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Abstract—Optimization of a point-to-point (p2p) multiple-
input single-output (MISO) communication system is considered
when both the transmitter (TX) and the receiver (RX) have
energy harvesting (EH) capabilities. The RX is interested in
feeding back the channel state information (CSI) to the TX to
help improve the transmission rate. The objective is to maximize
the throughput by a deadline, subject to the EH constraints
at the TX and the RX. The throughput metric considered is
an upper bound on the ergodic rate of the MISO channel
with beamforming and limited feedback. Feedback bit allocation
and transmission policies that maximize the upper bound on
the ergodic rate are obtained. Tools from majorization theory
are used to simplify the formulated optimization problems.
Optimal policies obtained for the modified problem outperform
the naive scheme in which no intelligent management of energy
is performed.

Index Terms—Energy harvesting, Limited feedback, MISO,
Offline optimization.

I. INTRODUCTION

Powering up terminals in communication networks by

renewable ambient energy reduces the carbon footprint of

the information and communication technologies, which can

no longer be neglected with the exponential growth in the

number of communication devices. Another advantage of EH

technology is that, it increases the autonomy of battery-run

communication devices. In traditional wireless networks nodes

get their energy from the power grid by always or periodically

connecting to it. While it is easy to connect the terminals to the

grid in some networks, in others, such as sensor networks, it

cannot be done once after the deployment. Therefore, in such

networks a node’s lifetime, and hence, the network lifetime,

is constrained by the limited initial energy in the battery.

Providing EH capabilities to the communication nodes is an

attractive solution to the network lifetime problem [2]. An

EH node can scavenge energy from the environment (typical

sources are solar, wind, vibration, thermal, etc.) [3]. With EH

nodes in the network, in principle, one can guarantee perpetual

lifetime without the need of replacing batteries.

However, EH poses a new design challenge as the energy

sources are typically sporadic and random. The main challenge

lies in ensuring the Quality of Service (QoS) constraints of the

network given the random and time varying energy sources.

This calls for the intelligent management of various parameters

involved in a communication system.
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Recently, a significant number of papers have appeared

studying the optimal transmission schemes for EH commu-

nication systems under different assumptions regarding the

node’s knowledge about the underlying EH process. Offline

optimization framework deals with systems in which non-

causal knowledge of the EH process is available. Within this

frame work, optimal transmission schemes are studied for the

p2p fading channel [4], broadcast channel [5], [6], [7] and

relay channel [8], [9]. In [10] the processing energy cost is

taken into account as well as the transmission energy; while a

finite number of transmission rates is considered in [11]. See

[12] for an extensive overview.

To the best of our knowledge, a common aspect of all

prior works on EH communication networks is that the TX

is assumed to have access to perfect CSI. Knowledge of

the CSI at the TX is beneficial in designing the optimal

channel adaptation techniques and the TX filters in multi-

antenna systems. However, recent studies have demonstrated

that, although feedback enhances the system performance,

feedback resources, namely power and bandwidth, are limited,

and must be spent wisely [13]. As a result, an important

question arises: How do the EH constraints affect the design

of feedback enabled wireless networks?

In this paper, we study the optimization of a feedback

enabled EH MISO channel, where feedback is used to improve

the rate through array gain. The system model and the main

assumptions in this paper are given in Section III. In Section

IV, we consider the optimization of the feedback policy under

EH constraints at the RX, while the TX is assumed to have

a constant power supply. The motivation is to address the

following: In the case of EH, the available energy at the RX

varies over time. Should the RX feedback same quality of CSI

at all times? If so, can the CSI feedback quality be improved

by using more bandwidth in the low energy scenario? In the

second part of this paper (Section IV), we assume that both the

TX and the RX harvest energy. In this case, the transmission

power policy and the feedback policy are coupled, and need

to be jointly optimized. Results from multivariate majorization

theory are used to devise simple algorithms. We start by

giving a brief preliminary description of majorization theory

in Section II. Numerical results are presented in Section VI to

validate the analysis. Finally, Section VII concludes the paper.

Notation: Boldface letters are used to denote matrices and

vectors. The transpose and conjugate transpose of matrix A is

denoted by A
T and A

H, respectively. We use di,j to denote

the element at the i-th row and j-th column of matrix D, and

|S| to denote the cardinality of the set S. The set of integers

from m to n, m < n, is represented by [m : n]. The algorithm
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with name “Algo” is represented as [output arguments]= Algo

(input arguments). A circularly-symmetric complex Gaussian

distributed random variable η with zero mean and variance σ2

is denoted by η ∼ CN(0, σ2).

