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Abstract—Lossy coding of correlated sources over a multiple
access channel (MAC) is studied. First, a joint source-channel
coding scheme is presented when the decoder has correlated
side information. Next, the optimality of separate source and
channel coding, that emerges from the availability of a common
observation at the encoders, or side information at the encoders
and the decoder, is investigated. It is shown that separation is
optimal when the encoders have access to a common observation
whose lossless recovery is required at the decoder, and the two
sources are independent conditioned on this common observation.
Optimality of separation is also proved when the encoder and the
decoder have access to shared side information conditioned on
which the two sources are independent. These separation results
obtained in the presence of side information are then utilized
to provide a set of necessary conditions for the transmission
of correlated sources over a MAC without side information.
Finally, by specializing the obtained necessary conditions to the
transmission of binary and Gaussian sources over a MAC, it is
shown that they can potentially be tighter than the existing results
in the literature, providing a novel converse for this fundamental
problem.

I. INTRODUCTION

This paper considers the lossy coding of correlated discrete
memoryless (DM) sources over a DM multiple access channel
(MAC). Separate source and channel coding is known to be
suboptimal for this setup in general, even when the lossless
reconstruction of the sources is required [1]. This is in contrast
to the point-to-point scenario for which the separation of
source and channel coding is optimal, also known as the
separation theorem [2]. The characterization of the achievable
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distortion region when transmitting correlated sources over a
MAC is one of the fundamental open problems in network
information theory, solved only for some special cases.

This problem is also related to another long-standing open
problem, namely the multi-terminal lossy source-coding prob-
lem, which refers to the scenario when the underlying MAC
consists of two orthogonal finite-capacity error-free links.
Despite the lack of a general single-letter characterization
for the multi-terminal source coding problem, separate source
and channel coding is optimal when the underlying MAC is
orthogonal [3]. Separation is also optimal when one of the
sources is shared between the two encoders [4], or for the
lossless case, when the decoder has access to side information
conditioned on which the two sources are independent [5].
However, due to the lack of a general separation result, the
achievable distortion region is unknown even in scenarios for
which the corresponding source coding problem can be solved.

In the absence of single-letter necessary and sufficient
conditions, the goal is to obtain computable inner and outer
bounds. A fairly general joint source-channel coding scheme
was introduced in [6] by leveraging hybrid coding. This
scheme subsumes most other known coding schemes. A novel
outer bound was presented in [7] for the Gaussian setting,
which uses the fact that the correlation among channel inputs
is limited by the correlation available among source sequences.
Other bounds were proposed in [8], [9], and more recently
in [10], [11]. Optimality of source-channel separation was
studied in [5], [12], and the optimality of uncoded transmission
was investigated for Gaussian sources over multi-terminal
Gaussian channels in [13].

This paper studies the achievable distortion region for
sending correlated sources over a MAC. In the first part of the
paper, it is assumed that the encoders and/or the decoder may
have access to side information correlated with the sources
(see Fig. 1). Initially, a joint source-channel coding scheme
is proposed when side information is available only at the
decoder. Then, we investigate separation theorems that emerge
from the availability of a common observation at the encoders,
or from the availability of side information at the encoders
and the decoder. In doing so, we first focus on the scenario in
which the encoders share a common observation conditioned
on which the two sources are independent. For this setup,
we show that separation is optimal when the decoder is
required to recover the common observation losslessly, but can
tolerate some distortion for the parts known only at a single



2

Encoder 1

Encoder 2

Decoder

Sn
1

Sn
2

Xn
1

Xn
2

Y n

p(y|x1, x2)

SW1

SW2 Zn

(Ŝn
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Fig. 1. Communication of correlated sources over a MAC.

encoder. Corresponding necessary and sufficient conditions are
identified for the optimality of separation. Next, we consider
the scenario in which the encoders and the decoder have access
to shared side information, and show that separation is again
optimal if the two sources are conditionally independent given
the side information.

In the second part of the paper, we leverage the separation
theorems derived in the first part to obtain a new set of
necessary conditions for the achievability of a distortion pair
when transmitting correlated sources over a MAC without
any side information. In particular, we obtain our computable
necessary conditions by providing particular side information
sequences to the encoders and the decoder to induce the
optimality of separation. Based on the results of the first part,
this can be achieved when the two sources are conditionally
independent given the side information. Optimality of sepa-
ration conditioned on the provided side information allows
us to characterize the corresponding necessary conditions
explicitly. Conditional independence inducing side information
sequences have previously been used to obtain converse results
in some multi-terminal source coding problems [14], [15].
In this paper, they are used to obtain converse results in a
multi-terminal joint source-channel coding problem. The nec-
essary conditions are then specialized to the case of bivariate
Gaussian sources over a Gaussian MAC as well as doubly
symmetric binary sources (DSBS) over a Gaussian MAC. By
providing comparisons between the new necessary conditions
and the known bounds in the literature, we show that the
proposed technique can potentially provide tighter converse
bounds than the previous results in the literature.

In the remainder of the paper, X represents a random
variable, and x is its realization. Xn = (X1, . . . , Xn) is a
random vector of length n, and xn = (x1, . . . , xn) denotes
its realization. X is a set with cardinality |X |. E[X] is the
expected value and var(X) is the variance of X .

II. SYSTEM MODEL

We consider the transmission of DM sources S1 and S2

over a DM MAC as illustrated in Fig. 1. Encoder 1 ob-
serves Sn1 = (S11, . . . , S1n), whereas encoder 2 observes
Sn2 = (S21, . . . , S2n). If switch SW2 in Fig. 1 is closed,
the two encoders also have access to a common observation
Zn correlated with Sn1 and Sn2 . Encoders 1 and 2 map their
observations to the channel inputs Xn

1 and Xn
2 , respectively.

The channel is characterized by the conditional distribution
p(y|x1, x2). If switch SW1 in Fig. 1 is closed, the decoder has
access to side information Zn. Upon observing the channel

output Y n and side information Zn whenever it is available,
the decoder constructs the estimates Ŝn1 , Ŝn2 , and Ẑn. Cor-
responding average distortion values for the source sequence
Ŝnj , j = 1, 2, is given by

∆
(n)
j =

1

n

n∑
i=1

E[dj(Sji, Ŝji)], (1)

where dj(·, ·) < ∞ is the distortion measure for source Snj .
A distortion pair (D1, D2) is achievable for the source pair
(S1, S2) and channel p(y|x1, x2) if there exists a sequence of
encoding and decoding functions such that

lim sup
n→∞

∆
(n)
j ≤ Dj , j = 1, 2, (2)

and P (Zn 6= Ẑn) → 0 as n → ∞ when at least one of the
switches is closed. Random variables S1, S2, Z, X1, X2, Y ,
Ŝ1, Ŝ2, Ẑ are defined over the corresponding alphabets S1,
S2, Z , X1, X2, Y , Ŝ1, Ŝ2, Ẑ . Note that, when switch SW1

is closed, error probability in decoding Zn becomes irrelevant
since it is readily available at the decoder, and serves as side
information.

Throughout the paper, we use the following definitions
extensively.

Definition 1. (Conditional rate distortion function) [16] Given
correlated random variables S and U , define the minimum
average distortion for S given U as [4], [17]:

E(S|U) = inf
f :U→Ŝ

E[d(S, f(U))], (3)

where the minimum is over all functions f(·) from U to the
reconstruction alphabet Ŝ. Then, the conditional rate distor-
tion function for source S when correlated side information
Z is shared between the encoder and the decoder is given by,

RS|Z(D) = min
p(u|s,z):
E(S|U,Z)≤D

I(S;U |Z), (4)

where the minimum is over all conditional distributions
p(u|s, z) such that the minimum average distortion for S given
U and Z is less than or equal to D.

Definition 2. (Gács-Körner common information) [18] Define
the function fj : Sj → {1, . . . , k} for j = 1, 2, with the largest
integer k such that P (fj(Sj) = u0) > 0 for u0 ∈ {1, . . . , k},
j = 1, 2, and P (f1(S1) = f2(S2)) = 1. Then, U0 = f1(S1) =
f2(S2) is defined as the common part between S1 and S2, and
the Gács-Körner common information is given by

CGK(S1, S2) = H(U0). (5)

Definition 3. (Wyner’s common information) [19] Wyner’s
common information between S1 and S2 is defined as,

CW (S1, S2) = min
p(v|s1,s2)
S1−V−S2

I(S1, S2;V ). (6)

III. JOINT SOURCE-CHANNEL CODING WITH DECODER
SIDE INFORMATION

We first assume that only SW1 is closed in Fig. 1, and
present a general achievable scheme for the lossy coding of
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correlated sources in the presence of decoder side information.

Theorem 1. When sending correlated DM sources
S1 and S2 over a DM MAC with p(y|x1, x2) and
decoder side information Z, distortion pair (D1, D2)
is achievable if there exists a joint distribution
p(u1, u2, s1, s2, z) = p(u1|s1)p(u2|s2)p(s1, s2, z), and
functions xj(uj , sj), gj(u1, u2, y, z) for j = 1, 2, such that

I(U1;S1|U2, Z) < I(U1;Y |U2, Z) (7)
I(U2;S2|U1, Z) < I(U2;Y |U1, Z) (8)

I(U1, U2;S1, S2|Z) < I(U1, U2;Y |Z) (9)

and E[dj(Sj , gj(U1, U2, Y, Z))] ≤ Dj for j = 1, 2.

Proof. Our achievable scheme builds upon the hybrid cod-
ing framework of [6], by generalizing it to the case with
decoder side information. The detailed proof is available in
Appendix A.

IV. SEPARATION THEOREMS

We now focus on the conditions under which separation is
optimal for lossy coding of correlated sources over a MAC.
For the remainder of this section, we assume that S1 and S2

are independent conditioned on Z, i.e., the Markov condition
S1 − Z − S2 holds.

1) Separation in the Presence of Common Observation:
Here, we assume that only switch SW2 in Fig.1 is closed, and
show the optimality of separation if the lossless reconstruction
of the common observation Z is required.

Theorem 2. Consider the communication of correlated
sources S1, S2, and Z, where Z is observed by both encoders.
If S1−Z−S2 holds, then separation is optimal, and (D1, D2)
is achievable if

RS1|Z(D1) < I(X1;Y |X2,W ) (10)
RS2|Z(D2) < I(X2;Y |X1,W ) (11)

RS1|Z(D1) +RS2|Z(D2) < I(X1, X2;Y |W ) (12)
H(Z) +RS1|Z(D1) +RS2|Z(D2) < I(X1, X2;Y ) (13)

for some p(x1, x2, y, w) = p(y|x1, x2)p(x1|w)p(x2|w)p(w).
Conversely, if a distortion pair (D1, D2) is achievable, then

(10)-(13) must hold with < replaced with ≤.

