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Abstract—A multi-access wireless network with N transmitting
nodes, each equipped with an energy harvesting (EH) device and
a rechargeable battery of finite capacity, is studied. At each time
slot (TS) a node is operative with a certain probability, which may
depend on the availability of data, or the state of its channel. The
energy arrival process at each node is modelled as an independent
two-state Markov process, such that, at each TS, a node either
harvests one unit of energy, or none. At each TS a subset of
the nodes is scheduled by the access point (AP). The scheduling
policy that maximises the total throughput is studied assuming
that the AP does not know the states of either the EH processes
or the batteries. The problem is identified as a restless multi-
armed bandit (RMAB) problem, and an upper bound on the
optimal scheduling policy is found. Under certain assumptions
regarding the EH processes and the battery sizes, the optimality
of the myopic policy (MP) is proven. For the general case, the
performance of MP is compared numerically to the upper bound.

Index Terms—Energy harvesting, myopic policy, multi-access,
online scheduling, partially observable Markov decision process,
restless multi-armed bandit problem.

I. INTRODUCTION

Low-power wireless networks, such as machine-to-machine

and wireless sensor networks, can be complemented with

energy harvesting (EH) technology to extend the network

lifetime. A low-power wireless node has a limited lifetime

constrained by the battery size; but when complemented with

an EH device and a rechargeable battery, its lifetime can be

prolonged significantly. However, energy availability at the

EH nodes is scarce, and, due to the random nature of the

energy sources, energy arrives at random times and in arbitrary

amounts. Hence, in order to take the most out of the scarce

energy, it is important to optimise the scheduling policy of the

wireless network.

Previous research on EH wireless networks can be grouped

into three, based on the information available regarding the

random processes governing the system [1]. In the offline

optimization framework, availability of non-causal information

on the exact realizations of the random processes governing

the system is assumed at the transmitter [2], [3]. In the on-

line optimization framework [4]–[11], the statistics governing

the random processes are assumed to be available at the

transmitter, and their realizations are known only causally.

The EH communication system is modeled as a Markov

decision process (MDP) [4], or as a partially observable MDP

(POMDP) [5], and dynamic programming (DP) [12] can be

used to optimise the EH communication system numerically.

In many practical applications, the state space of the cor-

responding MDPs and POMDPs is large, and DP becomes

computationally prohibitive [13], and the numerical results of

DP do not provide much intuition about the structure of the

optimal scheduling policy. In order to avoid complex numeri-

cal optimisations it is important to characterize the behaviour

of the optimal scheduling policy and identify properties about

its structure; however, this is possible only in some special

cases [6], [8], [9]. In the learning optimization framework,

the knowledge about the system behaviour is further relaxed,

and even the statistical knowledge about the random processes

governing the system is not assumed, and the optimal policy

scheduling is learnt over time [11].

We study online scheduling of low-power wireless nodes

by an access point (AP). The nodes are equipped with EH

devices, and powered by rechargeable batteries. At each time

slot (TS) a node is operative with a certain probability, which

may depend on the channel conditions or the availability of

data at the node. The EH process at each node is modelled as

an independent Markov process, and at each TS, a node either

harvests one unit of energy or does not harvest any. The AP

is in charge of scheduling, at each TS, the EH nodes to the

available orthogonal channels. A node transmits only when it

is scheduled and is operative at the same time. Hence, at each

TS the AP learns the EH process states and battery levels of

the operative nodes that are scheduled, but does not receive

any information about the other nodes. The AP is interested in

maximising the expected sum throughput within a given time

horizon. This problem can be model as a POMDP and solved

numerically using DP at the expense of a high-computational

cost. Instead, we model it as a restless multi-armed bandit

(RMAB) problem [14], and prove the optimality of a low-

complexity policy in two special cases. Moreover, by relaxing

the constraint on the number of nodes that the AP can schedule

at each TS, we obtain an upper bound on the performance of

the optimal scheduling policy. Finally, the performance of the

low complexity policy is compared to that of the upper bound

numerically. The main technical contributions of the paper are

summarised as follows:

• We show the optimality of a MP if the nodes do not

harvest energy and transmit data at the same time, and



2

the EH process is affected by the scheduling policy.

• We show the optimality of MP if the nodes do not have

batteries and can transmit only if they have harvested

energy in the previous TS.

• We provide an upper bound on the performance for the

general case by relaxing the constraint on the number of

nodes that can be scheduled at each TS.

• We show numerically that MP performs close to the upper

bound for the general case.

The rest of this paper is organized as follows. Section II is

dedicated to a summary of the related literature. In Section III,

we present the EH wireless multi-access network model. In

Sections IV and V we characterize explicitly the structure

of the optimal policy that maximises the sum throughput

for two special cases. In Section VI, we provide an upper

bound on the performance. Finally, in Section VII we compare

the performance of MP with that of the upperbound through

numerical analysis. Section VIII concludes the paper.

II. RELATED WORK

There is a growing research interest in EH wireless commu-

nication systems, and in particular, in developing scheduling

policies that exploit the scarce harvested energy in the most ef-

ficient manner. In large EH wireless networks, since numerical

optimization is computationally prohibitive, it is important to

characterise the optimal scheduling policy explicitly, or certain

properties of it.

In [6], the authors assume that the data packets arrive at the

EH transmitter as a Poisson process, and each packet has an

intrinsic value assigned to it, which also is a random variable.

The optimal transmission policy that maximizes the average

value of the received packets at the destination is proven to be

a threshold policy. However, the values of the thresholds have

to be computed using numerical techniques, such as DP or

linear programming (LP). Reference [7] extends the problem

in [6] to the multi-access scenario.

Multi-access in EH wireless networks with a central sched-

uler, static channels and backlogged nodes has been studied

in [8]–[10]. The central scheduler in [8] does not know the

battery levels or the states of the EH processes at the nodes.

Assuming that the nodes have unit size batteries, the system is

modeled as an RMAB, and MP, which has a round robin (RR)

structure, is shown to maximise the sum throughput. Reference

[9] considers nodes with batteries of arbitrary capacity, and MP

is found to be optimal in two special cases. In contrast to the

present paper, [9] considers static channels and backlogged

nodes, and the optimality proof exploits the RR structure

of MP. In [10], considering infinite-capacity batteries, an

asymptotically optimal policy is proposed.

The problem studied in this paper is modeled as an RMAB

problem. In the classic RMAB problem there are several arms,

each of which is modelled as a Markov chain [14]. The states

of the arms are unknown, and at each TS an arm is played.

The played arm reveals its state and yields a reward, which

is a function of the state. The objective is to find a policy

that maximises the total reward over time. RMAB problems

have been shown to be, in general, PSPACE hard [15], and our

knowledge on the structure of the optimal policy for general

RMAB problem is limited.

Recently, the RMAB model has been used to study channel

access and cognitive radio problems, and new results on the

optimality of MP have been obtained [16]–[20]. The structure

and the optimality of MP is proven in [16] and [17] for single

and multiple plays, respectively, under certain conditions on

the Markov transition probabilities. In [18] the optimality of

MP is shown for a general class of monotone affine reward

functions, which include arms with arbitrary number of states.

The optimality of MP is proven in [19] when the arms’ states

follow non-identical Markov chains. The case of imperfect

channel detection is studied in [20], and MP is found to be

optimal when the false alarm probability of the channel state

detector is below a certain value.