II. PRELIMINARIES

In this section, the basic notion of majorization is introduced

and some important inequalities on convex functions that are

used in this work are stated. The readers are referred to

[14], [15] for a complete reference. We start by stating the

Edmundson-Madansky’s inequality.

Theorem 1: [14] If f is a convex function and x is a random

variable with values in an interval [a, b], then

E [f (x)] ≤
b− µ

b− a
f (a) +

µ− a

b− a
f (b) ,

where µ is the mean of x.

Majorization theory formalizes the notion that the compo-

nents of a vector x are “less spread out” than the components

of a vector y.

Definition 1: Let x = [x1, . . . , xn] ,y = [y1, . . . , yn],
x,y ∈ R

n and let x(i) denote the i-th largest component of

x. Then x is said to be majorized by y, denoted by x � y, if

l
∑

i=1

x(i) ≤

l
∑

i=1

y(i), ∀l ∈ [1 : n− 1]

n
∑

i=1

x(i) =

n
∑

i=1

y(i).

Definition 2: [15, 2.A.1] An n×n matrix D with elements

di,j is doubly stochastic if

di,j ≥ 0, ∀i, j ∈ [1 : n] ,
n
∑

i=1

di,j = 1, ∀j ∈ [1 : n] and

n
∑

j=1

di,j = 1, ∀i ∈ [1 : n] .

Theorem 2: [15, 4.A.1, 4.B.1] For x,y ∈ Rn, the following

conditions are equivalent:

• x � y.

• x = yD for some doubly stochastic matrix D.

• For all continuous concave functions g : R → R,
∑n

i=1 g (xi) ≥
∑n

i=1 g (yi).

Definition 3: [15, 15.A.2] Let X and Y be m × n real

matrices. Then X is said to be majorized by Y, written X �
Y, if X = YD, where the n×n matrix D is doubly stochastic.

Theorem 3: [15, 15.A.4] Let X and Y be m × n real

matrices. Then, X � Y if and only if

n
∑

i=1

g (xc
i) ≥

n
∑

i=1

g (yc
i ) ,

for all continuous concave functions g : Rm → R; here xc
i and

yc
i denote the i-th column vector of X and Y, respectively.

III. SYSTEM MODEL

We consider a p2p MISO fading channel as shown in Fig. 1,

where both the TX and the RX harvest energy from the

environment. Each node is equipped with an individual energy

buffer, i.e., a rechargeable battery, that can store the locally

harvested energy.
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Figure 1. MISO channel with feedback, where both the TX and the RX
harvest and store ambient energy.
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Figure 2. Energy harvesting time frame structure.

A. Energy Harvesting Model

The total observation time is divided into K equal length EH

intervals. At the beginning of the k-th EH interval, k ∈ [1 : K],
energy packets of size etk, e

r
k units arrive at the TX and the

RX, respectively. At each node, this energy is first stored in an

infinite size energy buffer, and used only for communication

purposes, i.e., TX sending data, and the RX feeding back the

CSI. We assume that all etk, e
r
k’s are known in advance by

both terminals. This model is suitable for an EH system in

which the profile of harvested energy either does not change

over time, or it is time-varying but can be predicted accurately

[12].

B. Communication System Model

Each EH interval consists of L data frames, each of length

T channel uses. We assume a block fading channel model. The

channel is constant during T channel uses of each frame, but

changes in an independent and identically distributed (i.i.d.)

fashion from one frame to another. The time frame structure is

shown in Fig. 2. The TX has M > 1 antennas, while the RX

has a single antenna. The received signal in a given channel

use is given by

y = hHws+ η, (1)

where h ∈ CM×1 represents the vector of channel coefficients

from TX to the RX with i.i.d. CN(0, 1) elements, w ∈ CM×1

denotes the beamforming vector, the input symbol maximizing

the achievable ergodic rate in the k-th EH interval is s ∼
CN(0, pk), and η ∼ CN(0, 1) represents the noise at the RX.