Proof. We provide a detailed proof in Appendix B.

Corollary 1. A special case of Theorem 2 is the transmission
of two correlated sources over a MAC with one distortion
criterion, when one source is available at both encoders as
considered in [4], which corresponds to S2 being a constant
in Theorem 2.

A related scenario is when the two sources share a common
part in the sense of of Gács-Körner. The following result states
that, in accordance with Theorem 2, if the two sources are
independent when conditioned on the Gács-Körner common
part, then separate source and channel coding is optimal if
lossless reconstruction of the common part is required.

Corollary 2. Consider the transmission of correlated sources
S1 and S2 with a common part U0 = f1(S1) = f2(S2) from

Definition 2. If S1 − U0 − S2 and the common part U0 of S1

and S2 is to be recovered losslessly, then, separate source and
channel coding is optimal.

Proof. From Definition 2, the two encoders can separately
reconstruct U0. The result then follows by letting Z ← U0

in Theorem 2.

2) Separation in the Presence of Shared Encoder-Decoder
Side Information: We next assume that both switches in Fig.1
are closed, and show the optimality of separation if the two
sources are independent given the side information that is
shared between the encoders and the decoder.

Theorem 3. Consider communication of two correlated
sources S1 and S2 with side information Z shared between
the encoders and the decoder. If S1 − Z − S2 holds, then
separation is optimal, and (D1, D2) is achievable if

RS1|Z(D1) < I(X1;Y |X2, Q) (14)
RS2|Z(D2) < I(X2;Y |X1, Q) (15)

RS1|Z(D1) +RS2|Z(D2) < I(X1, X2;Y |Q) (16)

for some p(x1, x2, y, q) = p(y|x1, x2)p(x1|q)p(x2|q)p(q).
Conversely, for any achievable (D1, D2) pair, (14)-(16)

must hold with < replaced with ≤.

Proof. See Appendix C.

When side information Z is available only at the decoder,
i.e., when only switch SW1 is closed, separation is known to
be optimal for the lossless transmission of sources S1 and S2

whenever S1 − Z − S2 [5]. In light of Theorem 3, we show
that a similar result holds for the lossy case whenever the
Wyner-Ziv rate distortion function of each source is equal to
its conditional rate distortion function.

Corollary 3. Consider the communication of correlated
sources S1 and S2 with decoder only side information Z. If

RSj |Z(Dj) = RWZ
Sj |Z(Dj), (17)

where

RWZ
Sj |Z(Dj) , min

p(uj |sj),g(uj ,z):
E[dj(Sj ,g(Uj ,Z))]≤Dj

Uj−Sj−Z

I(Sj ;Uj |Z) for j = 1, 2,

is the (Wyner-Ziv) rate distortion function of Sj with decoder-
only side information Z [20], and S1−Z−S2 form a Markov
chain, then separation is optimal, with the necessary and
sufficient conditions in (14)-(16).

Proof. Corollary 3 follows from the fact that whenever (17)
holds, conditional rate distortion functions in Theorem 3 are
achievable by relying on decoder side information only.

We note that Gaussian sources are an example for (17).

Remark 1. We would like to note that the optimality/sub-
optimality of separation for the case of decoder-only side
information conditioned on which the two sources are in-
dependent is open in general. In addition to the setting in
Corollary 3, the optimality of separation holds also for lossless
reconstruction [5].
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Lastly, we consider the transmissibility of correlated sources
with a common part when the common part is available at the
decoder. The following result states that if the two sources are
independent when conditioned on the Gács-Körner common
part, separation is again optimal if the decoder has access to
the common part.

Corollary 4. Consider the transmission of sources S1 and S2

with a common part U0 = f1(S1) = f2(S2) from Definition 2.
Then, separation is optimal if S1 −U0 − S2 and the common
part U0 is available at the decoder.

Proof. Since both encoders can extract U0 individually, each
source can achieve the corresponding conditional rate distor-
tion function. Corollary 4 then follows from Theorem 3 by
letting Z ← U0.

In the following, we leverage these separation results to
obtain necessary conditions for the lossy coding of correlated
sources over a MAC without side information.

V. NECESSARY CONDITIONS FOR TRANSMITTING
CORRELATED SOURCES OVER A MAC

We consider in this section the lossy coding of correlated
sources over a MAC when both switches in Fig. 1 are
open; see Fig. 2. We provide necessary conditions for the
achievability of a distortion pair (D1, D2) using our results
from Section IV. This will be achieved by providing correlated
side information to the encoders and the decoder, conditioned
on which the two sources are independent. From Theorem 3,
separation is optimal in this setting, and the corresponding
necessary and sufficient conditions for the achievability of a
distortion pair serve as necessary conditions for the original
problem. Corresponding necessary conditions are presented in
Theorem 4 below.

Theorem 4. Consider the communication of correlated
sources S1 and S2 over a MAC. If a distortion pair (D1, D2)
is achievable, then for every Z satisfying the Markov condition
S1 − Z − S2, we have

RS1|Z(D1) ≤ I(X1;Y |X2, Q), (18)
RS2|Z(D2) ≤ I(X2;Y |X1, Q), (19)

RS1|Z(D1) +RS2|Z(D2) ≤ I(X1, X2;Y |Q), (20)
RS1S2

(D1, D2) ≤ I(X1, X2;Y ), (21)

for some Q for which X1 − Q − X2 form a Markov chain,
where

RS1S2
(D1, D2) = min

p(ŝ1,ŝ2|s1,s2)

E[d1(S1,Ŝ1)]≤D1

E[d2(S2,Ŝ2)]≤D2

I(S1, S2; Ŝ1, Ŝ2)

is the rate distortion function of the joint source (S1, S2)
with target distortions D1 and D2 for sources S1 and S2,
respectively.

Proof. For any Z that satisfies the Markov condition S1 −
Z − S2, we consider the genie-aided setting in which Zn is
provided to the encoders and the decoder. Then, we obtain
the setting in Theorem 3. Conditions (18)-(20) follow from

Encoder 1

Encoder 2

Decoder

Sn
1

Sn
2

Xn
1

Xn
2

Y n

p(y|x1, x2)
(Ŝn

1 , Ŝ
n
2 )

Fig. 2. Correlated sources over a MAC.

Theorem 3, whereas condition (21) follows from the cut-set
bound.

A. Correlated Sources over a Gaussian MAC

In this section, we focus on a memoryless MAC with
additive Gaussian noise:

Y = X1 +X2 +N, (22)

where N is a standard Gaussian random variable. We impose
the input power constraints 1

n

∑n
i=1 E[X2

ji] ≤ P , j = 1, 2.
In the following, we specialize the necessary conditions of
Theorem 4 to a Gaussian MAC.

Corollary 5. If a distortion pair (D1, D2) is achievable for
sources (S1, S2) over the Gaussian MAC in (22), then for
every Z that forms a Markov chain S1 − Z − S2, we have

RS1|Z(D1) +RS2|Z(D2) ≤ 1

2
log(1 + β1P + β2P ) (23)

RS1S2(D1, D2) ≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2))

(24)

for some 0 ≤ β1, β2 ≤ 1.

Proof. The corollary follows by considering only (20)-(21),
and from the fact that the right hand sides (RHSs) of these
inequalities are maximized by Gaussian Q, X1, and X2 [21].

1) Gaussian Sources over a Gaussian MAC: This section
studies the necessary conditions for transmitting correlated
Gaussian sources over a Gaussian MAC. Consider a bivariate
Gaussian source (S1, S2) such that(

S1

S2

)
∼ N

((
0
0

)
,

(
1 ρ
ρ 1

))
, (25)

transmitted over the DM Gaussian MAC in (22), under the
squared error distortion measures dj(Sj , Ŝj) = (Sj− Ŝj)2 for
j = 1, 2.

For this setup, various notable results exist, each presenting
different sets of necessary conditions. The following necessary
condition is obtained in [7, Theorem IV.1]:

RS1S2
(D1, D2) ≤ 1

2
log(1 + 2P (1 + ρ)). (26)

Another set of necessary conditions is proposed in [8, Theorem
2]. By substituting σ2

Z = σ2
1 = σ2

2 = 1 and E1 = E2 = P in
[8, Theorem 2], these conditions can be stated as follows:

1

(1− ρ̂)2
ln

(
1− ρ2

Dk

)
≤ P, k = 1, 2, (27)
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(ln 2)RS1S2
(D1, D2) ≤ P (1 + ρ̂), (28)

for some 0 ≤ ρ̂ ≤ |ρ|.
Other sets of necessary conditions have recently been

presented in [10, Theorem 1], [13, Proposition 2], and [11,
Theorems 1 and 4], all incorporating various auxiliary random
variables. It is not possible in general to compare Theorem 4
over the full set of conditions presented in these results, since
this involves optimization of auxiliary random variables and a
large number of parameters. For this reason, here we compare
Corollary 5 with (26), (27)-(28), along with the conditions
from [10, Corollary 1.1], which is a relaxed version of [10,
Theorem 1]. Note that Corollary 5 is also a weaker version
of Theorem 4, where, for fairness, the first two single rate
conditions are removed as in [10, Corollary 1.1].

The set of necessary conditions from [10, Corollary 1.1]
can be stated as:

RS1S2
(D1, D2)− 1

2
log

1 + ρ

1− ρ ≤
1

2
log(1 + β1P + β2P )

(29)

RS1S2
(D1, D2) ≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2))

(30)

for some 0 ≤ β1, β2 ≤ 1.

For the necessary conditions in Corollary 5, we let Z be
the common part of (S1, S2) with respect to Wyner’s common
information from (6). The common part can be characterized
as follows [22, Proposition 1]. Let Z, N1, and N2 be standard
random variables. Then, S1, and S2 can be expressed as

Si =
√
ρZ +

√
1− ρNi, i = 1, 2, (31)

where I(S1, S2;Z) = 1
2 log 1+ρ

1−ρ and I(S1, S2;Z ′) >
1
2 log 1+ρ

1−ρ for all S1 − Z ′ − S2 with Z ′ 6= Z.