III. SYSTEM MODEL

We consider an EH wireless network with N EH nodes and

one AP, as depicted in Figure 1. Time is divided into TSs of

constant duration, and the AP is in charge of scheduling K of

the N nodes to the K available orthogonal channels at each

TS. A node is operative at each TS with a fixed probability p
independent over TSs and nodes, and inoperative otherwise.

We consider that a node is in the operative state if it has a

data packet to transmit in its buffer and its channel to the AP

is in a good state, while it is inoperative otherwise even if it

is scheduled to a channel. The EH process is modelled as a

Markov chain, which can be either in the harvesting or in the

non-harvesting state, denoted by states 1 and 0, respectively.

We denote by pij the transition probability from state i to j,

and assume that p11 ≥ p01, that is, the EH process is positively

correlated in time, and hence, if the EH process is in state i,
it is more likely to remain in state i than switching to the

other state. We denote by Es
i (n) and Eh

i (n) the state of the

EH process and the amount of energy harvested by node i,
respectively, in TS n. The energy harvested in TS n is available

for transmission in TS n+1. We assume that one fundamental

unit of energy is harvested when the Markov process makes a

transition to the harvesting state, that is, Eh
i (n) = Es

i (n+1)1.

Each node is equipped with a battery of capacity B, and we

denote by Bi(n) ∈ {0, . . . , B} the amount of energy stored

in the battery of node i at the beginning of TS n. The state of

node i in TS n, Si(n), is given by its battery and EH process

states, Si(n) = (Es
i (n), Bi(n)) ∈ {0, 1} × {0, . . . , B}. The

system state is characterized by the joint states of all the nodes.

The system functions as follows: At the beginning of each

TS, the AP schedules K out of N nodes, such that a single

node is allocated to each orthogonal channel. When a node

is scheduled, if it is operative in that TS, i.e., it has data to

transmit and its channel is in a good state, it transmits a data

packet as well as the current state of its EH process to the AP.

If it is not operative it transmits a status beacon to the AP,

1Our results can be generalised to a broader class of two-state Markovian
EH processes in which the amount of energy harvested in each state is an
independent and identically distributed random variable, and the expected
amount of harvested energy in the harvesting state is larger than that in the
non-harvesting state. However, the studied EH model captures the random
nature of the energy arrivals, and is also considered in [4], [8], [9], [11].
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Figure 1. System model with N EH nodes with finite size batteries and K
orthogonal channels.

and backs off. We say that a node is active in a TS if it is

scheduled by the AP and is operative; and hence, it transmits

a data packet to the AP, otherwise we say that the node is idle

in this TS, that is, the node is not scheduled or it is scheduled,

but it is not operative. We denote by K(n) and Ka(n) the set

of nodes scheduled by the AP, and the set of active nodes in

TS n, respectively, where Ka(n) ⊆ K(n).
We assume that the transmission rate is a linear function

of the transmit power, which is an accurate approximation in

the low power regime. When the power-rate function is linear,

the total number of bits transmitted to the AP is maximised

when an active node transmits at a constant power throughout

the TS, using all its energy. To simplify the notation we

normalise the power-rate function such that the number of

bits transmitted within a TS is equal to the energy used for

transmission. Then the expected throughput in TS n is

R(K(n)) = E




∑

i∈Ka(n)

Bi(n)


 = p

∑

i∈K(n)

Bi(n). (1)

The objective of the AP is to schedule the best set of nodes,

K(n), at each TS in order to maximize (1), without knowing

which nodes are operative, the battery levels, or the EH states.

The only information the AP receives is the EH state of the

active nodes at each TS. Note that the AP also knows the

battery state of the active nodes after transmission since they

use all their energy.

A scheduling policy is an algorithm that schedules nodes

at each TS n, based on the previous observations of the EH

states and battery levels. The objective of the AP is to find the

scheduling policy K(n), ∀n ∈ [1, T ], that maximizes the total

discounted throughput, given by

max
{K(n)}T

n=1

T∑

n=1

βn−1R(K(n)),

s.t. Bi(n+ 1) = min{Bi(n)

+ Eh
i (n), B} · 1i/∈Ka(n) + Eh

i (n) · 1i∈Ka(n),

(2)

where 0 < β ≤ 1 is the discount factor, and 1a is the indicator

function, defined as 1a = 1 if a is true, and 1a = 0, otherwise.

If the AP is informed on the current state of all the nodes

at each TS, the problem would be formulated as an MDP, and

solved using LP or DP [12]. However, in practice transmitting

all the nodes’ states to the AP introduces further overhead

and energy consumption; and hence, is not considered here.

Accordingly, the appropriate model for our problem is a

POMDP. It can be shown that a sufficient statistic for optimal

decision making in a POMDP is given by the conditional

probability of the system states given all the past actions

and observations, which, in our problem, depends only on

the number of TSs each node has been idle for, and on the

realisation of each node’s EH state last time it was active.

Hence, we can reformulate the POMDP into an equivalent

MDP with an extended state space. The belief states, that is,

the states in the equivalent MDP, are characterized by all the

past actions and observations. We denote by li and hi the

number of TSs that node i has been idle for, and the state

of the EH process the last time it was active, respectively.

The belief state of node i, si(n), is given by si(n) = (li, hi),
and the belief state of the whole system is the joint belief

states of all the nodes. In TS n, the belief state of node i
is updated as si(n + 1) = (0, Es

i (n)), if i ∈ Ka(n), and as

si(n + 1) = (li + 1, hi), otherwise. That is, at each TS, li is

set to 0 if node i is active, and increased by one if it is idle.

In principle, since the number of TSs a node can be idle is

unbounded, the state space of the equivalent MDP is infinite,

and hence, the POMDP in (2) is hard to solve numerically.

In Sections IV and V, we focus on two particular settings,

and show the existence of optimal low-complexity scheduling

policies under certain assumptions.

IV. NON SIMULTANEOUS ENERGY HARVESTING AND

DATA TRANSMISSION

In this section we assume that the nodes are not able to

harvest energy and transmit data simultaneously, and that if

node i is active in TS n−1, then its EH state in TS n, Es
i (n),

is either 0 or 1 with probabilities e0 and e1, respectively,

independent of the EH state in TS n−1, where e0 ≤ p10

p01+p10
.

These assumptions may account for nodes equipped with elec-

tromagnetic energy harvesters in which the same antenna is

used for harvesting as well as transmission; and hence, it is not

possible to transmit data and harvest energy simultaneously,

and the RF hardware has to be reset into the harvesting mode

after each transmission.

Since the EH process is reset when a node transmits, the

EH process states of active nodes are not relevant. As a

consequence, the belief state of a node, si(n), is characterized

only by the number of TSs the node has been idle for, li.
There is a one-to-one correspondence between li and the

expected battery level of node i; therefore, we redefine the

belief state, si(n), as the expected battery level of node i
in TS n, normalised by the battery capacity. The expected

throughput in (1) can be rewritten as

R(K(n)) = pB
∑

i∈K(n)

si(n). (3)

Notice that si(n) in (3) is normalised, i.e., si(n) ∈ [0, 1].
Due to the Markovity of the EH processes, the future belief

state is only a function of the current belief state and the

scheduling policy. If a node is active in TS n, since it uses all

its energy and does not harvest any, the belief state is set to

0 in TS n+1. If a node is not active in TS n, then the belief

state evolves according to the belief state transition function
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τ(·). The belief state of node i in TS n+ 1 is

si(n+ 1) =

{
τ(si(n)) if i /∈ Ka(n),
0 if i ∈ Ka(n).