C. Feedback Model

We assume that the RX perfectly estimates the channel

state at the beginning of each data frame, and feeds back

the quantized CSI to the TX within the same frame. In the

k-th EH interval, the frame structure is as follows: The RX
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in τk channel uses sends the CSI through a feedback channel

(uplink) which is modeled as an additive white Gaussian noise

(AWGN) channel. In the remaining T − τk channel uses,

TX sends data to the RX (downlink) exploiting the obtained

CSI. The feedback model represents the Time-Division Duplex

(TDD) system in which uplink and downlink use the same

band in a time-sharing fashion, but the communication de-

vices are not self-calibrated, and hence, induce non-reciprocal

effects [16], [17]. In the above model, although the feedback

overhead incurs a cost in the downlink bandwidth, a similar

trade-off in the resource allocation between the CSI feedback

quality and uplink data rate also arise in a Frequency-Division

Duplex (FDD) system [17]. Hence, the analytical results

obtained in this paper are applicable in general settings, and

for instance, can be used to address the trade-off between CSI

quality and effective data rate in an FDD system.

In the k-th EH interval, quantization of the channel state

is performed using a codebook Ck known at both the TX

and RX. The receiver uses Random Vector Quantization

(RVQ). The codebook consists of M -dimensional unit vectors

Ck , {f1, . . . ,f2bk }, where bk is the number of bits used

for quantization. The RX chooses the beamforming vector

according to wk = arg max
f∈Ck

|h̃Hf |
2
, where h̃ , h

||h|| .

We assume that the length of the EH interval is very large

compared to the channel coherence time (i.e., L is very large).

As a result, the achievable ergodic rate in the k-th EH interval

is given by

Rk =
(

1−
τk
T

)

E||h||2,νk

[

log2

(

1 +
pk

(

1− τk
T

) ‖h‖
2
νk

)]

,

(2)

where νk = |h̃Hwk|
2
. Note that νk and ||h||2 are independent

[18]. By using the AWGN feedback channel model, the

number of feedback bits bk can be related to the energy used

by the RX, qk, and the number of channel uses τk as follows:

bk = τk log2

(

1 +
qk

τkσ2

)

, (3)

where σ2 is the noise variance in the uplink. For analytical

tractability, we neglect the practical constraint that bk should

be an integer. Using the ergodic rate expression given in [18,

Equation (27)] and (3), the ergodic rate Rk , R (pk, qk, τk)
is found to be

Rk =
(

1−
τk
T

)

log2 e

(

eρk

M−1
∑

l=0

El+1 (ρk) −

1
∫

νk=0

(

1− (1− νk)
M−1

)Nk M

νk
e

(

ρk
νk

)

EM+1

(

ρk
νk

)

dνk





(4)

where ρk =
(

1−
τk
T

pk

)

, Nk =
(

1 + qk
τkσ2

)τk
, and En (x) ,

∫∞

1 e−xtx−ndt is the n-th order exponential integral.

D. Optimization Problem

The problem of maximizing the sum throughput by the end

of the K-th EH interval can be formulated as

max
pk,qk,τk

K
∑

k=1

Rk (5a)

s.t. L

l
∑

i=1

qi ≤

l
∑

i=1

eri , ∀l ∈ [1 : K], (5b)

LT

l
∑

i=1

pi ≤

l
∑

i=1

eti, ∀l ∈ [1 : K], (5c)

τk ∈ [0, T ), pk ≥ 0, and qk ≥ 0, ∀k ∈ [1 : K].
(5d)

The constraints (5b) and (5c) guarantee the energy neutrality

of the system, i.e., at each node, energy consumed can not be

more than the energy harvested till that time. Also note that

τk impacts the achievable rate Rk in each EH interval.

Coming up with simple algorithms to solve the optimization

problem is desirable in EH networks as the nodes may not have

the computational and energy resources for running complex

optimization algorithms. However, the ergodic rate expression

used in the above optimization problem is not in closed form

and offers little insight into the convexity of the problem

which is required to reduce the complexity of optimization.

This motivates the use of convex bounds on (4) as the

objective function in the following optimization problems.

Solving these modified problems provides an upper bound on

the throughput. Since the constraints in the original and the

modified optimization problems are the same, the solution for

the modified problem is also feasible in the original problem,

and if used in evaluating the exact rate expression in (4), we

obtain a lower bound on the throughput. In some settings, we

show that the bounds used are very close to the ergodic rate.

Before tackling the above problem, first, we consider a

special case in which only the RX harvests energy. Later, the

general case with both the TX and the RX harvesting energy

is studied.