The rate distortion function for Si with encoder and decoder
side information Z is [23]:

RSi|Z(Di) =

{
1
2 log 1−ρ

Di
if 0 < Di < 1− ρ

0 if Di ≥ 1− ρ (32)

for i = 1, 2. We also have, from [7], [24], that,

RS1S2(D1, D2)

=


1
2 log

(
1

min(D1,D2)

)
if (D1, D2)∈D1

1
2 log+

(
1−ρ2
D1D2

)
if (D1, D2)∈D2

1
2 log+

(
1−ρ2

D1D2−
(
ρ−
√

(1−D1)(1−D2)
)2

)
if (D1, D2)∈D3

(33)

where log+(x) = max{0, log(x)}, and

D1 =

{
(D1, D2) : (0 ≤ D1 ≤ 1− ρ2,

D2 ≥ 1− ρ2 + ρ2D1) or
(

1− ρ2 < D1 ≤ 1,

D2 ≥ 1− ρ2 + ρ2D1, D2 ≤
D1 − (1− ρ2)

ρ2

)}
(34)

1− ρ2 11− ρ

D1
D2

D3

1− ρ

1− ρ2

1
D1

D1

D2

(a)

1− ρ2 11− ρ

1− ρ

1− ρ2

1

A

B

C

D E

F

G H

I

J

D1

D2

(b)

Fig. 3. (a) Regions D1, D2, and D3. (b) Partitioned distortion regions for
(D1, D2).

D2 =

{
(D1, D2) : 0 ≤ D1 ≤ 1− ρ2, 0 ≤ D2

< (1− ρ2 −D1)
1

1−D1

}
(35)

D3 =

{
(D1, D2) :

(
0 ≤ D1 ≤ 1− ρ2,

(1− ρ2 −D1)
1

1−D1
≤ D2 < 1− ρ2 + ρ2D1

)
or(

1− ρ2 < D1 ≤ 1,
D1 − (1− ρ2)

ρ2
< D2

< 1− ρ2 +ρ2D1

)}
. (36)

Fig. 3a illustrates the regions D1, D2, and D3 as in [7].
By analyzing the corresponding expressions from Corol-

lary 5, (26), (27)-(28), and (29)-(30), the next proposition
shows that there exist (D1, D2) values for which Corollary 5 is
tighter; that is, while other results cannot make any judgement
on the achievability of such (D1, D2) pairs, they are shown
not to be achievable thanks to Corollary 5.

Proposition 1. There exist distortion pairs that are included
in the outer bounds of [7, Theorem IV.1], [8, Theorem 2], and
[10, Corollary 1.1], but not in the outer bound of Corollary 5.

Proof. The details are given in Appendix D.

A graphical illustration of the bounds from Corollary 5, [7,
Theorem IV.1], and [10, Corollary 1.1] can be provided as
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follows. Define

r1(β1, β2) ,
1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2)), (37)

r2(β1, β2) ,
1

2
log(1 + β1P + β2P ), (38)

and consider the region

R =
⋃

0≤β1,β2≤1

{(R1, R2) : R1 ≤ r1(β1, β2), R2 ≤ r2(β1, β2)} .

(39)
The necessary conditions in Corollary 5 state that, if a
(D1, D2) pair is achievable, then(

RS1S2(D1, D2), RS1|Z(D1) +RS2|Z(D2)
)
∈ R. (40)

The necessary conditions in (29)-(30) state that, if a (D1, D2)
pair is achievable, then(

RS1S2
(D1, D2), RS1S2

(D1, D2)− 1

2
log

1 + ρ

1− ρ

)
∈ R.

(41)
Let D1 = 0.145 < 1− ρ. Consider first Region B, for which
D1 ≤ 1−ρ and 1−ρ ≤ D2 ≤ 1−ρ2−D1

1−D1
. For a (D1, D2) pair

in Region B, i.e., D1 = 0.145 and 1 − ρ ≤ D2 ≤ 1−ρ2−D1

1−D1
,

we have from (32) and (33) that(
RS1S2(D1, D2), RS1|Z(D1) +RS2|Z(D2)

)
=

(
1

2
log

1− ρ2

D1D2
,

1

2
log

1− ρ
D1

)
. (42)

The (RS1S2(D1, D2), RS1|Z(D1)+RS2|Z(D2)) pairs obtained
from (42) for increasing D2 values within Region B are
illustrated with a green “+” sign in Fig. 4a. The region R from
(39) is the region shaded in blue in the same figure. Whenever
a point from (42) falls outside of R, we conclude that the
corresponding (D1, D2) pair is not achievable according to
Corollary 5. We also evaluate(

RS1S2
(D1, D2), RS1S2

(D1, D2)− 1

2
log

1 + ρ

1− ρ

)
=

(
1

2
log

1− ρ2

D1D2
,

1

2
log

(1− ρ)2

D1D2

)
(43)

for points (0.145, D2) in Region B, using (33). The points
corresponding to (43) for different D2 values are marked with
a dark blue “*” in Fig. 4a. Whenever a point from (43) is not
contained within R, then the corresponding (D1, D2) pair is
not achievable according to (29)-(30).

Next, we consider (D1, D2) pairs from Region D, for which
D1 ≤ 1−ρ and 1−ρ2−D1

1−D1
≤ D2 ≤ 1−ρ2 +ρ2D1. We evaluate(

RS1S2
(D1, D2), RS1|Z(D1) +RS2|Z(D2)

)
=

(
1

2
log+

(
1−ρ2

D1D2−
(
ρ−
√

(1−D1)(1−D2)
)2),12 log

1−ρ
D1

)
(44)

from (32)-(33). The values obtained for D1 = 0.145 and D2 ∈(
1−ρ2−D1

1−D1
, 1− ρ2 + ρ2D1

)
are marked with a purple “+” in

1.3 1.4 1.5 1.6

0

0.2

0.4

0.6

0.8

1
D1 = 0.145

R

Corollary 5

Region D

Region G

Region B

[7, Theorem IV.1]

[10, Corollary 1.1]

(a)

1.3 1.4 1.5 1.6

0

0.2

0.4

0.6

0.8

1
D1 = 0.16

R

Region B

Corollary 5

Region D

Region G

[7, Theorem IV.1]

[10, Corollary 1.1]

(b)

Fig. 4. Comparison of the necessary conditions from Corollary 5 with the
necessary conditions from (26) and (29)-(30), respectively, for P = 2, ρ =
0.5, and (a) D1 = 0.145, (b) D1 = 0.16.

Fig. 4a. Similarly, from (33), for (D1, D2) ∈ Region D,(
RS1S2

(D1, D2), RS1S2
(D1, D2)− 1

2
log

1 + ρ

1− ρ

)
=

(
1

2
log+

(
1− ρ2

D1D2 −
(
ρ−

√
(1−D1)(1−D2)

)2
)
,

1

2
log+

(
(1− ρ)2

D1D2 −
(
ρ−

√
(1−D1)(1−D2)

)2
))

. (45)

Corresponding points for D1 = 0.145 and increasing D2

values in Region D are illustrated with a red “x” marking
in Fig. 4a.

Finally, we consider (D1, D2) ∈ Region G, where D1 ≤
1− ρ, 1− ρ2 + ρ2D1 ≤ D2 ≤ 1, and(

RS1S2(D1, D2), RS1|Z(D1) +RS2|Z(D2)
)

=

(
1

2
log

1

D1
,

1

2
log

1− ρ
D1

)
. (46)

Corresponding points are marked with a pink “+” in Fig. 4a.
Note that since (46) depends only on D1, these points appear
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as a single point. We also evaluate(
RS1S2

(D1, D2), RS1S2
(D1, D2)− 1

2
log

1 + ρ

1− ρ

)
=

(
1

2
log

1

D1
,

1

2
log

1− ρ
D1(1 + ρ)

)
(47)

for 1−ρ2 +ρ2D1 ≤ D2 ≤ 1 from (33). This is marked with a
black “*” in Fig. 4a. Since (47) also depends only on D1, they
appear as a single point. One can observe from (42)-(43), as
well as from (44)-(45) and (46)-(47), that the points that share
the same value on the horizontal axis in Fig. 4a correspond to
the same (D1, D2) pairs, as the first terms of both (42)-(43)
and (44)-(45) as well as (46)-(47) are equal.

Lastly, we illustrate the RHS of (26) with a straight line
in Fig. 4a. The points on the RHS of this line correspond to
(D1, D2) pairs that are not achievable according to (26), since
for these points one has

RS1S2
(D1, D2) >

1

2
log(1 + 2P (1 + ρ)). (48)

In order to compare the three bounds, we investigate the
(D1, D2) pairs that cannot be achieved by Corollary 5, (26),
and (29)-(30), respectively. From Fig. 4a, we find that when
D1 = 0.145, some (D1, D2) pairs in Regions G and D (from
Fig. 3b) satisfy both (26) and (29)-(30), but not Corollary 5,
as can be observed from the pink and purple points marked
with the “+” sign that are on the left hand side (LHS) of the
straight line, but outside of R. Therefore, we can conclude
that there exist distortion pairs for which Corollary 5 provides
tighter conditions than both (26) and (29)-(30) in Regions G
and D.

We also compare the corresponding bounds when D1 =
0.16 in Fig. 4b. From the green points marked with the “+”
sign that are on the LHS of the straight line but are outside
of R, we observe that there exist distortion pairs in Region
B for which Corollary 5 provides tighter conditions than both
(26) and (29)-(30).

We note, however, that Corollary 5 is not necessarily strictly
tighter for all (D1, D2) pairs. The next proposition states
that there exist (D1, D2) pairs for which (26) is tighter than
Corollary 5.

Proposition 2. There exist distortion pairs that are in the
outer bound of Corollary 5, but not in the outer bound of [7,
Theorem IV.1].

Proof. The details are available in Appendix E.

2) Binary Sources over a Gaussian MAC: We next study
the transmission of a doubly symmetric binary source (DSBS)
over a Gaussian MAC. Consider a DSBS with joint distribution

p(S1 =s1, S2 =s2) =
1−α

2
(1−|s1−s2|) +

α

2
|s1−s2|, (49)

a memoryless Gaussian MAC from (22), and Hamming distor-
tion dj(Sj , Ŝj)= |Sj−Ŝj | where Ŝj=Sj={0, 1} for j = 1, 2.

For the conditions in Corollary 5, we choose the variable
Z as illustrated in Fig. 5a. Then the joint distribution for
(Si, Z) is as given in Fig. 5b for i = 1, 2. Note that Z
forms a Z-channel both with S1 and S2 while satisfying

Z
0

1
α/
(1
− α) α

0

1

S1 S2 0

1

0

1

Z

Si

1

2
0

α

2(1−α)

1−2α

2(1−α)

(a) (b)

Fig. 5. (a) Z-channel structure. (b) p(Si, Z) for i = 1, 2.