(4)

Property 1. The belief state transition function, τ(·), is a

monotonically increasing contracting map, that is, τ(si(n)) >
τ(sj(n)) if si(n) > sj(n), and ‖τ(si(n)) − τ(sj(n))‖ ≤
‖si(n)− sj(n)‖.

Proof: The proof is given in Appendix A.

Note that the assumption p11 ≥ p01 is a necessary condition

for Property 1. We denote by s(n) = (s1(n), . . . , sN (n)) the

belief vector in TS n, which contains the belief states of all

the nodes, and by sE(n) the belief vector of the nodes in set

E . For the sake of clarity we drop the n from s(n) and sE(n)
when the time index is clear from the context. We denote the

expected throughput by R(sE) if the belief vector is s and

nodes in E are scheduled.

The probability that a particular set of nodes, Ka(n) ⊆
K(n), is active while the rest of the scheduled nodes remain

idle in TS n is a function of the cardinality of Ka(n) and the

probability that a node is operative, p. For a , |Ka(n)| we

denote this probability by

q(a,K) , (1− p)K−apa. (5)

The AP is interested in finding the scheduling policy π,

which schedules the nodes according to s(n), that is K(n) =
π(s(n)), such that the expected throughput over the time

horizon T is maximised. The associated optimization problem

is expressed through the Bellman value functions,

V π
n (s) = R(sπ(s)) + β

∑

E⊆π(s)

q(|E|,K)

×V π
n+1((s1(n+ 1), . . . , sj(n+ 1) = 0,

. . . , si(n+ 1) = τ(si(n)), . . .)),

(6)

where the sum is over all possible sets of active nodes, E ,

among the scheduled nodes, K(n) = π(s(n)), and nodes j
and i are active and idle, respectively. The optimal policy, π∗,

is the one that maximises (6).

A. Definitions

Definition 1. At TS n the myopic policy (MP) schedules

the K nodes that maximise the expected instantaneous reward

function, R(·). For the reward function in (3) the MP schedules

the K nodes with the highest belief states.

MP schedules the nodes similarly to a round robin (RR)

policy that orders the nodes according to the time they have

been idle for, and at each TS schedules the nodes with the

highest idle time values. If a node is active in this TS, it is

sent to the bottom of this ordered list in the next TS. If a node

is idle it moves forward in the order. Notice that due to the

monotonicity of τ(·) the order of the idle nodes is preserved.

We denote by sΠ = (sΠ(1), . . . , sΠ(N)), the permutation of

the vector s, where Π(·) is a permutation function, by s
K
Π =

(sΠ(1), . . . , sΠ(K)) the vector containing the first K elements

of sΠ, and by SK
Π = {Π(1), · · · ,Π(K)} the set of indices of

the nodes in positions from 1 to K in vector sΠ. We say that

a vector is ordered if its elements are in decreasing order. We

denote by
◦

Π the permutation that orders a vector, that is, the

vector s ◦
Π

is ordered, i.e., s◦
Π(1)

≥ s◦
Π(2)

≥ . . . ≥ s◦
Π(N)

. We

denote the vector operator that first orders the vector sE of |E|
components, and then applies τ(·) to each of the components

of the resulting vector by T(sE) , (τ(s◦
Π(1)

), · · · , τ(s◦
Π(|E|)

)),

with
◦

Π(i) ∈ E , 1 ≤ i ≤ |E|. Note that due to the monotonicity

of τ(·) the vector T(sE) is always ordered. Finally, we denote

the zero vector of length k by 0(k).

Definition 2. Pseudo value function, Wn(sΠ), is defined as

Wn(sΠ) , R(sKΠ ) + β
∑

E⊆SK
Π

q(|E|,K)Wn+1([T(sE) ,0(|E|)]),

WT (sΠ) , R(sKΠ ),
(7)

where [·, ·] is the vector concatenation operator.

Wn(·) is characterized solely by the belief vector s and its

initial permutation Π. In TS n, the first K nodes according

to permutation Π are scheduled, and the nodes are scheduled

according to MP thereafter. The belief vector in TS n + 1
is s ◦

Π
(n + 1) = [T(sE),0(|E|)], where E is the set of active

nodes in TS n, and, since T(·) implicitly orders the output

vector, s ◦
Π
(n+ 1) is ordered. Hence, the nodes that are active

in TS n have belief state 0 in TS n + 1, and are moved to

the rightmost position in the belief vector. If vector sΠ is

ordered, (7) corresponds to the value function of MP, that is,

corresponds to (6) where π is MP.

Definition 3. A permutation Π is an i, j-swap of permutation

Π̂ if Π(k) = Π̂(k), for ∀k 6= {i, j}, and Π(j) = Π̂(i) and

Π(i) = Π̂(j). That is, all the nodes but those in positions i
and j are in the same positions in sΠ and sΠ̂, and the nodes

in positions i and j are swapped.

A permutation Π is an i, j-swap if Π(k) = k, for ∀k 6=
{i, j}, and Π(i) = j and Π(j) = i. That is, all the nodes but

those in positions i and j are in the same position in s and

sΠ, and the nodes in positions i and j are swapped.

Definition 4. A function f(x), f : R
k → R and x =

(x1, . . . , xk), is said to be regular if it is symmetric, mono-

tonically increasing, and decomposable [19].

• f(x) is symmetric if f(. . . , xi, . . . , xj , . . .) =
f(. . . , xj , . . . , xi, . . .).

• f(x) is monotonically increasing in each of its com-

ponents, that is, if xj ≤ x̃j then f(. . . , xj , . . .) ≤
f(. . . , x̃j , . . .).

• f(x) is decomposable if f(. . . , xj , . . .) =
xjf(. . . , 1, . . .) + (1− xj)f(. . . , 0, . . .).

Definition 5. (Boundedness) A function f(x), f : Rk → R

and x = (x1, . . . , xk), is said to be bounded if ∆l ≤
f(. . . , 1, . . .)−f(. . . , 0, . . .)≤∆u.

We note that the expected throughput R(·) is a linear

function of the belief vector, which has bounded elements,

and all the nodes that are scheduled have the same coefficient;

hence, R(·) is a bounded regular function. The pseudo value

function, Wn(·), is symmetric, that is,

Wn(sΠ) = Wn(sΠ̂), (8)
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where Π is a i, j-swap permutation of Π̂, and j, i ≤ K or

j, i > K . To see this we can use the symmetry of R(·), and

the fact that T(·) orders the belief vector in decreasing order.

B. Proof of the optimality of MP

We prove the optimality of MP under the assumptions that

τ(·) is a monotonically increasing contracting map2, and R(·)
is a bounded regular function. Hence, the results in this section

can be applied to a boarder class of EH processes and reward

functions than those studied in this paper.

The proof is structured as follows: Lemma 1 gives sufficient

conditions for the optimality of MP in TS n, given that MP is

optimal from TS n+1 onwards. In Lemma 2 we show that the

difference between the pseudo value functions of two different

vectors is bounded. In particular, we bound the difference

between the value functions of two belief vectors s ◦
Π

and s̃ ◦
Π

,

which are both ordered, and differ only for the belief state of

node i. In Lemma 3 we show that, under certain conditions,

the sufficient conditions for the optimality of MP given in

Lemma 1 hold.