IV. EH RECEIVER

In this setting, the RX harvests energy from the environ-

ment, whereas the TX is connected to the power grid so that

it has a fixed power supply at all times. Therefore, there are

no EH constraints at the TX, and constraints (5c) can be

ignored. However, there is now a constraint on the average

transmission power at each data frame of the k-th EH interval

i.e., pk ≤ p, ∀k. The expected value νk is given by [18], [19]

E[νk] = 1− 2bkβ

(

2bk ,
M

M − 1

)

, (6)

where β (x, y) denotes the beta function. Using the quantiza-

tion error bound in [19, Lemma 6], (6) can be bounded as1

E[νk] ≤ νuk , 1−

(

M − 1

M

)

2
−bk
M−1 . (7)

Applying Jensen’s inequality on (2), substituting (7) and (3),

and using the fact that E ‖h‖2 = M , an upper bound on the

1This bound is universal in the sense that it applies to any bk-bit quanti-
zation of an isotropically distributed vector, not necessarily limited to RVQ.
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ergodic rate Ru
k , Ru (pk, qk, τk) is obtained as

Ru
k = tk log2



1 +
pkM

tk



1−
M − 1

M

(

1 +
qk

τkσ2

)

−τk
M−1







 ,

(8)

where tk ,
(

1− τk
T

)

.

We now illustrate the tightness of the upper bound. Ap-

plying the Jensen’s inequality on (2), Ru
k − Rk can be lower

bounded as

Ru
k −Rk ≥ tk log2

(

1 +
pk
tk

Mνuk

)

−

tk E||h||2 log2

(

1 +
pk
tk

‖h‖
2
E[νk]

)

.

(9)

Since (2) is a concave function of νk and νk ∈ [0, 1], applying

Theorem 1 on (2), we have

Rk ≥ tk E||h||2 log2

(

1 +
pk
tk

‖h‖
2

)

E[νk] (10)

Now using (10), Ru
k −Rk can be upper bounded as

Ru
k −Rk ≤ tk log2

(

1 +
pk
tk

Mνuk

)

−

tk E||h||2 log2

(

1 +
pk
tk

‖h‖
2

)

E[νk]

(11)

Since both limbk→∞ νuk = 1 and limbk→∞ E[νk] = 1 [18],

and using (9) and (11), we have,

∆Rk , lim
bk→∞

Ru
k −Rk = tk E||h||2 log2

(

tk + pkM

tk + pk ‖h‖
2

)

.

(12)

Further, for all feasible τk, in the low power regime,

lim
pk→0

∆Rk = 0, (13)

and in the high power regime,

lim
pk→∞

∆Rk = tk
(

log2 M − E||h||2 log2 ||h||
2
)

≤ log2 M − E||h||2 log2 ||h||
2.

(14)

From the above analysis, it can be seen that when the RX has

enough harvested energy to send large number of feedback

bits, in the low power regime the bound is tight, and in the

high power regime the difference is bounded by a constant.

For example, it is 0.1958 for M = 4, and also note that

limM→∞ log2 M − E||h||2 log2 ||h||
2 = 0.

Using (8) as the objective function, the modified optimiza-

tion problem can be written as follows,

max
pk,qk,τk

U =

K
∑

k=1

Ru
k (15a)

s.t. L
l
∑

i=1

qi ≤
l
∑

i=1

eri , ∀l ∈ [1 : K], (15b)

pk ≤ p, and pk ≥ 0, ∀k ∈ [1 : K], (15c)

τk ∈ [0, T ), and qk ≥ 0, ∀k ∈ [1 : K], (15d)

where p is the power constraint at the transmitter.

As the objective function is monotonic in qk and pk,

the constraint in (15b) must be satisfied with equality for

l = K , and the first constraint in (15c) must be satisfied with

equality, i.e., pk = p, ∀k; otherwise, we can always increase

qK , pk, and hence, the objective function, without violating

any constraints. Now it remains to optimize over the variables

qk and τk.

The feasible set is represented as

F = {q, τ |qk, τk satisfy (15b), (15d) ∀k} , (16)

where q = [q1, . . . , qK ] and τ = [τ1, . . . , τK ]. To show that

the above problem is a convex optimization problem, we make

use of the following lemma.