S1−Z−S2. Using the conditional rate-distortion function for
the Z-channel setting from [25], one can evaluate Corollary 5.

We compare Corollary 5 first with the set of necessary
conditions from [7, Remark IV.1],

RS1S2
(D1, D2) ≤ 1

2
log(1 + 2P (1 + ρmax)), (50)

where RS1S2
(D1, D2) is as in [26, Theorem 2], and ρmax is

the Hirschfield-Gebelin-Rényi maximal correlation for DSBS
given by [27]:

ρmax =
√

2(α2 + (1− α)2)− 1. (51)

We next consider the necessary conditions from [10, Corol-
lary 1.1],

RS1S2
(D1, D2)− 1− h(α) + 2h(θ) ≤ 1

2
log(1+β1P+β2P )

(52)

RS1S2
(D1, D2) ≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2))

(53)

for some 0 ≤ β1, β2 ≤ 1, where θ = (1/2)(1−
√

1− 2α) and
h(λ) = −λ log λ − (1 − λ) log(1 − λ) is the binary entropy
function, and CW (S1, S2) from (6) is as in [19].

The last set of necessary conditions we consider is obtained
from [10, Theorem 1] by removing (9a) and (9b) and letting
W ← Z, where Z is as defined in Fig. 5,

RS1S2
(D1, D2)− 1 +

α

1− αh(α) ≤ 1

2
log(1 + β1P + β2P ),

(54)

RS1S2
(D1, D2) ≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2)),

(55)

for some 0 ≤ β1, β2 ≤ 1. In the following, we compare
Corollary 5 with the necessary conditions from (50) and (52)-
(53) as well as from (54)-(55).

Proposition 3. There exist distortion pairs that satisfy the
outer bounds of [7, Remark IV.1], [10, Corollary 1.1], and
(54)-(55) but not the outer bound of Corollary 5 for the binary
setup.

Proof. The details are provided in Appendix F.

VI. CONCLUSIONS

We have considered the lossy coding of correlated sources
over a MAC. We have provided an achievable scheme for the
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transmission of correlated sources in the presence of decoder
side information, and investigated the conditions under which
separate source and channel coding is optimal when the
encoder and/or decoder has access to side information. By
leveraging the obtained separation theorem in the presence
of a common side information conditioned on which the two
sources are independent, we derived a simple and computable
set of necessary conditions for the lossy coding of correlated
sources over a MAC. The comparison of the new neces-
sary conditions with the known results from the literature
are provided for the Gaussian setting, i.e., Gaussian sources
transmitted over a Gaussian MAC, as well as for a DSBS
over a Gaussian MAC. Identifying necessary conditions for the
transmissibility of correlated sources is an active open research
direction. A direct comparison of the proposed necessary
conditions appear to be difficult analytically, and, due to the
dimensionality of the search space, numerically. Accordingly,
we point to this problem as an interesting future direction. An-
other interesting open problem is the optimality/suboptimality
of separation in the presence of decoder-only side information,
conditioned on which the two sources are independent. Other
future directions include the (sub)optimality of separation in
other multi-terminal scenarios with side information.

APPENDIX A
PROOF OF THEOREM 1

Our achievable scheme is along the lines of [6]. For com-
pleteness, we provide the details in the sequel.

Generation of the codebook: Choose ε > ε′ > 0. Fix
p(u1|s1), p(u2|s2), x1(u1, s1), x2(u2, s2), ŝ1(u1, u2, y, z) and
ŝ2(u1, u2, y, z) with E[dj(Sj , Ŝj)] ≤ Dj

1+ε for j = 1, 2.

For each j = 1, 2, generate 2nRj sequences unj (mj) for
mj ∈ {1, . . . , 2nRj} independently at random conditioned on
the distribution

∏n
i=1 pUj (uji). The codebook is known by the

two encoders and the decoder.
Encoding: Encoder j = 1, 2 observes a sequence snj

and tries to find an index mj ∈ {1, . . . , 2nRj} such that
the corresponding unj (mj) is jointly typical with snj , i.e.,
(snj , u

n
j (mj)) ∈ T (n)

ε′ . If more than one index exist, the
encoder selects one of them uniformly at random. If no
such index exists, it selects a random index uniformly. Upon
selecting the index, encoder j sends xji = xj(uji(mj), sji)
for i = 1, . . . , n to the decoder.

Decoding: The decoder observes the channel output yn and
side information zn, and tries to find a unique pair of indices
(m̂1, m̂2) such that (un1 (m̂1), un2 (m̂2), yn, zn) ∈ T (n)

ε and sets
ŝji = ŝj(u1i(m1), u2i(m2), yi, zi) for i = 1, . . . , n for j =
1, 2.

Expected Distortion Analysis: Let M1 and M2 denote the
indices selected by encoder 1 and encoder 2. Define

E{(Sn1 , Sn2 , Un1 (M̂1), Un2 (M̂2), Y n, Zn) /∈ T (n)
ε } (56)

such that the distortion pair (D1, D2) is satisfied if P (E)→ 0

Encoder 0

Decoder

Encoder 2

Encoder 1

Y n
0

Y n
1

Y n
2

(Ŷ n
0 , Ŷ n

1 , Ŷ n
2 )

Fig. 6. Distributed source coding for correlated sources (Y0, Y1, Y2) where
Yj is observed by encoder j = 0, 1, 2. The decoder reconstructs Y0 losslessly,
while Y1 and Y2 are reconstructed in a lossy manner, with respect to the
distortion criterion in (63).

as n→∞. Let

Ej={(Snj , Unj (mj)) /∈ T (n)
ε′ ∀mj}, j = 1, 2 (57)

E3 ={(Sn1 , Sn2 , Un1 (M1), Un2 (M2), Y n, Zn) /∈ T (n)
ε } (58)

E4 ={(Un1 (m1), Un2 (m2), Y n, Zn) ∈ T (n)
ε

for some m1 6= M1,m2 6= M2} (59)

E5 ={(Un1 (m1), Un2 (M2), Y n, Zn)∈T (n)
ε for some m1 6=M1}

(60)

E6 ={(Un1 (M1), Un2 (m2), Y n, Zn)∈T (n)
ε for some m2 6=M2}

(61)

Then,

P (E) ≤P (E1) + P (E2) + P (E3 ∩ Ec1 ∩ Ec2) + P (E4)

+ P (E5) + P (E6). (62)

Through standard techniques based on joint typicality coding,
it can be shown that P (E)→ 0 as n→∞ and one can bound
the expected distortions for Ec for the two sources S1 and S2,
when the sufficient conditions in (7)-(9) are satisfied.

APPENDIX B
PROOF OF THEOREM 2

A. Achievability

Our source coding part is based on the distributed source
coding scheme with a common part from [28]. For complete-
ness, we briefly outline the problem setup in [28], also depicted
in Fig. 6. This problem considers the transmission of correlated
DM sources (Y0, Y1, Y2) such that Yj is observed by encoder
j = 0, 1, 2. Lossless reconstruction of source Y0 is required
at the decoder, while the remaining two sources, Y1 and Y2,
are recovered in a lossy manner, with respect to corresponding
per-letter distortion constraints. In other words, we have

lim sup
n→∞

1

n

n∑
i=1

E[dj(Yji, Ŷji)] ≤ Dj , j = 1, 2. (63)

and P (Y n0 6= Ŷ n0 ) → 0 as n → ∞. Sources Y1 and Y2

also have a common component X such that, for a pair
of deterministic functions f and g, X = f(Y1) = g(Y2)
and H(X) > 0. An achievable rate-distortion region for the
distributed source coding system in Fig. 6 is given in [28,
Theorem 1].
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By letting Y0 ← Z, Yj ← (Sj , Z) for j = 1, 2, and X ← Z
in Fig. 6, we observe for this setup that any achievable rate
pair for the system in Fig. 6 is also achievable for our system.
This follows from the fact that in our setup Z is available to
both encoders, as a result, the encoders can cooperate to send
it to the decoder and realize any achievable scheme in [28].

Letting U = X in [28, Theorem 1] and substituting X ← Z,
Y0 ← Z, Ŷ0 ← Ẑ, Yj ← (Sj , Z), Vj ← Uj , Ŷj ← Ŝj , and
dj(Yj , Ŷj)← dj(Sj , Ŝj) for j = 1, 2, we find that a distortion
pair (D1, D2) is achievable for the rate triplet (R0, R1, R2) if

R0 ≥ H(Z|Z,U1, U2) (64)
R1 ≥ I(S1, Z;U1|Z,U2) (65)
R2 ≥ I(S2, Z;U2|Z,U1) (66)

R0 +R1 ≥ H(Z|Z,U2) + I(S1, Z;U1|Z,U2) (67)
R0 +R2 ≥ H(Z|Z,U1) + I(S2, Z;U2|Z,U1) (68)
R1 +R2 ≥ I(S1, S2, Z;U1, U2, Z|Z) (69)

R0 +R1 +R2 ≥ H(Z) + I(S1, S2, Z;U1, U2, Z|Z) (70)

and E[dj(Sj , Ŝj)] ≤ Dj for j = 1, 2, for some distribution

p(z, s1, s2, u1, u2, ŝ1, ŝ2) = p(z, s1, s2)p(u1|s1, z)p(u2|s2, z)

× p(ŝ1, ŝ2|z, u1, u2). (71)

Condition (64) can be removed without loss of generality. We
can write (65) as,

R1 ≥ I(S1, Z;U1|Z,U2) (72)
= H(U1|Z,U2)−H(U1|S1, Z, U2) (73)
= H(U1|Z)−H(U1|S1, Z) (74)
= I(S1;U1|Z) (75)

where (74) is from U1 − S1Z − U2 and U1 − Z − U2 since

p(u1, u2|z) =
∑
s1,s2

p(u1|s1, z)p(u2|s2, z)p(s1|z)p(s2|z) (76)

=
∑
s1,s2

p(u1, s1|z)p(u2, s2|z) (77)

= p(u1|z)p(u2|z) (78)

where (76) is from U1 − S1Z − S2U2 and U2 − S2Z − S1 as
well as S1 − Z − S2.

Following the steps in (72)-(75), we can write (67) as

R0 +R1 ≥ I(S1;U1|Z), (79)

which, comparing with (75), indicates that (67) can be re-
moved without loss of generality.