Lemma 1. Assume that MP is optimal from TS n+1 until TS

T . A sufficient condition for the optimality of MP in TS n is

Wn(s) ≥ Wn(sΠ), (9)

for any Π that is an i, j-swap, with sj ≥ si and j ≤ i.

Proof: To prove that a policy is optimal, we need to show

that it maximizes (6). By assumption MP is optimal from

TS n + 1 onwards; and hence, it is only necessary to prove

that scheduling any set of nodes and following MP thereafter

is no better than following MP directly in TS n. The value

function corresponding to the latter policy is Wn([sO, sO]),
where sO contains the K nodes with the highest belief states

in s, and sO contains the rest of the nodes not necessarily

ordered. The value function corresponding to the former policy

is Wn([sU , sU ]), where sU contains the K nodes scheduled

in TS n, and sU is the set of the remaining nodes. There

exist at least a pair of nodes si and sj such that, j ∈ U and

j /∈ O, i ∈ U and i /∈ O, and sj ≥ si. By swapping each

pair of such nodes, that is, swapping j ∈ U for i ∈ U , we can

obtain Wn([sO, sO]) from Wn([sU , sU ]) through a cascade of

inequalities using (9). Accordingly, Wn([sO, sO]) is an upper

bound for any Wn([sU , sU ]), and, hence, MP is optimal.

Lemma 1 shows that, under certain conditions, the opti-

mality of MP can be established through the pseudo value

function. In particular, under the conditions of Lemma 1, if

swapping a node in the belief vector with another node with a

lower position and a lower belief state does not decrease the

pseudo value function, then MP is optimal.

Lemma 2. Consider a pair of belief vectors s and s̃, which

differ only in one element, that is, si = s̃i for ∀i 6= j and sj ≥

2Our results can also be applied to the case in which the state transition
function is a monotonically increasing contracting map with parameter α, that
is, τ(si(n)) > τ(sj(n)) if si(n) > sj(n), and ‖τ(si(n)) − τ(sj(n))‖ ≤
α‖si(n)− sj(n)‖, if 0 ≤ α · β ≤ 1.

s̃j . If R(·) is a bounded regular function, τ(·) a monotonically

increasing contracting map, and β ≤ 1, then we have

Wn(s ◦
Π
)−Wn(s̃ ◦

Π
) ≤ ∆u(sj − s̃j)u(n), (10)

where u(n) ,

T−n∑

i=0

(β(1 − p))i.

Proof: See Appendix B.

The result of Lemma 2 establishes that increasing the belief

state of a node j from s̃j to sj may increase the value of the

pseudo value function, which is bounded by a linear function

of the increase in the belief, sj − s̃j , and the function u(n),
which decreases with n and corresponds to the maximum

accumulated loss from TS n to TS T .

Lemma 3. Consider two belief vectors s and sΠ, such that

permutation Π is an i, j-swap, and sj ≥ si for some j ≤ i.
If R(·) is a bounded regular function, τ(·) a monotonically

increasing contracting map, and β ≤ 1, then

Wn(s)−Wn(sΠ) ≥ 0 if ∆l ≥ ∆uβp
1− (β(1 − p))T+1

1− β(1 − p)
.

(11)

Proof: See Appendix C.

Theorem 1. If R(·) is a bounded regular function, τ(·) a

monotonically increasing contracting map, β ≤ 1, and ∆l ≥

∆uβp
1−(β(1−p))T+1

1−β(1−p) , then MP is the optimal policy.

Proof: The proof is done by backward induction. We have

already shown that MP is optimal at TS T . Then we assume

that MP is optimal from TS n+1 until TS T , and we need to

show that MP is optimal at TS n. To show that MP is optimal

at TS n, using Lemma 1, we only need to show that (9) holds.

This is proven in Lemma 3, which completes the proof.

The result of Theorem 1 holds for any R(·) that is a bounded

regular function. The reward function studied here, i.e., the

sum expected throughput in (3), is a bounded regular function,

and we have ∆u = ∆l = pB. Finally, we state the optimality

of MP for the EH problem studied in this section.

Theorem 2. For the reward function R(·) defined in (3), if the

transition probabilities satisfy p11 ≥ p01 and e0 ≤ p10

p01+p10
,

then MP is the optimal policy.

V. SIMULTANEOUS ENERGY HARVESTING AND DATA

TRANSMISSION WITH BATTERYLESS NODES

Now we consider another special case of the system model

introduced in Section III. We assume that the nodes cannot

store energy, and the harvested energy is lost if not used

immediately. This might apply to low-cost batteryless nodes.

Energy available for transmission in TS n is equal to the

energy harvested in TS n − 1, that is, Bi(n) = Eh
i (n − 1).

We denote by si(n) the belief state of node i at TS n, which

is the expected energy available for transmission, that is, the

probability that the node is in the harvesting state. The belief
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state transition probabilities are

si(n+ 1) =





τ(si(n)) if i /∈ Ka(n),
p11 if i ∈ Ka(n) w.p. si(n),
p01 if i ∈ Ka(n) w.p. 1− si(n),

(12)

where τ(s) = (p11 − p01)s + p01, and since p11 ≤ p01, it is

a monotonically increasing affine function. This implies that

if si ≥ sj then τ(si) ≥ τ(sj), that is, the order of the idle

nodes is preserved. We note that i ∈ Ka(n) with probability

p, if i ∈ K(n). The problem is to find a scheduling policy,

K(n), such that the expected discounted sum throughput is

maximised over a time horizon T .

We define the pseudo value function as follows

Wn(sΠ) , R(sKΠ ) + β
∑

E⊆SK
Π

∑

lE∈{0,1}|E|

h(lE ,K)

×Wn+1

(
P11 (ΣlE) , τττ(sE),P01

(
ΣlE

))
,

WT (sΠ) , R(sKΠ ),
(13)

where we denote the set of active nodes by E and the ith
active node by E(i). We define lE = (lE(1), . . . , lE(|E|)),
such that lE(i) = 1 if the EH process of the corresponding

node is in the harvesting state, and lE(i) = 0 otherwise. We

define the function h(lE ,K) , q(|E|,K)
∏

j∈E

s
lj
j (1−sj)

(1−lj),

where q(|E|,K) is defined in (5). We denote by P01(a)
and P11(a) the vectors (p01, . . . , p01) and (p11, . . . , p11),

respectively, of length a, and we define ΣlE ,
∑

i∈E

li, and

ΣlE , |E|−
∑

i∈E

li. The operator τττ (·) applies the mapping τ(·)

to all its components. The pseudo value function schedules the

nodes according to permutation Π, and if sΠ is ordered, then

(13) is the value function of MP.

Swapping the order of two scheduled nodes does not change

the value of the pseudo value function, that is, the pseudo value

function is symmetric. This property is similar to that in (8),

but only for i, j ≤ K . Similarly to [16] and [17], the mapping

τ(·) is linear, and hence, the pseudo value function is affine

in each of its elements. This implies that, if Π is an i, j-swap

of Π̂, then

Wn (sΠ)−Wn(sΠ̂)

=(sΠ(j) − sΠ(i))
(
Wn(. . . , sΠ(j) = 1, . . . , sΠ(i) = 0, . . .)

−Wn(. . . , sΠ(j) = 0, . . . , sΠ(i) = 1, . . .)
)
. (14)

MP schedules the nodes whose EH processes are more

likely to be in the harvesting state. Initially, nodes are ordered

according to an initial belief. If a node is active, it is sent to

the first position of the queue if it is in the harvesting state,

and to the last position if it is in the non-harvesting state.

