words, X is successively refineable in the high-resolution
regime5.

Let the two rounds of transmission expend energies αE and
(1 − α)E, respectively, for some 0 < α < 1. Then, as in the
proof of Theorem 9, one can upper bound Pr[O1] as

Pr[O1] ≤

{
2e(lnN1−αγ14 ) lnN1 <

αγ1
8

2e−
1
2 (
√
αγ1−

√
2 lnN1)

2
αγ1

8 ≤ lnN1 ≤ αγ1
2

.

(32)
Then, also as in the proof of Theorem 9, to guarantee
Pr[O1] ≤ δ, we need to satisfy N1 ≤ N1,max(α, γ1, δ), where

N1,max(α, γ1, δ)

=

{
δ
2e

αγ1
4 4 ln 2

δ < αγ1 < 8 ln 2
δ

e
1
2

(√
αγ1−
√

2 ln 2
δ

)2

αγ1 ≥ 8 ln 2
δ

. (33)

Combining (29) and (33) then yields for any ε > 0, δ > 0,
and large enough E that

E
[
(X − X̂1)2

∣∣∣Oc1] ≤ D1(E, δ) + ε

with

D1(E, δ) =

√
3π

2
e
−
(√

αγ1−
√

2 ln 2
δ

)2

. (34)

At the second receiver, one can use the union bound to write

Pr[O2] ≤ Pe,1 + Pe2

where Pe,1 and Pe,2 are the probabilities of the second receiver
incorrectly decoding the base and refinement layer index
incorrectly, respectively. Since the second channel is less noisy,
it is clear that

Pe,1 < Pr[O1] ≤ δ .

We can in fact tighten this upper bound by first translating
(32) for the second receiver as

Pe,1 ≤

{
2e(lnN1−αγ24 ) lnN1 <

αγ2
8

2e−
1
2 (
√
αγ2−

√
2 lnN1)

2
αγ2

8 ≤ lnN1 ≤ αγ2
2

(35)

and then assuming αγ1 ≥ 8 ln 2
δ without loss of generality

(because we will eventually let E →∞), using (33) to show
both

2e(lnN1−αγ24 ) ≤ 2e

(
1
2

(√
αγ1−
√

2 ln 2
δ

)2
− gαγ14

)

≤ 2e

(
1
2

(√
αγ1−
√

2 ln 2
δ

)2
−2g ln 2

δ

)
≤ 2e−2g ln 2

δ

= 2

(
δ

2

)2g

(36)

5This argument is independent of the PDF of X . The notion of successive
refineability here is not to be confused with the notion that appears in the
literature. The latter deals with finite rates but infinite blocklengths, whereas
we are interested in infinite rates and scalar coding.

and

2e−
1
2 (
√
αγ2−

√
2 lnN1)

2

≤ 2e
− 1

2

(
(
√
g−1)

√
αγ1+
√

2 ln 2
δ

)2

≤ 2e
− 1

2

(
2(
√
g−1)
√

2 ln 2
δ+
√

2 ln 2
δ

)2

≤ 2e−(2
√
g−1)

2
ln 2
δ

≤ 2

(
δ

2

)g
. (37)

Bringing together (35)-(37), we obtain

Pe,1 ≤ 2

(
δ

2

)g
. (38)

Letting δ′ = δ − 2
(
δ
2

)g
, we can once again use the analysis

in Theorem 9 to conclude that

Pe,2 ≤ 2e

(
lnN2− (1−α)γ2

4

)
when lnN2 <

(1−α)γ2
8 , and

Pe,2 ≤ 2e
− 1

2

(√
(1−α)γ2−

√
2 lnN2

)2

when (1−α)γ2
8 ≤ lnN2 ≤ (1−α)γ2

2 . Thus, to guarantee
Pr[O2] ≤ δ, it suffices to choose N2 ≤ N2,max(g, α, γ1, δ),
where N2,max(g, α, γ1, δ) is as given in (31) at the top of this
page.

Combining (30), (33), and (31) then yields for any ε > 0,
δ > 0, and large enough E that

E
[
(X − X̂)2

∣∣∣Oc2] ≤ D2(E, δ) + ε

with

D2(E, δ)

=

√
3π

2
e
−
(√

αγ1−
√

2 ln 2
δ

)2

e
−
(√

g(1−α)γ1−
√

2 ln 2
δ′

)2

. (39)

The proof is complete by observing that for any δ > 0,

lim
E→∞

− 1

γ1
lnD1 (E, δ) = α

and
lim
E→∞

− 1

γ2
lnD2 (E, δ) =

α

g
+ 1− α .

C. Broadcasting of a Bivariate Gaussian Source

Definition 13. A quadruple (D1, D2, E, δ) is achievable for
zero-delay broadcasting of bivariate sources with distortion
outage if for any ε > 0, there exist a large enough N , an
encoder φ1,N , decoders ψ(i)

1,N , and outage regions Oi ∈ R ×
RN for i = 1, 2 such that

E
[
||UN ||2

]
≤ E + ε

Pr
[(
X1, X2,W

N
i

)
∈ Oi

]
≤ δ

E
[
(Xi − X̂i)

2
∣∣∣Oci ] ≤ Di + ε .
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The definition of achievable energy-distortion exponent
pairs is exactly as in Definiton 11.