Following similar steps, we can write (66) and (68) as

R2 ≥ I(S2;U2|Z) (80)
R0 +R2 ≥ I(S2;U2|Z) (81)

respectively, which show that condition (68) can also be
removed. For (69)-(70), we find that

I(S1, S2, Z;U1, U2, Z|Z)

= I(S1, S2;U1, U2|Z) (82)
= H(U1|Z) +H(U2|Z,U1)−H(U1|Z, S1)−H(U2|Z, S2)

(83)

= H(U1|Z)+H(U2|Z)−H(U1|Z, S1)−H(U2|Z, S2) (84)
= I(S1;U1|Z) + I(S2;U2|Z) (85)

where (83) holds as U1 − ZS1 − S2 and U2 − ZS2 − S1U1;
and (84) follows from U1 − Z − U2 shown in (78).

Combining (75), (79), (80), and (81) with (85), we restate
(64)-(71) as follows. A distortion pair (D1, D2) is achievable
for the rate triplet (R0, R1, R2) if

R1 ≥ I(S1;U1|Z) (86)
R2 ≥ I(S2;U2|Z) (87)

R1 +R2 ≥ I(S1;U1|Z) + I(S2;U2|Z) (88)
R0 +R1 +R2 ≥ H(Z)+I(S1;U1|Z) + I(S2;U2|Z) (89)

and E[dj(Sj , Ŝj)] ≤ Dj for j = 1, 2, for some distribution

p(z, s1, s2)p(u1|s1, z)p(u2|s2, z)p(ŝ1, ŝ2|z, u1, u2). (90)

We next show that one can set Ŝj = fj(Z,U1, U2) for
j = 1, 2 without loss of optimality. To do so, we write

E[d1(S1, Ŝ1)] =
∑
s1,ŝ1

p(s1, ŝ1)d1(s1, ŝ1) (91)

=
∑

s1,ŝ1,ŝ2,z,u1,u2

p(ŝ1, ŝ2|z, u1, u2, s1)

× p(z, u1, u2, s1)d1(s1, ŝ1) (92)

=
∑

s1,ŝ1,ŝ2,z,u1,u2

p(ŝ1, ŝ2|z, u1, u2)

× p(z, u1, u2, s1)d1(s1, ŝ1) (93)

=
∑

z,u1,u2

∑
ŝ1

∑
s1

p(ŝ1|z, u1, u2)

× p(z, u1, u2, s1)d1(s1, ŝ1) (94)

≥
∑

z,u1,u2,s1

p(z, u1, u2, s1)d1(s1, f1(z, u1, u2))

(95)
= E[d1(S1, f1(Z,U1, U2))] (96)

where we define a function f1 : Z × U1 × U2 → Ŝ1 in (95)
such that,

f1(z, u1, u2) = arg min
ŝ1

∑
s1

p(z, u1, u2, s1)d1(s1, ŝ1) (97)

and set p(ŝ1|z, u1, u2) = 1 for ŝ1 = f1(z, u1, u2) and
p(ŝ1|z, u1, u2) = 0 otherwise.

A similar argument follows for S2 by defining a function
f2 : Z × U1 × U2 → Ŝ2 leading to

E[d2(S2, Ŝ2)] ≥ E[d2(S2, f2(Z,U1, U2))]. (98)

Therefore, we can set Ŝj = fj(Z,U1, U2) for j = 1, 2.
We next show for j = 1, 2 that whenever there exists a

function fj(Z,U1, U2) such that

E[dj(Sj , fj(Z,U1, U2))] ≤ Dj , (99)

then there exists a function gj(Z,Uj) such that

E[dj(Sj , gj(Z,Uj))] ≤E[dj(Sj , fj(Z,U1, U2))]≤Dj . (100)

We show this result along the lines of [29]. Consider a
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function f1(Z,U1, U2) such that E[d1(S1, f1(Z,U1, U2))] ≤
D1. From the law of iterated expectations,

E[d1(S1, f1(Z,U1, U2))]

= ES2,U2,Z [ES1,U1|S2,U2,Z [d1(S1, f1(Z,U1, U2))]] (101)
= ES2,U2,Z [ES1,U1|Z [d1(S1, f1(Z,U1, U2))]] (102)

(102) holds due to U1S1 − Z − U2S2, see (76)-(77). Define
φ : Z → U2 such that

φ(z) , arg min
u2

ES1,U1|Z=z[d1(S1, f1(z, U1, u2))]. (103)

Then for each Z = z,

ES2,U2|Z=z[ES1,U1|Z=z[d1(S1, f1(z, U1, U2))]]

≥ ES1,U1|Z=z[d1(S1, f1(z, U1, φ(z)))], (104)

and hence,

E[d1(S1, f1(Z,U1, U2))]

= EZ [ES2,U2|Z=z[ES1,U1|Z=z[d1(S1, f1(z, U1, U2))]]]
(105)

≥ EZ [ES1,U1|Z=z[d1(S1, f1(z, U1, φ(z)))]] (106)
= ES1,U1,Z [d1(S1, f1(Z,U1, φ(Z)))] (107)
= E[d1(S1, g1(Z,U1))] (108)

where g1(Z,U1) = f1(Z,U1, φ(Z)).

Following similar steps, for any f2(Z,U1, U2) that achieves
E[d2(S2, f2(Z,U1, U2))] ≤ D2 we can find a function
g2(Z,U2) such that

E[d2(S2, f2(Z,U1, U2))] ≥ E[d2(S2, g2(Z,U2))]. (109)

Combining (96), (98), (108), (109) with (3) and (4), we can
state the rate region in (86)-(89) as follows. A distortion pair
(D1, D2) is achievable for the rate triplet (R0, R1, R2) if

R1 ≥ RS1|Z(D1) (110)
R2 ≥ RS2|Z(D2) (111)

R1 +R2 ≥ RS1|Z(D1) +RS2|Z(D2) (112)
R0 +R1 +R2 ≥ H(Z) +RS1|Z(D1) +RS2|Z(D2) (113)

since for any p(sj , uj , z) = p(uj |sj , z)p(sj |z)p(z) and
gj(z, uj) with E[dj(Sj , gj(Z,Uj))] ≤ Dj ,

I(Sj ;Uj |Z) ≥ RSj |Z(Dj), j = 1, 2, (114)

where RSj |Z(Dj) is defined in (4). This completes the source
coding part.

Our channel coding is based on coding for a MAC with
a common message [30], for which any triplet of rates
(R0, R1, R2) is achievable if

R1 ≤ I(X1;Y |X2,W ) (115)
R2 ≤ I(X2;Y |X1,W ) (116)

R1 +R2 ≤ I(X1, X2;Y |W ) (117)
R0 +R1 +R2 ≤ I(X1, X2;Y ) (118)

for some p(x1, x2, y, w) = p(y|x1, x2)p(x1|w)p(x2|w)p(w).

B. Converse

Our proof is along the lines of [17] and [4]. Suppose there
exist encoding functions ej : Snj × Zn → Xnj for j = 1, 2,
decoding functions gj : Yn → Ŝnj for j = 1, 2 and g0 : Yn →
Ẑn such that 1

n

∑n
i=1E[dj(Sji, Ŝji)] ≤ Dj + ε for j = 1, 2

and P (Zn 6= Ẑn) ≤ Pe where ε→ 0, Pe → 0 as n→∞.
Define Uji = (Y n, Si−1

j , Zci ) for j = 1, 2 where
Zci = (Z1, . . . , Z(i−1), Z(i+1), . . . , Zn). Then,

1

n
I(Xn

1 ;Y n|Xn
2 , Z

n)

=
1

n
(H(Y n|Xn

2 , Z
n)−H(Y n|Xn

1 , X
n
2 , Z

n, Sn1 )) (119)

≥ 1

n
(H(Y n|Xn

2 , Z
n)−H(Y n|Xn

2 , Z
n, Sn1 )) (120)

=
1

n
I(Sn1 ;Y n, Xn

2 |Zn) (121)

≥ 1

n
I(Sn1 ;Y n|Zn) =

1

n

n∑
i=1

I(S1i;Y
n|Si−1

1 , Zn) (122)

=
1

n

n∑
i=1

I(S1i;U1i|Zi) (123)

≥ 1

n

n∑
i=1

RS1|Z(E(S1i|U1i, Zi)) (124)

≥ 1

n

n∑
i=1

RS1|Z(E(S1i|Y n)) (125)

≥ 1

n

n∑
i=1

RS1|Z(E[d1(S1i, Ŝ1i)]) (126)

≥ RS1|Z(D1 + ε) (127)

(119) is from Y n − Xn
1 X

n
2 − ZnSn1 , (120) holds since

conditioning cannot increase entropy, and (121) is from
I(Sn1 ;Xn

2 |Zn) = 0 since Sn1 − Zn −Xn
2 as follows.

p(xn2 , s
n
1 |zn) =

∑
sn2

p(xn2 , s
n
2 , s

n
1 |zn) (128)

=
∑
sn2

p(xn2 |sn2 , zn)p(sn2 |zn)p(sn1 |zn) (129)

= p(xn2 |zn)p(sn1 |zn) (130)

where (129) holds since Xn
2 −Sn2Zn−Sn1 and Sn1 −Zn−Sn2 .

Equation (123) is from the definition of U1i and the memory-
less property of the sources; (124) is from (3) and (4); (125)
is from the fact that conditioning cannot increase (3); (126)
follows as Ŝ1i is a function of Y n and (127) as RS1|Z(D1) is
convex and monotone in D1.