The idle nodes are moved forward in the queue. Due to the

monotonicity of τ(·), MP continues scheduling a node until it

is active and its EH process is in the non-harvesting state.

A. Proof of the optimality of MP

We note that the result of Lemma 1 is applicable in this

case. If Lemma 4 holds, the same arguments as in Theorem 1

can be used to prove the optimality of MP.

Lemma 4. Let Π be an i, j-swap, and consider a permutation

Π̂, such that Π̂(k) = k − 1, for ∀k 6= 1 and Π̂(1) = N . If

sj ≥ si for some j ≤ i, then we have the inequalities

1 +Wn(sΠ̂)≥Wn(s), (15a)

Wn(s)≥Wn(sΠ). (15b)

Proof: The proof follows from the similar arguments as

in [17]. In particular, we use backward induction in (15a) and

(15b), and a sample-path argument. A sketch of the proof is

provided in Appendix D.

Note that (15a) and (15b) are similar to (10) and (11),

respectively.

Theorem 3. If the reward function is R(K(n)) = p
∑

i∈K(n)

si(n),

and p11 ≥ p01, MP is the optimal policy.

Proof: Theorem 3 can be proven by using the same

arguments as in Theorem 1 and Lemmas 1 and 4.

Remark 1. This problem is similar to the opportunistic multi-

channel access problem studied in [16]–[19], with imperfect

channel sensing, such that, at each attempt, a channel can not

be sensed with probability 1 − p, independent of its channel

state. While the MP has been proven to be optimal in the case

of perfect channel sensing, i.e., p = 1, [17], the case with

sensing errors, i.e., p 6= 1, has not been considered in the

literature. We also note that this model of imperfect channel

detection is different from that in [20].

Remark 2. Using similar techniques as in [16] the MP

optimality results of Sections IV and V can be extended from

the finite horizon discounted reward criteria to the infinite

horizon with discounted reward, and to the infinite horizon

with average reward criteria.

VI. UPPER BOUND ON THE PERFORMANCE OF THE

OPTIMAL SCHEDULING POLICY

Next we derive an upper bound on the performance of the

optimal policy for the general model in Section III under the

average reward criteria and infinite time horizon. The RMAB

problem with an infinite horizon discounted reward criteria is

studied in [21], and it is shown that an upper bound can be

computed in polynomial time using LP.

The decision of scheduling a node in a TS affects the

scheduling of the other nodes in the same TS, since exactly K
nodes have to be scheduled at each TS. Whittle [14] proposed

to relax the original problem constraint, and impose instead

that the number of nodes that are scheduled at each TS is

K on average. In the relaxed problem, since the nodes are

symmetric, one can decouple the original RMAB problem into

N RMAB problems, one for each node. As before, we denote

by s = (l, h) ∈ W the belief state of a node, where l is the

number of TSs the node has been idle for, and h the EH state

last time the node was scheduled, and W the belief state space.

We denote by π(s) the probability that a node is scheduled if

it is in state s, by p(s) the steady state probability of state s,

and by ps̃,s(a) the state transition probability function from
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state s̃ to s if action a ∈ {0, 1} is taken, where a = 1 if

the node is scheduled in this TS, and a = 0, otherwise. The

optimization problem is

max
π(s),p(s)

∑

s∈W

R(s)π(s)p(s)

s.t. p(s) =
∑

s̃∈W

p(s̃)[(1 − π(s))ps̃,s(0) + π(s)ps̃,s(1)],

∑

s∈W

π(s)p(s) =
K

N
, and

∑

s∈W

p(s) = 1,

(16)

where 0 ≤ π(s), p(s) ≤ 1, and R(s) is the expected

throughput of a node if it is in state s. Note that the node

is scheduled every N
K TSs on average. This implies that, for

p = 1, the maximum time a node can be idle is finite, and

hence, the state space W is finite. If p 6= 1, one can truncate

the state space by bounding the maximum time a node can be

idle, i.e., imposing that l is bounded. The problem (16) has

a linear objective function and linear constrains, and the state

space is finite, therefore it can be solved in polynomial time

with LP.

VII. NUMERICAL RESULTS

In this section we numerically study the performances of

different scheduling policies for the general case described in

Section III. In particular, we consider MP which is optimal

for the cases studied in Sections IV and V, the RR policy,

which schedules the nodes in a cyclic fashion according to

an initial random order, and a random policy, which at each

TS schedules K random nodes regardless of the history. We

measure the performance of the scheduling policies as the

average throughput per TS over a time horizon of T = 1000,

that is, we consider β = 1 and normalise (2) by T . We perform

100 repetitions for each experiment and average the results. We

assume, unless otherwise stated, a total of N = 30 EH nodes,

K = 5 available channels, and a probability p = 0.5 for a

node to be operative in each TS. We assume that all the nodes

and EH processes are symmetric, the batteries have a capacity

of B = 5 energy units, and the transition probabilities of the

EH processes are p11 = p00 = 0.9. Notice that, on average,

each node is scheduled every N
K TSs. Hence, if N

K is large the

nodes remain idle for larger periods. This implies that when N
K

is large, since the nodes harvest over many TSs without being

scheduled, there are more energy overflows in the system. In

the numerical results we have included the infinite horizon

upper bound of Section VI, which for large T is a tight upper

bound on the finite horizon case.

In Figure 2(a) we investigate the impact of the number

of nodes on the throughput, when the number of available

channels, K , is fixed. The throughput increases with the

number of nodes, and due to the battery overflows, saturates

when the number of nodes is large. By increasing the battery

capacity, hence reducing the battery overflows, the throughput

saturates with a higher number of nodes and at a higher value.

We observe that MP has a performance close to that of the

upper bound, the random policy has a lower performance than

the others; and the gap between different curves increases with

the battery capacity.

In Figure 2(b) we investigate the effect of the battery

capacity, B, on the system throughput when the number of

nodes is fixed. Clearly, the larger the battery capacity the fewer

battery overflows will occur. The throughput increases with

the battery capacity, and due to the limited amount of energy

that the nodes can harvest, it saturates at a certain value. By

increasing the number of available channels, K , which also

reduces the battery overflow, the throughput saturates more

quickly as a function of the battery capacity, but at higher

values. The performances of the scheduling policies are similar

to those observed in Figure 2(a).

(a) N/K

(b) Battery capacity (B)

Figure 2. (a) Average throughput vs. number of nodes, N , with K = 5
channels, and battery capacity B = 3, 5, 10, and (b) average throughput vs.
battery capacity, N = 30, and K = 1, 5, 10.

Figure 3 shows the average throughput for different EH

process transition probabilities. We note that the amount of

energy arriving to the system increases with p11 and decreases

with p00. As expected, we observe in Figure 3 that the

throughput increases with p11, and the values in Figure 3(a) are

notably higher than those in Figure 3(b). MP is a policy which

maximises the immediate throughput at each TS, and does not

take into account the future TSs. We observe in Figure 3(b)

for B = {5, 10} and in Figure 3(a) for B = 10 that, if the EH

state has low correlation across TSs, that is, p11 = {0.5, 0.6},
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(a) p11 (p00 = 0.5)

(b) p11 (p00 = 0.9)

Figure 3. Average throughput for different EH process transition probabili-
ties, N = 30, K = 5, and B = 3, 5, 10.

the throughput obtained by MP is similar to that of the upper

bound. On the contrary, if it has high correlation across TSs,

that is p11 = {0.8, 0.9}, the throughput falls below the upper

bound. This is due to the fact that when the state transitions

have low correlation it is difficult to reliably predict the impact

of the actions on the future rewards, and no transmission

strategy can improve upon MP. Our numerical results indicate,

that even in scenarios in which the MP cannot be shown to

be theoretically optimal, it performs very close to the upper

bound, obtained for an infinite horizon problem.