Lemma 1: If the function f (x, t) : R2
+ → R+ is concave,

and g (y, z) : R2
+ → R+ is concave and monotonically

increasing in each argument, then the function h (x, y, t) =
(

1− t
T

)

g
(

y

1− t
T

, f(x,t)
1− t

T

)

is concave ∀ (x, y) ∈ R2
+, t ∈ [0, T ).

Proof: The proof is similar to that of showing the

perspective of a concave function is concave. See Appendix.

Proposition 1: The objective function of the optimization

problem (15) is concave.

Proof: See Appendix.

Since the objective function in (15) is concave and the

constraints are linear, it has a unique maximizer [20]. Using the

concavity of the objective function, we show that the optimal

energy allocation vector is the most majorized feasible energy

vector.

Proposition 2: The global optimum of (15) is obtained at

(q∗, τ ∗), where q∗ � q, ∀ (q, τ ) ∈ F, and τ∗k is the solution

of the following equation

∂Ru
k

∂τk
|(q∗k,τ∗

k)
= 0, ∀k ∈ [1 : K] . (17)

Proof: Consider the following equivalent form of (15),

where the optimization is performed in two steps.

max
q

Ũ (q) s.t. ∀ (q, τ ) ∈ F, (18)

where Ũ (q) is obtained by

Ũ (q) = max
τ

U (q, τ ) s.t. ∀ (q, τ ) ∈ F. (19)

Since U is a concave function over the convex set F, the

function Ũ (q) is concave, where the domain of Ũ is the set

F̃ = {q| (q, τ ) ∈ F} [20, 3.2.5]. U =
∑K

k=1 R
u
k is continuous,

differentiable and concave in τk ∈ [0, T ). Furthermore, for

given qk, Ru
k approaches log2 (1 + p) and 0, as τk approaches

0 and T , respectively. Therefore, the unique maximizer of (19)

lies in [0, T ), and it is obtained at

∂U

∂τk
|τ∗

k
=

∂Ru
k

∂τk
|τ∗

k
= 0, ∀k ∈ [1 : K] . (20)

From above, as τ∗k is only a function of qk,

Ũ (q) =

K
∑

k=1

R̃u
k (21)
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Figure 3. Optimal number of channel uses for sending feedback.

where R̃u
k , R̃u (qk) = Ru (qk, τ

∗
k (qk)). Using (21) and

Theorem 2, Ũ (q∗) ≥ Ũ (q) , ∀q ∈ F̃. Finding the optimal

energy allocation vector q∗ under the EH constraints turns out

be a well known problem, and the algorithm to construct q∗ is

given in various works [21]–[23]. The proof that the algorithm

constructs the most majorized feasible energy vector is given

in [23]. Since the optimal energy allocation vector is q∗, the

optimal τ ∗ is obtained by (17).

A brief description of the algorithm tailored to this work is

given next, while the details can be found in [21]–[23]. There

is no closed form expression for the solution of (17), hence

we resort to numerical methods to obtain τ ∗. Fig. 3 shows the

behavior of τ∗k as a function of the allocated energy q∗k.

A. Optimal Energy Allocation

From Definition 1, we can see that the components of

the most majorized energy vector are "less spread out" than

any other feasible energy vector. Therefore, the algorithm

essentially tries to make the energy vector as equalized as

possible. This is done by spreading the energy to future

intervals. However, note that the energy arriving in later

intervals cannot be spread to earlier intervals due to the EH

constraints. The Optimal Energy Allocation (OEA) algorithm,

given in Algorithm 1, divides the EH intervals into |S| energy

bands whose indices form the set S =
{

B0, B1, . . . B|S|

}

,

where Bi < Bj , ∀i < j, B0 = 0, and B|S| = K .

The i-th energy band contains the EH intervals with indices

k ∈ [Bi−1 + 1 : Bi]. Moreover, the optimal allocated energy

values in each EH interval belonging to the i-th energy band

are equal, and denoted by q∗(i). The energy vector q∗ obtained

by [q∗, Sr] = OEA(K, {eri /L}), has the following properties:

(P1) q∗k = q∗(i) =

∑ti
l=Bi−1+1

erl

L(Bi−Bi−1)
, ∀k ∈ [Bi−1 + 1 : Bi].

(P2) The entries q∗(i) are strictly monotonic, i.e., q∗(1) < q∗(2) <
... < q∗(|S|).