By defining a discrete random variable Q̃ uniformly dis-
tributed over {1, . . . , n} independent of everything else, we
find that

1

n
I(Xn

1 ;Y n|Xn
2 , Z

n)

≤ 1

n

n∑
i=1

(H(Yi|X2i, Z
n)−H(Yi|X1i, X2i, Z

n)) (131)

=
1

n

n∑
i=1

I(X1i;Yi|X2i, Q̃ = i, Zn) (132)
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= I(X1Q̃;YQ̃|X2Q̃, Q̃, Z
n) (133)

= I(X1;Y |X2,W ) (134)

where we let X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃ and W =

(Q̃, Zn). Combining (134) with (119) and (127) leads to (10).
We obtain (11) by following similar steps. Next, we show that

1

n
I(Xn

1 , X
n
2 ;Y n|Zn)

=
1

n
(H(Y n|Zn)−H(Y n|Zn, Xn

1 , X
n
2 )) (135)

=
1

n
(H(Y n|Zn)−H(Y n|Zn, Xn

1 , X
n
2 , S

n
1 , S

n
2 )) (136)

≥ 1

n
(H(Y n|Zn)−H(Y n|Zn, Sn1 , Sn2 )) (137)

=
1

n
(I(Sn1 ;Y n|Zn) +H(Sn2 |Zn)−H(Sn2 |Y n, Sn1 , Zn))

(138)

≥ 1

n
(I(Sn1 ;Y n|Zn) +H(Sn2 |Zn)−H(Sn2 |Y n, Zn)) (139)

≥ RS1|Z(D1 + ε) +RS2|Z(D2 + ε) (140)

where (136) is from Y n−Xn
1 X

n
2 −Sn1 Sn2Zn, (137) is from the

fact that conditioning cannot increase entropy, (138) is from
Sn2 − Zn − Sn1 , (139) is from conditioning cannot increase
entropy, (140) is from following the steps (122)-(127) twice,
where the role of Sn1 and Sn2 are changed for the second term.
Moreover, we have

1

n
I(Xn

1 , X
n
2 ;Y n|Zn)

≤ 1

n

n∑
i=1

(H(Yi|Zn)−H(Yi|X1i, X2i, Z
n)) (141)

=
1

n

n∑
i=1

I(X1i, X2i;Yi|Q̃ = i, Zn) (142)

≤ I(X1Q̃, X2Q̃;YQ̃|Q̃, Zn) (143)

≤ I(X1, X2;Y |W ) (144)

where X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃ and W = (Q̃, Zn).
Combining (144) with (135) and (140) leads to (12). We lastly
show that

1

n
I(Xn

1 , X
n
2 ;Y n)

≥ 1

n
I(Sn1 , S

n
2 , Z

n;Y n) (145)

=
1

n
(I(Zn;Y n) + I(Sn1 ;Y n|Zn)

+H(Sn2 |Zn)−H(Sn2 |Y n, Sn1 , Zn)) (146)

≥ 1

n
(I(Zn;Y n) + I(Sn1 ;Y n|Zn)

+H(Sn2 |Zn)−H(Sn2 |Y n, Zn)) (147)

≥ 1

n
(H(Zn) + I(Sn1 ;Y n|Zn) + I(Sn2 ;Y n|Zn)− nδ(Pe))

(148)
≥ H(Z)+RS1|Z(D1+ε)+RS2|Z(D2+ε)− δ(Pe) (149)

where (145) is from Y n −Xn
1 X

n
2 − Sn1 Sn2Zn, (146) is from

Sn2 −Zn−Sn1 , (147) is from the fact that conditioning cannot

increase entropy, (148) is from Fano’s inequality combined
with the data processing inequality, i.e.,

H(Zn|Y n) ≤ H(Zn|Ẑn) ≤ nδ(Pe) (150)

where δ(Pe)→ 0 as Pe → 0 [31]. Equation (149) is from the
memoryless property of Zn and from following (122)-(127)
twice, the second one is when the role of Sn1 is replaced with
Sn2 .

Lastly, using random variable Q̃ that has been defined
uniformly over {1, . . . , n} and independent of everything else,
we derive the following.

1

n
I(Xn

1 , X
n
2 ;Y n) ≤ 1

n

n∑
i=1

(H(Yi)−H(Yi|X1i, X2i)) (151)

=
1

n

n∑
i=1

I(X1i, X2i;Yi|Q̃ = i) (152)

≤ I(X1Q̃, X2Q̃;YQ̃|Q̃) (153)

= I(X1, X2;Y |Q̃) (154)
≤ H(Y )−H(Y |X1, X2) (155)
= I(X1, X2;Y ) (156)

where X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃. Combining (145),
(149), (151), and (156) leads to (13).

In order to complete our proof, we demonstrate that
p(x1, x2|w) = p(x1|w)p(x2|w) for w = (i, zn). To this end,
we show that

P (X1 = x1, X2 = x2|W = w)

= P (X1i = x1, X2i = x2|Q̃ = i, Zn = zn) (157)

= P (X1i=x1|Q̃= i, Zn=zn)P (X2i=x2|Q̃= i, Zn=zn)
(158)

= P (X1 = x1|W = w)P (X2 = x2|W = w) (159)

where (158) holds since X1i − Zn −X2i for i = 1, . . . , n as
follows.

p(xn1 , x
n
2 |zn)

=
∑
sn1 ,s

n
2

p(xn1 , x
n
2 , s

n
1 , s

n
2 |zn) (160)

=
∑
sn1 ,s

n
2

p(xn1 |sn1 , zn)p(xn2 |sn2 , zn)p(sn1 |zn)p(sn2 |zn) (161)

= p(xn1 |zn)p(xn2 |zn) (162)

where (161) is from Xn
1 −Sn1Zn−Sn2Xn

2 and Xn
2 −Sn2Zn−

Sn1 as well as Sn1 − Zn − Sn2 . From (162), we observe that
Xn

1 − Zn −Xn
2 , which implies X1i − Zn −X2i.

APPENDIX C
PROOF OF THEOREM 3

A. Achievability

The source coding part is based on lossy source coding
at the two encoders conditioned on the side information Z
shared between the encoder and decoder [16], after which
the conditional rate distortion functions given in (4) can be
achieved for S1 and S2, respectively. Channel coding part is
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based on coding for a classical MAC with independent channel
inputs [31].

B. Converse

Suppose there exist encoding functions ej : Snj ×Zn → Xnj ,
j = 1, 2, and decoding functions gj : Yn×Zn → Ŝnj such that
1
n

∑n
i=1E[dj(Sji, Ŝji)] ≤ Dj + ε, where ε → 0 as n → ∞.

Then,
1

n
I(Xn

1 ;Y n|Xn
2 , Z

n) ≥ 1

n
I(Sn1 ;Y n|Xn

2 , Z
n) (163)

=
1

n
I(Sn1 ;Y n, Xn

2 |Zn) (164)

≥ 1

n
I(Sn1 ;Y n|Zn) (165)

=
1

n
H(Sn1 |Zn)−H(Sn1 |Y n, Zn, Ŝn1 )

(166)

≥ 1

n
H(Sn1 |Zn)−H(Sn1 |Zn, Ŝn1 )

(167)

≥ 1

n

n∑
i=1

(H(S1i|Zi)−H(S1i|Zi, Ŝ1i))

(168)

≥ 1

n

n∑
i=1

I(S1i; Ŝ1i|Zi) (169)

≥ 1

n

n∑
i=1

RS1|Z(E[d1(S1i, Ŝ1i)])

(170)
≥ RS1|Z(D1 + ε) (171)

(163) is from Y n −Xn
1 X

n
2 − Sn1Zn and conditioning cannot

increase entropy, and (164) is from Xn
2 −Zn−Sn1 which holds

since

p(xn2 , s
n
1 |zn) =

∑
sn2

p(xn2 , s
n
1 , s

n
2 |zn)

=
∑
sn2

p(xn2 |sn2 , zn)p(sn1 |zn)p(sn2 |zn)

= p(xn2 |zn)p(sn1 |zn) (172)

from Xn
2 −Sn2Zn−Sn1 and Sn1 −Zn−Sn2 . Equation (165) is

due to the nonnegativity of mutual information; (166) follows
from Ŝn1 = g1(Y n, Zn); (167) holds since conditioning cannot
increase entropy; (168) is from the memoryless property of the
sources and the side information as well as the chain rule and
the fact that conditioning cannot increase entropy; (171) holds
as RS1|Z(D1) is convex and monotone in D1.

By defining a discrete uniform random variable Q̃ over
{1, . . . , n} independent of everything else, and following steps
(131)-(134) by W = (Q̃, Zn) replaced with Q = (Q̃, Zn), we
find that

1

n
I(Xn

1 ;Y n|Xn
2 , Z

n) ≤ I(X1;Y |X2, Q) (173)

where X1 = X1Q̃, X2 = X2Q̃, Y = YQ̃. Combining (163),
(171), and (173) yields (14). Following similar steps we obtain

(15),
RS2|Z(D2 + ε) ≤ I(X2;Y |X1, Q). (174)

Lastly, we have

1

n
I(Xn

1 , X
n
2 ;Y n|Zn)

=
1

n
I(Xn

1 ;Y n|Xn
2 , Z

n) +
1

n
I(Xn

2 ;Y n|Zn) (175)

≥ RS1|Z(D1 + ε) +
1

n
I(Sn2 ;Y n|Zn) (176)

≥ RS1|Z(D1 + ε) +RS2|Z(D2 + ε) (177)

where the first term in (176) is from (163)-(171), and (177)
follows similarly to (165)-(171). To obtain the second term in
(176), we first show that Y n − ZnXn

2 − Sn2 :

p(yn, sn2 |zn, xn2 )

= p(sn2 |zn, xn2 )p(yn|sn2 , zn, xn2 ) (178)

= p(sn2 |zn, xn2 )
∑
sn1 ,x

n
1

p(yn|xn1 , xn2 )p(xn1 |sn1 , zn)p(sn1 |zn)

(179)

= p(sn2 |zn, xn2 )
∑
xn1

p(yn|xn1 , xn2 )p(xn1 |zn) (180)

(179) is from Y n−Xn
1 X

n
2 −Sn1 Sn2Zn and Xn

1 −Sn1Zn−Sn2Xn
2

as well as Sn1 − Zn − Sn2Xn
2 , which holds since

p(sn1 , s
n
2 , x

n
2 |zn) = p(xn2 |sn2 , zn)p(sn2 |zn)p(sn1 |zn)

= p(xn2 , s
n
2 |zn)p(sn1 |zn), (181)

due to Xn
2 − Sn2Zn − Sn1 and Sn1 − Zn − Sn2 . Note that

p(yn|zn, xn2 ) =
∑
sn1 ,x

n
1

p(yn|xn1 , xn2 )p(xn1 |sn1 , zn)p(sn1 |zn)

=
∑
xn1

p(yn|xn1 , xn2 )p(xn1 |zn), (182)

as Xn
1 − Sn1Zn −Xn

2 and Sn1 − Zn −Xn
2 holds since Sn1 −

Zn − Sn2Xn
2 . From (182) and (180),

p(yn, sn2 |zn, xn2 ) = p(sn2 |zn, xn2 )p(yn|zn, xn2 ), (183)

and hence, Y n −ZnXn
2 − Sn2 . Then, we use the following in

(175),

I(Xn
2 ;Y n|Zn) = H(Y n|Zn)−H(Y n|Xn

2 , Z
n, Sn2 ) (184)

≥ H(Y n|Zn)−H(Y n|Zn, Sn2 )

= I(Sn2 ;Y n|Zn), (185)

where (184) is from Y n − ZnXn
2 − Sn2 , and (185) holds

since conditioning cannot increase entropy, which leads to the
second term in (176).