VIII. CONCLUSIONS

We have studied a scheduling problem in a multi-access

communication system with EH nodes, in which the harvested

energy at each node is modeled as a Markov process. We

have modeled the system as an RMAB problem, and shown

the optimality of MP in two settings: i) when the nodes

cannot harvest energy and transmit simultaneously and the EH

process state is independent of the past states after a node is

active; ii) when the nodes have no battery. The results of this

paper suggest that although the optimal scheduling in large

EH networks requires high computational complexity, in some

cases there exist simple and practical scheduling policies that

have almost optimal performance. This can have an impact on

the design of scheduling policies for large low-power wireless

sensor networks equipped with energy harvesting devices and

limited storage.

APPENDIX A

We denote the probability that the battery of a node is not

full if the node has been idle for the last n TSs by pnf (n). It

is easy to note that pnf(n) is a decreasing function of n. If

the node has been idle for n TSs, we denote the probability

of the EH process being in state 0 and 1, by p0(n) , p10 +
p0(n − 1)(p11 − p01) and p1(n) , 1 − p0(n), respectively.

We set p0(0) = e0. Since p11 ≥ p01 and e0 ≤ p10

p01+p10
, p0(n)

monotonically increases to the steady state distribution ([22,

Appendix B]).
We denote the belief state of a node that has been idle for n

TSs by zn. If the node has been idle for n+1 TSs, the expected

battery level is zn+1 = τ(zn) = zn +
pnf (n)

B (p01p0(n) +
p11p1(n)), which is a monotonically increasing function. If
n ≥ m, then zn ≥ zm and τ(zn) ≥ τ(zm). By applying

the definition of p1(n), we get zn+1 = zn +
pnf (n)

B (p11 −
p0(n)(p11 − p00)). If we assume that n ≥ m, we have

‖τ (zn)− τ (zm)‖ = zn − zm +
pnf (n)

B
(p11 − p0(n)(p11 − p01))

−
pnf (m)

B
(p11−p0(m)(p11 − p01))

≤ zn−zm−
pnf (n)

B
(p11−p01)(p0(n)−p0(m))

≤ zn − zm,

where the first inequality follows since pnf (n) ≤ pnf (m), and

the second inequality follows since p0(n) is monotonically

increasing and p11 ≥ p01.

APPENDIX B

The proof uses backward induction. We denote by SK
◦
Π

and

S̃K
◦
Π

the nodes scheduled from s ◦
Π

and s̃ ◦
Π

, respectively. We

first observe that (10) holds for n = T . This follows from

the bounded regularity of R(·), noting that u(T ) = 1, and

distinguishing four possible cases.

• Case 1: j ∈ SK
◦
Π

and j ∈ S̃K
◦
Π

, i.e., node j is scheduled in

both cases.

W T (s◦
Π
)−WT (s̃◦

Π
)

=R(s◦
Π(1)

, . . . , sj , . . . , s◦
Π(K)

)−R(s̃◦
Π(1)

, . . . , s̃j , . . . , s̃◦
Π(K)

)

=sjR(s◦
Π(1)

, . . . , 1, . . . , s◦
Π(K)

) + (1− sj)R(s◦
Π(1)

, . . . , 0,

. . . , s◦
Π(K)

)− s̃jR(s̃◦
Π(1)

, . . . , 1, . . . , s̃◦
Π(K)

)

−(1− s̃j)R(s̃◦
Π(1)

, . . . , 0, . . . , s̃◦
Π(K)

)

=(sj − s̃j)
(

R(s◦
Π(1)

, . . . , 1, . . . , s◦
Π(K)

)

−R(s◦
Π(1)

, . . . , 0, . . . , s◦
Π(K)

)
)

≤(sj − s̃j)∆uu(T ),

where the second equality follows from the decom-

posability of R(·). Since R(·) is symmetric and the

belief vectors are equal but for node j, we have

R(s◦
Π(1)

, . . . , s̃j = k, . . . , s◦
Π(K)

) = R(s̃◦
Π(1)

, . . . , s̃j =
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k, . . . , s̃◦
Π(N)

), which we use in the third equality. Finally,

the inequality follows from the boundedness of R(·).
• Case 2: j /∈ SK

◦
Π

and j /∈ S̃K
◦
Π

, i.e., node j is not scheduled

in either case. The same nodes with the same beliefs are

scheduled in both cases, hence, sK◦
Π

= s̃
K
◦
Π

, and WT (s ◦
Π
)−

WT (s̃ ◦
Π
) = 0.

• Case 3: j ∈ SK
◦
Π

and j /∈ S̃K
◦
Π

. In this case there exists a

node m ∈ S̃K
◦
Π

such that sj ≥ sm ≥ s̃j , and m /∈ SK
◦
Π

WT (s◦
Π
)−WT (s̃◦

Π
)

=(sj − sm)
(

R(s◦
Π(1)

, . . . , 1, . . . , s◦
Π(K)

)

−R(s◦
Π(1)

, . . . , 0, . . . , s◦
Π(K)

)
)

≤(sj − s̃j)
(

R(s◦
Π(1)

, . . . , 1, . . . , s◦
Π(K)

)

−R(s◦
Π(1)

, . . . , 0, . . . , s◦
Π(K)

)
)

≤(sj − s̃j)∆uu(T ),

where the first equality follows similar to Case 1, the

second equality from the fact that sm ≥ s̃j , and the last

inequality from the boundedness of R(·). Note that node

m is the node with the highest belief state that is not

scheduled in WT (s ◦
Π
), and the node with the lowest belief

state scheduled in WT (s̃ ◦
Π
).

• Case 4: j /∈ SK
◦
Π

and j ∈ S̃K
◦
Π

. This case is not possible

since the vectors s ◦
Π

and s̃ ◦
Π

are ordered and sj ≥ s̃j ,

hence, if s̃j is scheduled then sj must be scheduled too.

Now, we assume that (10) holds from TS n+ 1 up to T , and

show that it holds for TS n as well. We distinguish three cases:

• Case 1: j ∈ SK
◦
Π

and j ∈ S̃K
◦
Π

in (18), i.e., node j is

scheduled in both cases. The first and second summations

in the first line of (18a) correspond to the cases in

which node j ∈ SK
◦
Π

is idle and active, respectively,

in TS n. Similarly, first and second summations in the

second line of (18a) correspond to the cases in which

node j ∈ S̃K
◦
Π

is idle and active, respectively, in TS n.

Note that the belief state vector s̃E∪j includes the belief

states of all the nodes in s̃ ◦
Π

, but those in E and s̃j ,

hence, it is equivalent to the belief state vector sE∪j .