V. EH TRANSMITTER AND RECEIVER

In this section, we consider the general case where both the

TX and the RX harvest energy. Note that if the TX is silent in

the k-th interval, i.e., pk = 0, there is no incentive for the RX

Input : EH intervals K; Harvested energy {ei}
Output: Energy allocation o⋆, Energy band indices

S =
{

B0, B1, . . . B|S|

}

// initialization

B0 := 0;

for i = 1 : K do

for k = K : −1 : (ti−1 + 1) do

(i) o⋆l =

∑k
j=Bi−1+1

ej

k−Bi−1
, l ∈ {Bi−1 + 1, . . . , k}

if
∑l

i=1 o
⋆
i ≤

∑l
i=1 ei, l = 1, ...,K then

Bi = k;

Save {o⋆1, · · · , o
⋆
k}

break;
end

end

if Bi == K then
break;

end

end

Algorithm 1: Optimal Energy Allocation (OEA) algorithm

to send feedback in this interval. Therefore, without loss of

optimality we only consider EH profiles where et1 > 0. Other-

wise, if there is an EH profile such that etk = 0, k ∈ [1 : m−1],
then pk = 0, k ∈ [1 : m − 1] due to the constraints in (5c).

In these intervals the RX simply accumulates the harvested

energy, and without loss of optimality we can have a new

EH profile with ẽt1 = eti+m−1, ∀i ∈ [1 : K − m + 1], and

ẽr1 =
∑m

k=1 e
r
k and ẽri = eri+m−1, ∀i ∈ [2 : K − m + 1] for

further analysis.

The ergodic rate upper bound in (8) is not concave, but

concave in each variable given the other variables are fixed.

To obtain a simple algorithm and an upper bound on the

throughput, we follow a similar approach as in the previous

section, and use a concave upper bound on (8) as the objective

function for throughput optimization.

This bound is obtained by using a hypothetical system in

which the transmission power is 1 watt higher than the actual

transmission power of the system, which is pk/tk. Plugging

this into the upper bound in (8), a new upper bound Rub
k ,

Rub (pk, qk, τk) on the ergodic rate is obtained:

Rub
k = tk log2

(

1 +

(

1 +
pk
tk

)

fk
tk

)

, (22)

where tk , 1− τk
T

and fk , M − (M − 1)
(

1 + qk
τkσ2

)

−τk
M−1

.

We now illustrate the tightness of the upper bound in (22) in

the low and high power regimes. For all feasible τk, pk and

qk, we can see that 0 < tk ≤ 1 and 1 ≤ fk ≤ M . Consider

Rub
k −Ru

k = tk log2

(

t2k + tkfk + pkfk
tk + pkfk

)

− tk log2 (tk)

(23)

Note that (23) is decreasing in pk for fixed τk and qk. Since

τk, fk are bounded, for fixed τk and qk, in the low power
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regime

lim
pk→0

Rub
k −Ru

k = tk log2

(

1 +
fk
tk

)

≤ log2 (1 +M) ,

(24)

and in the high power regime,

lim
pk→∞

Rub
k −Ru

k = −tk log2(tk) ≤ 0.5. (25)

From the above analysis, it can be seen that, (23) decreases as

the power is increased, and it is bounded by a constant in the

high power regime. By using (22), the modified throughput

maximization problem is formulated as

max
pk,qk,τk

U1 =

K
∑

k=1

Rub
k (26a)

s.t. L
l
∑

i=1

qi ≤
l
∑

i=1

eri , ∀l ∈ [1 : K], (26b)

LT

l
∑

i=1

pi ≤

l
∑

i=1

eti, ∀l ∈ [1 : K], (26c)

τk ∈ [0, T ), pk ≥ 0, qk ≥ 0, and ∀k ∈ [1 : K].
(26d)

Since the objective function is monotonic in qk and pk, the

constraints in (26b) and (26c) must be satisfied with equality

for l = K , otherwise, we can always increase qK , pK , and

hence the objective function, without violating any constraints.

The feasible set is represented as

J = {(p, q, τ ) |pk, qk, τk satisfy (26b), (26c) and (26d) ∀k} ,

where p = [p1, . . . , pK ], q = [q1, . . . , qK ] and τ =
[τ1, . . . , τK ].

Proposition 3: The objective function in the optimization

problem (26) is concave.

Proof: See Appendix.