Then, by replacing W = (Q̃, Zn) with Q = (Q̃, Zn) in
(141)-(144), we can show by following the same steps that,

1

n
I(Xn

1 , X
n
2 ;Y n|Zn) ≤ I(X1, X2;Y |Q) (186)

Combining (175), (177) and (186) recovers (16). Lastly, we
show p(x1, x2|q) = p(x1|q)p(x2|q) along the lines of [5]. For
q = (i, zn),

P (X1 = x1, X2 = x2|Q = q)
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= P (X1i = x1, X2i = x2|Q̃ = i, Zn = zn) (187)

= P (X1i=x1|Q̃= i, Zn=zn)P (X2i=x2|Q̃= i, Zn=zn)
(188)

= P (X1 = x1|Q = q)P (X2 = x2|Q = q) (189)

where (188) holds since X1i − Zn −X2i for i = 1, . . . , n.

APPENDIX D
PROOF OF PROPOSITION 1

Let ρ = 0.5 and P = 2. Partition the set of all distortion
pairs (D1, D2) for 0 ≤ D1, D2 ≤ 1 as in Fig. 3b. First,
consider D1 = 0.145. For this case, one can observe that (26)
is satisfied with equality when D2 = 0.7476, by noting that
(D1, D2) ∈ D for (D1, D2) = (0.145, 0.7476) and solving
the resulting equation. Accordingly, for all distortion pairs
(0.145, D2) with 0.7476 ≤ D2 ≤ 1, the necessary condition
from (26) is satisfied.

Consider now the necessary conditions from Corollary 5
given in (23)-(24) along with the distortion pair (D1, D2) =
(0.145, 1),

1

2
log

(
1− ρ
D1

)
≤ 1

2
log(1 + β1P + β2P ) (190)

1

2
log

(
1

D1

)
≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2)),

(191)

which follows from RS2|Z(D2) = 0 when D2 = 1 ≥ 1 − ρ.
By rearranging the terms in (190),

β1 ≥

(
1−ρ
D1

)
− 1

P
− β2 (192)

from which, by combining with (191), we have the condition(
1−

(
1−ρ
D1
− 1

P
− β2

))
(1− β2)

≥ (1− β1)(1− β2) ≥
(

1
D1
− 1− 2P

2P

)2

, (193)

leading to

−β2
2 +

1−ρ
D1
− 1

P
β2 + 1−

1−ρ
D1
− 1

P
−
(

1
D1
− 1− 2P

2P

)2

≥ 0.

(194)
By substituting D1 = 0.145, ρ = 0.5, and P = 2, we find
that the left hand side (LHS) of (194) is a concave quadratic
polynomial whose maximum value is −0.0743, attained when

β2 =
1−ρ
D1
−1

2P = 0.6121. Hence, (194) is not satisfied for any
0 ≤ β2 ≤ 1, and no distortion pair (0.145, D2) for which
0 ≤ D2 ≤ 1 is achievable according to conditions (23)-(24).

Lastly, consider the necessary conditions (29)-(30). Con-
sider the distortion pair (D1, D2) = (0.145, 0.7476). Observe
that (0.145, 0.7476) ∈ D, as a result, (29)-(30) can be written

as
1

2
log

(1− ρ)2

D1D2 −
(
ρ−

√
(1−D1)(1−D2)

)2

≤ 1

2
log(1 + β1P + β2P ) (195)

1

2
log

1− ρ2

D1D2 −
(
ρ−

√
(1−D1)(1−D2)

)2

≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2)). (196)

Define α , (1−ρ)2

D1D2−
(
ρ−
√

(1−D1)(1−D2)
)2 , and set β1 = α−1

P −
β2, which satisfies (195). Then, (196) can be expressed as

−β2
2 +

α− 1

P
β2 + 1− α− 1

P
− θ ≥ 0, (197)

where θ ,

(
(1−ρ2)/(2P )

D1D2−
(
ρ−
√

(1−D1)(1−D2)
)2 − 1

2P − 1

)2

. The

LHS of (197) is a concave polynomial whose maximum value
is 0.1945, attained when β2 = α−1

2P = 0.3333, which satisfies
(197). The corresponding β1 can be computed from β1 =
α−1
P − β2 = α−1

2P = 0.3333. Hence, for all distortion pairs
(0.145, D2) with 0.7476 ≤ D2 ≤ 1, necessary conditions from
(29)-(30) are satisfied. Accordingly, we conclude that there
exist distortion pairs (D1, D2) in regions G and D that satisfy
the conditions (26) and (29)-(30) but not (23)-(24).

Next, consider D1 = 0.16. For this case, (26) holds with
equality when D2 = 0.6696, by noting that (0.16, D2) ∈ B for
(D1, D2) = (0.16, 0.702) and solving the resulting equation.
The necessary condition from (26) is then satisfied for all
distortion pairs (0.16, D2) such that 0.6696 ≤ D2 ≤ 1.

Consider next the conditions from (23)-(24) for (D1, D2) ∈
B,

1

2
log

(
1− ρ
D1

)
≤ 1

2
log(1 + β1P + β2P ) (198)

1

2
log

(
1− ρ2

D1D2

)
≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2)),

(199)

from which, as in (193), we can obtain the condition(
1−

(
1−ρ
D1
− 1

P
− β2

))
(1− β2)

≥ (1− β1)(1− β2) ≥
(

1−ρ2
D1D2

− 1− 2P

2P

)2

, (200)

and

−β2
2 +

1−ρ
D1
− 1

P
β2+1−

1−ρ
D1
− 1

P
−
(

1−ρ2
D1D2

− 1− 2P

2P

)2

≥ 0.

(201)
By substituting D1 = 0.16, ρ = 0.5, and P = 2, we observe
that the LHS of (201) is a concave quadratic polynomial whose
maximum value occurs at β2 = 0.5312. We note that whenever
D2 < 0.6818, the LHS of (201) is negative for all 0 ≤ β2 ≤ 1,
hence the necessary conditions from Corollary 5 cannot be
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satisfied.
Consider next conditions (29)-(30) for (D1, D2) =

(0.16, 0.6696). Since (0.16, 0.6696)∈B, one can write (29)-
(30) as

1

2
log

(1− ρ)2

D1D2
≤ 1

2
log(1 + β1P + β2P ) (202)

1

2
log

(
1− ρ2

D1D2

)
≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2)).

(203)

Define ᾱ , (1−ρ)2
D1D2

. By letting β1 = ᾱ−1
P −β2, which satisfies

(202), we restate (203) as

−β2
2 +

ᾱ− 1

P
β2 + 1− ᾱ− 1

P
− θ̄ ≥ 0, (204)

where θ̄ ,
(

1−ρ2
2PD1D2

− 1
2P − 1

)2

. The LHS of (204) is a
concave polynomial with a maximum value of 0.1943, attained
when β2 = ᾱ−1

2P = 0.3334, which satisfies (204). The
corresponding β1 is computed from β1 = ᾱ−1

P −β2 = ᾱ−1
2P =

0.3334. Therefore, for all distortion pairs (0.16, D2) such that
0.6696 ≤ D2 ≤ 1, necessary conditions in (29)-(30) are
satisfied. Since (0.16, D2) ∈ B for all 0.6696 ≤ D2 ≤ 0.6818,
we conclude that there exist distortion pairs in Region B that
satisfy the necessary conditions from (26) and from (29)-(30),
but not from Corollary 5.

Lastly, consider the conditions from (27)-(28). Note that
D1 ≤ D2 in regions B, D, and G, therefore (27)-(28) can be
stated as,

1

(1− ρ̂)2
ln

(
1− ρ2

D1

)
≤ P (205)

(ln 2)RS1S2
(D1, D2) ≤ P (1 + ρ̂) (206)

for some 0 ≤ ρ̂ ≤ |ρ|. Note that, if

RS1S2
(D1, D2) ≤ P

ln 2
, (207)

then, (206) is satisfied for any ρ̂. For Region B, we find from
(207) that,

1

2
log

(
1− ρ2

D1(1− ρ)

)
≤ P

ln 2
(208)

by letting D2 = 1− ρ, which then leads to

D1 ≥ (1 + ρ)2−
2P
ln 2 . (209)

If (207) is satisfied for some (D1, D2), it will be satisfied for
all (D1, D

′
2) such that D′2 ≥ D2. Accordingly, if 1 − ρ ≥

D1 ≥ (1 + ρ)2−
2P
ln 2 , then condition (206) is satisfied for all

D2 ≥ 1− ρ, irrespective of ρ̂. Next, consider condition (205)
and select ρ̂ = 0, from which we have

P ≥ ln

(
1− ρ2

D1

)
, (210)

or equally

D1 ≥ (1− ρ2)e−P . (211)

For P = 2 and ρ = 0.5, (209) becomes D1 ≥ 0.0275 and
(211) becomes D1 ≥ 0.1015. Hence, both (27) and (28) are

satisfied when D1 = 0.145 and D1 = 0.16.
These examples demonstrate that there exist distortion pairs

in regions B, D, and G, and from symmetry, in regions C, F ,
and I, for which the necessary conditions from Corollary 5 is
tighter than both (26), (27)-(28), and (29)-(30).

Lastly, we compare Corollary 5 with the conditions from
(29)-(30) by investigating the LHS of both conditions for
various regions in Fig. 3b, as the region defined by the RHS
of both (23)-(24) and (29)-(30) is the same.

For (D1, D2) ∈ A, we observe from (32) and (33) that,

RS1S2(D1, D2)− CW (S1, S2)

=
1

2
log

(
1− ρ2

D1D2

)
− 1

2
log

(
1 + ρ

1− ρ

)
= RS1|Z(D1) +RS2|Z(D2), (212)

hence, in this region, Corollary 5 and the (29)-(30) bound are
equivalent.

For (D1, D2) ∈ B, we find from (32) and (33) that,

RS1S2
(D1, D2)− CW (S1, S2)

=
1

2
log

(
1− ρ2

D1D2

)
− 1

2
log

(
1 + ρ

1− ρ

)
(213)

≤ 1

2
log

1− ρ
D1

= RS1|Z(D1) +RS2|Z(D2), (214)

since D1 ≤ 1− ρ and D2 ≥ 1− ρ for (D1, D2) ∈ B. Hence,
in this region, Corollary 5 is at least as tight as (29)-(30). By
swapping the roles of D1 and D2, we can extend the same
argument to Region C as well.