Just as in the proof of Theorem 6, separately encoding the
two sources and splitting the available energy E into αE and
(1−α)E to transmit the quantization indices using orthogonal
signaling is a sufficient strategy to achieve the same energy-
distortion exponents in Bbivariate as stated in the next theorem.

Theorem 14. Any pair (β1, β2) ∈ Bbivariate is achievable for
zero-delay broadcasting of bivariate Gaussian sources with
distortion outage.

Proof: We provide only a sketch of the proof as it is
straightforward. Using the same technique as in the proof of
Theorem 12, it is possible to show that for any ε > 0, δ > 0,
and large enough E,

E
[
||UN ||2

]
≤ E + ε

Pr
[(
X1, X2,W

N
i

)
∈ Oi

]
≤ δ

E
[
(Xi − X̂i)

2
∣∣∣Oci ] ≤ Di(E, δ) + ε

for i = 1, 2, can be simultaneously satisfied, where

D1(E, δ) =

√
3π

2
e
−
(√

αγ1−
√

2 ln 2
δ

)2

D2(E, δ) =

√
3π

2
e
−
(√

(1−α)γ2−
√

2 ln 2
δ

)2

.

Therefore for any δ > 0,

lim
E→∞

− 1

γ1
lnD1 (E, δ) = α

and
lim
E→∞

− 1

γ2
lnD2 (E, δ) = 1− α

and the proof is complete.

APPENDIX A
ANALYSIS OF THE PROBABILITY OF DECODING ERROR

Without loss of generality, we assume that the first codeword
is sent. Using the normalized noise vector ZN = WN

σW
, the

probability of erroneous decoding for fixed N and E becomes

Pr[O]

= 1−
ˆ ∞
−∞

fZ (z1) Pr

[
max

2≤i≤N
{Zi} <

√
γ + z1

]
dz1

= 1−
ˆ ∞
−∞

fZ (z1)

N∏
i=2

Pr [Zi <
√
γ + z1] dz1

=

ˆ ∞
−∞

fZ (z1)
{

1− (1−Q (
√
γ + z1))

N−1
}
dz1 .

Here, we use the standard definition of the Q-function as

Q (x) =
1√
2π

ˆ ∞
x

e−
s2

2 ds.

It is well-known that the Chernoff bound on the Q-function is
given by

Q (x) ≤ e− x
2

2 (40)

for all x ≥ 0. Although there are other established bounds that
are tighter than (40), the Chernoff bound will suffice for our
analysis.

From this point on, we will assume that γ ≥ 2 lnN . Then
defining

α =
√

2 lnN −√γ (41)

which is always non-positive, we write

Pr[O] = PO,1 + PO,2

with

PO,1 =

ˆ α

−∞
fZ (z1)

{
1− (1−Q (

√
γ + z1))

N−1
}
dz1

PO,2 =

ˆ ∞
α

fZ (z1)
{

1− (1−Q (
√
γ + z1))

N−1
}
dz1 .

We then bound PO,1 as

PO,1 ≤
ˆ α

−∞
fZ (z1) dz1

=
1√
2π

ˆ α

−∞
e−

z21
2 dz1

= 1−Q (α)

= Q (−α)

≤ e−
α2

2 (42)

where the last inequality follows from (40) and the fact that
α ≤ 0. Also, since it follows from (41) that α > −√γ, we
have for all z1 ≥ α that

1− (1−Q (
√
γ + z1))

N−1 ≤ (N − 1)Q (
√
γ + z1)

≤ Ne−
(
√
γ+z1)2

2

again using (40). Therefore,

PO,2 ≤ N

ˆ ∞
α

fZ (z1) e−
(
√
γ+z1)2

2 dz

=
N√
2π
e−

γ
4

ˆ ∞
α+
√

γ
4

e−s
2

ds

=
N

2
√
π
e−

γ
4Q

(√
2

(
α+

√
γ

4

))

=

 N
2
√
π
e−

γ
4−(α+

√
γ
4 )

2

α ≥ −
√

γ
4

N
2
√
π
e−

γ
4 α < −

√
γ
4

(43)

After some algebraic manipulations, it can be shown using
(41) that

Ne−
γ
4−(α+

√
γ
4 )

2

= e−
α2

2 . (44)

Finally, bringing (41)-(44) together, we find for all e
γ
8 ≤

N ≤ e
γ
2 that

Pr[O] ≤
(

1 +
1

2
√
π

)
e−

α2

2

≤ 2e−
1
2 [
√
γ−
√

2 lnN]
2

(45)

and similarly for all N < e
γ
8 that

Pr[O] ≤ Ne−
γ
4

(
1

2
√
π

+ e−(
√

2 lnN−
√

γ
4 )

2
)

≤ 2Ne−
γ
4 . (46)
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