We use this fact to get (18b). Note that the belief state

vectors in (18b) differ only in the belief states of node

j, namely, τ(sj) and τ(s̃j) are the beliefs of node j in

vectors [T(sE),0(|E|)] and [T(s̃E),0(|E|)], respectively;

and hence, we use the induction hypothesis in the sum-

mation of (18b) to obtain (18c). The summation in (18c)

is over all possible operative/inoperative combinations of

the nodes in SK
◦
Π
\{j}, and it is equal to one. This fact

together with the boundedness and the decomposability

of R(·) are used in (18c) to get (18d). The contracting

property of τ(·), and the definition of u(n) are used in

(18e) and (18f), respectively.

• Case 2:j /∈ SK
◦
Π

and j /∈ S̃K
◦
Π

, i.e., the same nodes are

scheduled from s ◦
Π

and s̃ ◦
Π

, and node j is not scheduled

in either case. Then

Wn(s ◦
Π
) − Wn(s̃ ◦

Π
)

= β
∑

E⊆SK
◦
Π

q(|E|,K)
(
Wn+1([T(sE),0(|E|)])

−Wn+1([T(s̃E )0(|E|)])
)

(19a)

≤ ∆u(sj − s̃j)βu(n+ 1) (19b)

≤ ∆u(sj − s̃j)β

T−n−1∑

i=0

(β(1− p))i (19c)

≤ ∆u(sj − s̃j)u(n), (19d)

where (19a) follows since the value of the expected

immediate rewards in TS n are the same. The belief state

vectors at TS n + 1 are equal but for the belief state of

node j, that is, τ(sj) and τ(s̃j) are the beliefs of node

j in T(sE) and T(s̃E), respectively. In (19a), similarly

to (18c), (18d), and (18e), we apply the induction hy-

pothesis, the contracting map property, and the fact that

the summation is equal to one, to obtain (19b). We use

β ≤ 1 and the definition of u(n) to obtain (19c) and

(19d), respectively.

• Case 3: j ∈ SK
◦
Π

and j /∈ S̃K
◦
Π

in (20), i.e., there exists

m ∈ S̃K
◦
Π

such that sj ≥ sm = s̃m ≥ s̃j and that m /∈

SK
◦
Π

. Hence, SK
◦
Π

and S̃K
◦
Π

differ only in one element. To

obtain (20a) we use the symmetry property of the pseudo

value function and the fact that the belief vectors are equal

but for node j; in (20b) we add and subtract a pseudo

value function, which has two nodes with the same belief

state sm, and one is scheduled while the other is not.

We can group the pseudo value functions, and apply the

results of Case 1 and Case 2 above. In particular, for the

pseudo value functions in the first line of (20b), the belief

vectors are equal but for sj and sm, moreover j ∈ SK
◦
Π

and m ∈ S̃K
◦
Π

, and sj ≥ sm, so we can apply the results of

Case 1. Similarly, for the two pseudo value functions in

the second line of (20b) we can use the results of Case 2.

APPENDIX C

We note that set S = {1, . . . ,K} is the set of K nodes

scheduled from s, and that the set SK
Π is the set of nodes

scheduled from sΠ, that is, the first K nodes as ordered

according to permutation Π. We only need to study the cases

in which S and SK
Π are different, since the claim holds for

the others due to the symmetric property of the pseudo value

function, (8). We study the case j ∈ S, i ∈ SK
Π , i /∈ S,

and j /∈ SK
Π in (21). The summation in (21a) is over all

operative/inoperative combinations of the nodes in S\{j}. We

denote the belief state of all nodes but those in E and sj by

sE∪j . The belief state of node i in TS n + 1, τ(si), is in

vector T(sE∪j). Similarly, the belief state of node j in TS

n+ 1, τ(sj), is in vector T(sE∪i). The second pseudo value

functions in the first and second lines in (21a) cancel out, and

(21b) is obtained. We have applied the decomposability and

boundedness of R(·) to obtain (21c). Belief vectors T(sE∪j)
and T(sE∪i) in (21c) are ordered and only differ in one

element, τ(si) and τ(sj), respectively, where τ(si) ≤ τ(sj),
and hence, we use Lemma 2 to get (21d); (21e) follows since

τ(·) is a monotonically increasing contracting map, (21f) since
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Wn(s ◦
Π
)−Wn(s̃ ◦

Π
)

= R(sK◦
Π
) + (1−p)β

∑

E⊆SK
◦
Π

\{j}

q(|E|,K−1)Wn+1([T (sE),0(|E|)]) + pβ
∑

E⊆SK
◦
Π

\{j}

q(|E|,K−1)Wn+1([T (sE∪j),0(|E|+1)])

− R(s̃K◦
Π
)−(1−p)β

∑

E⊆S̃K
◦
Π

\{j}

q(|E|,K−1)Wn+1([T (s̃E),0(|E|)])− pβ
∑

E⊆S̃K
◦
Π

\{j}

q(|E|,K−1)Wn+1([T (s̃E∪j),0(|E|+1)]) (18a)

= R(sK◦
Π
)−R(s̃K◦

Π
) + (1−p)β

∑

E⊆SK
◦
Π

\{j}

q(|E|,K−1)
(
Wn+1([T(sE),0(|E|)])−Wn+1([T(s̃E),0(|E|)])

)
(18b)

≤ R(sK◦
Π
)−R(s̃K◦

Π
) + (1−p)β

∑

E⊆SK
◦
Π

\{j}

q(|E|,K−1)
(
∆u(τ(sj)− τ(s̃j))u(n+ 1)

)
(18c)

≤ ∆u(sj − s̃j) + (1−p)β∆u(τ(sj)− τ(s̃j))u(n+ 1) (18d)

≤ ∆u(sj − s̃j) + (1−p)β∆u(sj − s̃j)u(n+ 1) (18e)

≤ ∆u(sj − s̃j)
(
1 + β(1−p)

T−n−1∑

i=0

(β(1−p))i
)

(18f)

= ∆u(sj − s̃j)u(n), (18g)

Wn(s◦
Π(1)

, . . . , sj , . . . , s◦
Π(K)

, sm, . . . , s ◦
Π(N)

)−Wn(s̃◦
Π(1)

, . . . , s̃m, s̃◦
Π(K+1)

, . . . , s̃j, . . . , s̃◦
Π(N)

)

= Wn(s◦
Π(1)

, . . . ,sj , . . . , s ◦
Π(K)

, . . . , sm, . . . , s ◦
Π(N)

)−Wn(s◦
Π(1)

, . . . ,sm, . . . , s ◦
Π(K)

, . . . , s̃j , . . . , s◦
Π(N)

) (20a)

= Wn(s◦
Π(1)

, . . . ,sj , . . . , s ◦
Π(K)

, . . . ,sm, . . . , s ◦
Π(N)

)−Wn(s◦
Π(1)

, . . . ,sm, . . . , s ◦
Π(K)

, . . . ,sm, . . . , s◦
Π(N)

)

+Wn(s◦
Π(1)

, . . . ,sm, . . . , s ◦
Π(K)

, . . . ,sm, . . . , s ◦
Π(N)

)−Wn(s◦
Π(1)

, . . . ,sm, . . . , s ◦
Π(K)

, . . . ,s̃j , . . . , s ◦
Π(N)

) (20b)

≤ ∆u(sj − sm)u(n) + ∆u(sm − s̃j)u(n) (20c)

= ∆u(sj − s̃j)u(n). (20d)

Wn(s)−Wn(sΠ)

= R(sK)−R(sKΠ ) + β
∑

E⊆S\{j}

q(|E|,K−1)
(
pWn+1

(
[T(sE∪j),0(|E|+1)]

)
+ (1− p)Wn+1

(
[T(sE),0(|E|)]