For (D1, D2) ∈ D, we have from (32) and (33) that,

RS1|Z(D1) +RS2|Z(D2) =
1

2
log

1− ρ
D1

, (215)

whereas

RS1S2(D1, D2)−CW (S1, S2)

=
1

2
max

{
log

1−ρ
1+ρ

, log
(1−ρ)2

D1D2−
(
ρ−
√

(1−D1)(1−D2)
)2

}
(216)

=
1

2
log

(1− ρ)2

D1 +D2 − (1 + ρ2) + 2ρ
√

(1−D1)(1−D2)
,

(217)

where the last equation follows from

(2−D1 −D2)
2 − 4ρ2(1−D1)(1−D2)

= (1− ρ2)(2−D1 −D2)2 + ρ2(D1 −D2)2 ≥ 0 (218)

and therefore,

D1+D2−(1+ρ2)+2ρ
√

(1−D1)(1−D2) ≤ 1−ρ2. (219)

Then, by comparing (217) with (215), we find that, Corollary 5
provides necessary conditions at least as tight as (29)-(30) if

ρ ∈ {ρ : τ −
√
D2 − 1 + τ2 ≤ ρ ≤ τ +

√
D2 − 1 + τ2, D2 + τ2 ≥ 1},

where
τ =

D1

2
+
√

(1−D1)(1−D2). (220)
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By symmetry, for region (D1, D2) ∈ F , Corollary 5 is at least
as tight as (29)-(30) if

ρ ∈ {ρ : λ−
√
D1 − 1 + λ2 ≤ ρ ≤ λ+

√
D1 − 1 + λ2,

D1 + τ2 ≥ 1}, (221)

where
λ =

D2

2
+
√

(1−D1)(1−D2). (222)

For (D1, D2) ∈ G, we observe from (32) and (33) that,

RS1S2
(D1, D2)− CW (S1, S2)

=
1

2
log

(
1

D1

)
− 1

2
log

(
1 + ρ

1− ρ

)
(223)

≤ 1

2
log

1− ρ
D1

= RS1|Z(D1) +RS2|Z(D2). (224)

Therefore, Corollary 5 is again at least as tight as (29)-(30).
It follows by symmetry that Corollary 5 is at least as tight as
(29)-(30) in Region I as well.

For (D1, D2) ∈ H, we have from (32) and (33) that,

RS1S2
(D1, D2)− CW (S1, S2)

=
1

2
log

(
1

min(D1, D2)

)
− 1

2
log

(
1 + ρ

1− ρ

)
(225)

=
1

2
log

1− ρ
min(D1, D2)(1 + ρ)

(226)

≤ 0 = RS1|Z(D1) +RS2|Z(D2) (227)

since min(D1, D2) ≥ 1 − ρ when (D1, D2) ∈ H . From
(227), conditions (23) and (29) are both trivially satisfied in
this region, and therefore Corollary 5 and the conditions from
(29)-(30) are equivalent. Same conclusion follows for Region
J .

For region (D1, D2) ∈ E , we have from (32) and (33) that,

RS1|Z(D1) +RS2|Z(D2) = 0, (228)

hence, condition (23) is trivially satisfied, whereas
RS1S2

(D1, D2) − CW (S1, S2) is as given in (216) and
(217).

If D1 = D2, we have from (216) and D1 ≥ 1− ρ that,

RS1S2(D1, D2)− CW (S1, S2)

=
1

2
max

{
log

1− ρ
1 + ρ

, log
(1− ρ)2

D2
1 − (ρ− (1−D1))

2

}
(229)

≤ 0 = RS1|Z(D1) +RS2|Z(D2), (230)

and (29) is also trivially satisfied. Hence, for all D1 = D2 in
Region E , Corollary 5 and the conditions from (29)-(30) are
equivalent.

We next consider the case when ρ ≤ 0.5 for (D1, D2) ∈ E .
Without loss of generality, we assume that D1 ≥ D2. Noting
that D2 ≥ 1− ρ, we have

D1 +D2 − (1 + ρ2) + 2ρ
√

(1−D1)(1−D2)

≥ D1 +D2 − (1 + ρ2) + 2ρ(1−D1) (231)

≥ D2(1− 2ρ) +D2 − (1− ρ)2 (232)

≥ (1− ρ)2 (233)

from which, along with (228) and (217), we find that

RS1S2
(D1, D2)−CW (S1, S2) ≤ 0 = RS1|Z(D1)+RS2|Z(D2).

(234)
Therefore, for all ρ ≤ 0.5, Corollary 5 and the conditions
(29)-(30) are equivalent. By comparing (228) with (217), we
can show that, Corollary 5 is equivalent to (29)-(30) if

ρ ∈
{
ρ : ∆−

√
D1 +D2

2
− 1 + ∆2 ≤ ρ

≤ ∆ +

√
D1 +D2

2
− 1 + ∆2,

D1 +D2

2
+ ∆2 ≥ 1

}
(235)

where ∆ ,
1+
√

(1−D1)(1−D2)

2 . We therefore find that the
necessary conditions from Corollary 5 are at least as tight
as conditions (29)-(30) in all regions but E , D, and F .

Remark 2. We note that Corollary 5 is not necessarily strictly
tighter in any of these regions, since the necessary conditions
involve also the RHS of (23)-(24) and (29)-(30), which can
be used to claim the impossibility of achieving certain distor-
tion pairs based on the relative value of the rate distortion
functions with respect to the rate region characterized by the
RHS. It is possible that, even though the LHS of Corollary 5
is lower than the LHS of (29)-(30), either both or none of
the necessary conditions may be satisfied, leading exactly
to the same conclusion regarding the achievability of the
corresponding distortion pair.

APPENDIX E
PROOF OF PROPOSITION 2

Consider D1 = 0.3, ρ = 0.5, and P = 1. For this case, (26)
holds with equality when D2 = 0.625, and (0.3, 0.625) ∈ B.
Accordingly, no distortion pair (0.3, D2), with 0.5 ≤ D2 <
0.625, satisfies (26). The necessary conditions of Corollary 5
for (D1, D2) ∈ B are given by

1

2
log

(
1− ρ
D1

)
≤ 1

2
log(1 + β1P + β2P ) (236)

1

2
log

(
1− ρ2

D1D2

)
≤ 1

2
log(1 + 2P + 2P

√
(1− β1)(1− β2)).

(237)

By defining α̂ , 1−ρ
D1

, and setting β1 = α̂−1
P − β2, which

satisfies (236), condition (237) becomes,

−β2
2 +

α̂− 1

P
β2 + 1− α̂− 1

P
− θ̂ ≥ 0, (238)

where θ̂ ,
(

1−ρ2
2PD1D2

− 1
2P − 1

)2

. The LHS of (204) is con-

cave, and attains its maximum value at β2 = α̂−1
2P = 0.3333.

The corresponding β1 is computed from β1 = α̂−1
P − β2 =

0.3333. From (238), it can be shown that Corollary 5 is sat-
isfied whenever D2 ≥ 0.5769. Accordingly, for the distortion
pairs (0.3, D2) with 0.5769 ≤ D2 < 0.625, the necessary
conditions of Corollary 5 are satisfied whereas the bound in
(26) is not.
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APPENDIX F
PROOF OF PROPOSITION 3

Let D1 = 0.25, α = 0.2, P = 0.9, and 0 ≤ D2 ≤ α
2(1−α) .

Consider initially the condition from (50). Let D2 = 0.003
and observe that for this case RS1S2

(D1, D2) = 1 − h(D2).
Then,

RS1S2
(D1, D2) = 0.9705 ≤ 1

2
log(1+2P (1+ρmax)) = 0.978,

(239)
hence (50) is satisfied for all D2 ≥ 0.003. Next, consider
the conditions from (52)-(53). Let D2 = 0.003 and β1 =
22(2h(θ)−h(D2)−h(α))−1

P − β2 and observe that (52) is satisfied.
By rearranging (52)-(53), we obtain

− β2
2 +

(
22(2h(θ)−h(D2)−h(α)) − 1

)
P

β2 + 1

−
(
22(2h(θ)−h(D2)−h(α))−1

)
P

−
(

22(1−h(D2))−1

2P
−1

)2

≥0

(240)

whose LHS reaches its maximum value 0.2344 at β2 =
22(2h(θ)−h(D2)−h(α))−1

2P = 0.2462. Therefore, necessary condi-
tions (52)-(53) are satisfied for all D2 ≥ 0.003.

Next, consider the necessary conditions in (54)-(55). Sim-
ilar to the previous case, let D2 = 0.003 and β1 =

2
2( α

1−αh(α)−h(D2))−1
P −β2 which satisfies (54). Rearrange (54)-

(55) to obtain

− β2
2 +

(
22( α

1−αh(α)−h(D2)) − 1
)

P
β2 + 1

−

(
22( α

1−αh(α)−h(D2)) − 1
)

P
−
(

22(1−h(D2))−1

2P
− 1

)2

≥0

(241)

whose LHS reaches a maximum of 0.4242 at β2 =

2
2( α

1−αh(α)−h(D2))−1
2P = 0.1294. Hence, necessary conditions

from (54)-(55) are satisfied for all D2 ≥ 0.003.
Lastly, consider the necessary conditions from Corol-

lary 5 and let D2 = 0.003. From (23), we have β1 ≥
2
2(RS1|Z

(D1)+RS2|Z
(D2))−1

P − β2, from which, by combining
with (24), we obtain

− β2
2 +

(
22(RS1|Z(D1)+RS2|Z(D2)) − 1

)
P

β2 + 1

−

(
22(RS1|Z(D1)+RS2|Z(D2)) − 1

)
P

−
(

22RS1S2 (D1,D2) − 1

2P
− 1

)2

≥ 0 (242)

and observe that the polynomial on the LHS attains its max-

imum value −0.0247 at β2 =

(
2
2(RS1|Z

(D1)+RS2|Z
(D2))−1

)
2P =

0.4442. Hence, for this example, Corollary 5 cannot be satis-
fied for any 0 ≤ β1, β2 ≤ 1. We therefore conclude that there
exist distortion pairs for which the two necessary conditions
are satisfied while Corollary 5 is not.
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[17] S. Shamai, S. Verdú, and R. Zamir, “Systematic lossy source/channel
coding,” IEEE Transactions on Information Theory, vol. 44, no. 2, pp.
564–579, Mar. 1998.
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