)

− pWn+1

(
[T(sE∪i),0(|E|+1)]

)
− (1− p)Wn+1

(
[T(sE),0(|E|)]

))
(21a)

= R(sK)−R(sKΠ )− pβ
∑

E⊆S\{j}

q(|E|,K−1)
(
Wn+1

(
[T(sE∪i),0(|E|+1)]

)
−Wn+1

(
[T(sE∪j),0(|E|+1)]

))
(21b)

≥ ∆l(sj − si)− pβ
∑

E⊆S\{j}

q(|E|,K−1)
(
Wn+1

(
[T(sE∪i),0(|E|+1)]

)
−Wn+1

(
[T(sE∪j),0(|E|+1)]

))
(21c)

≥ ∆l(sj − si)− pβ
∑

E⊆S\{j}

(
q(|E|,K−1)∆u(τ(sj)− τ(si))u(n+ 1)

)
(21d)

≥ ∆l(sj − si)− pβ∆u(sj − si)u(n+ 1) (21e)

≥ ∆l(sj − si)− pβ∆u(sj − si)u(0) (21f)

= (sj − si)

(
∆l − pβ

1− β(1 − p)T+1

1− β(1 − p)
∆u

)
≥ 0 (21g)

u(n) is decreasing in n; finally (21g) follows since u(0) is the

sum of a geometric series.

APPENDIX D

We again use backward induction. Lemma 4 holds trivially

for n = T . Note that in (15a) the set of nodes sched-
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uled in the pseudo value functions Wn(sΠ̂) and Wn(s) are

{1, . . . ,K−1, N} and {1, . . . ,K}, respectively. That is, node

K is scheduled in Wn(s), but not in Wn(sΠ̂); and node N is

scheduled in Wn(sΠ̂), but not in Wn(s). To prove that (15a)

holds at TS n we use a sample path argument similarly to

[17], and assume that the realizations of the EH processes of

nodes K and N are either 0 or 1. There are four different

cases, but here we only consider one, since the others follow

similarly.

We consider the case in which the EH processes have

realizations Es
K(n) = 1 and Es

N (n) = 0. We denote by

K = {1, . . . ,K − 1} the set of nodes scheduled in both sides

of (15a). If E is the set of active nodes, we denote the set

of nodes in K that remain idle by Ki = K\E . We denote

the nodes that are not scheduled in either side of (15a) by

Ks = K ∪ {K,N}. We denote the set {0, 1}|E| by B|E|. From

the left hand side of (15a) we obtain (22), where in (22c) we

have applied the induction hypothesis of (15a), the symmetry

of the pseudo value function, the inequality p11 ≥ p00, and

the definition of R(·). This concludes the proof of (15a).

Now we prove the second part of Lemma 4, (15b). There

are three cases:

• Case 1: j, i ≤ K , i.e., nodes j and i are scheduled on

both sides of (15b). The inequality holds since the pseudo

value function is symmetric.

• Case 2: j ≤ K and i > K in (23), i.e., nodes

i and j are scheduled on the left and right hand

sides of (15b), respectively. To prove the inequal-

ity we use the linearity of the pseudo value func-

tion (14). Since sj ≥ si, using (14), we only

need to prove that Wn(s1, . . . , 1, . . . , 0, . . . , sN ) −
Wn(s1, . . . , 0, . . . , 1, . . . , sN) ≥ 0. We denote the

scheduled nodes in both sides of (15b) by K =
{1, . . . ,K}\{j}, the set of nodes in K that remain idle

by Ki = K\E , and the nodes that are not scheduled in

either side of (15b) by Ks = K ∪ {j, i}. We denote the

belief vector (s1, . . . , sj = 1, . . . , si = 0, . . . , sN ) by s̃,

its i, j-swap by s̃Π, and define s̃K , (s̃1, . . . , s̃K). In (23)

have used the induction hypothesis of (15b) and (15a) in

(23b) and (23c), respectively, and the fact that β ≤ 1.

• Case 3: nodes sj and si are not scheduled. Inequality

holds in this case, by applying the definition of (13) and

the induction hypothesis of (15b).
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1 + Wn(sN , s1, . . . , sN−1)

= 1 +R(sK
Π̂
) + β

∑

E⊆K

∑

lE∈B|E|

h(lE ,K−1)
[
pWn+1

(
P11 (ΣlE) , τττ(sKi), sK = p11, τττ (sKs), sN = p01,P01

(
ΣlE

))

+ (1− p)Wn+1

(
P11 (ΣlE) , sN = p01, τττ(sKi), sK = p11, τττ (sKs),P01

(
ΣlE

)) ]
(22a)

≥ p+R(sK
Π̂
) + β

∑

E⊆K

∑

lE∈B|E|

h(lE ,K−1)
[
pWn+1

(
P11 (ΣlE) , τττ (sKi), sK = p11, τττ(sKs), sN = p01,P01

(
ΣlE

))

+ (1− p)
(
1 +Wn+1

(
P11 (ΣlE) , sN = p01, τττ(sKi), sK = p11, τττ (sKs),P01

(
ΣlE

) )) ]
(22b)

≥ p+R(sK
Π̂
) + β

∑

E⊆K

∑

lE∈B|E|

h(lE ,K−1)
[
pWn+1

(
P11 (ΣlE) , τττ (sKi), sK = p11, τττ(sKs), sN = p01,P01

(
ΣlE

))

+ (1− p)Wn+1

(
P11 (ΣlE) , τττ (sKi), sK = p11, τττ(sKs),P01

(
ΣlE

)
, sN = p01

) ]
(22c)

= R(sK) + β
∑

E⊆K

∑

lE∈B|E|

h(lE ,K−1)
[
pWn+1

(
P11 (ΣlE) , sK = p11, τττ (sKi), τττ (sKs), sN = p01,P01

(
ΣlE

))

+ (1− p)Wn+1

(
P11 (ΣlE) , τττ (sKi), sK = p11, τττ(sKs), sN = p01,P01

(
ΣlE

)) ]
(22d)

= Wn(s) (22e)

Wn(s̃) = R(s̃K) + β
∑

E⊆K

∑

lE∈B|E|

h(lE ,K−1)
[
pWn+1

(
P11 (ΣlE) , sj = p11, τττ(sKi), τττ(sKs∪i),P01

(
ΣlE

))

+ (1− p)Wn+1

(
P11 (ΣlE) , τττ (sKi∪j), τττ (sKs∪i),P01

(
ΣlE

)) ]
(23a)

≥ R(s̃K)− p+ β
∑

E⊆K

∑

lE∈B|E|

h(lE ,K−1)
[
p
(
1 +Wn+1

(
P11 (ΣlE) , si = p01, τττ (sKi), τττ (sKs∪j),P01

(
ΣlE

)))

+ (1− p)Wn+1

(
P11 (ΣlE) , τττ (sKi∪i), τττ (sKs∪j),P01

(
ΣlE

)) ]
(23b)

≥ R(s̃K)− p+ β
∑

E⊆K

∑

lE∈B|E|

h(lE ,K−1)
[
pWn+1

(
P11 (ΣlE) , τττ (sKi), τττ (sKs∪j),P01

(
ΣlE

)
, si = p01

)

+ (1− p)Wn+1

(
P11 (ΣlE) , τττ (sKi∪i), τττ (sKs∪j),P01

(
ΣlE

)) ]
(23c)

= Wn(s̃Π) (23d)
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