Since the objective function in (26) is concave and the con-

straints are linear, it has a unique maximizer [20]. Consider

the following equivalent form of (26), where the optimization

is performed in two steps.

max
p,q

Ũ1 (p, q) s.t. ∀ (p, q, τ ) ∈ J, (27)

where Ũ1 (p, q) is obtained by

Ũ1 (p, q) = max
τ

U1 (p, q, τ ) s.t. ∀ (p, q, τ ) ∈ J. (28)

Since U1 is a concave function over the convex set J, the func-

tion Ũ1 is concave with domain J̃ = {(p, q) | (p, q, τ ) ∈ J}
[20, 3.2.5]. U1 =

∑K
k=1 R

ub
k is continuous, differentiable and

concave in τk ∈ [0, T ). Furthermore, for given pk and qk, Rub
k

approaches log2 (2 + pk) and 0, as τk approaches 0 and T ,

respectively. Therefore, the unique maximizer of (28), τ∗k , ∀k
lies in [0, T ), and it is obtained as

∂U1

∂τk
|τ∗

k
=

∂Rub
k

∂τk
|τ∗

k
= 0, ∀k ∈ [1 : K] . (29)

As τ∗k is only a function of qk and pk, (27) can be written as

max
pk,qk

Ũ1 =

K
∑

k=1

R̃ub
k s.t. ∀k, (pk, qk) ∈ J̃, (30)

where R̃ub
k , R̃ub (pk, qk) = Rub (pk, qk, τ

∗
k (pk, qk)).

In order to get an insight on how the optimal solution of

(27) may look like, consider a simple scenario in which there

is only a sum power constraint at the TX and the RX, i.e., the

constraints in (26b), (26c) has to be satisfied for only l = K . In

this case, by Jensen’s inequality, the uniform power allocation

at the TX and the RX is optimal2. However, due to the EH

constraints, this may not be feasible. Using this intuition, we

can see that the optimal policy tries to equalize the powers as

much as possible, while satisfying the EH constraints. Next,

we consider the case in which the EH profiles at the TX and

the RX are similar, and show that the optimization problem is

considerably simplified.

A. Similar EH Profiles

The EH profiles are similar in the sense that the most

majorized feasible vectors obtained from the EH profiles of

the TX and RX, p∗ and q∗, have the same structure, i.e., if

p∗i = c1, ∀i ∈ [m : n], then q∗i = c2, ∀i ∈ [m : n] for some

constants c1, c2 ≥ 0. We now give a formal definition.

Definition 4: By using the OEA algorithm, let [q∗, Sr] =
OEA(K, {eri /L}) and [p∗, St] = OEA(K, {eti/LT }). EH

profiles at the TX and the RX are said to be similar if Sr = St.

From Section II, we can see that the definition of majoriza-

tion for the vector case does not directly extend to the matrix

case. If OEA algorithm is used at the TX and RX separately,

we get the most individually majorized power vectors, which

in general may not be the optimal solution of (27). However,

we now show that if the EH profiles are similar, the above

mentioned approach is indeed optimal.

Proposition 4: If the EH profiles at the TX and the RX are

similar then (q∗,p∗, τ ∗) is the global optimum of (26), where

q∗ � q,p∗ � p, ∀ (q,p, τ ) ∈ J, and τ∗k is the solution of

∂Rub
k

∂τk
|(p∗

k
,q∗

k
,τ∗

k)
= 0, ∀k ∈ [1 : K] . (31)

Proof: See Appendix.

B. Different EH Profiles

Unfortunately, we could not find a simple algorithm to solve

(26) in a general setting where the EH profiles are not similar.

In (30), if one variable is fixed, optimizing over the other vari-

able has a directional or staircase water-filling interpretation

[4], [21], however, the difficulty lies in the fact that there is

no closed form expression for R̃ub
k . Nonetheless, based on the

convexity of the objective function, some properties of the

optimal solution are given below.

Lemma 2: Under the optimal policy, the transmission power

pk, and the energy used to send the feedback qk are non-

decreasing in k, ∀k ∈ [1 : K].
Lemma 3: Under the optimal policy, at the time instants at

which Rub changes, the energy buffer of either the TX or the

RX is emptied.

The proofs of the above lemmas are given in Appendix.

2In this section, with slight abuse of terminology we use the terms RX
power and RX energy interchangeably.
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Figure 4. Model for a solar energy harvesting profile.

VI. NUMERICAL RESULTS

We start by considering the case in which the RX harvests

energy, while the TX has a constant power supply. We assume

that the RX is equipped with a solar EH device. Following

[24], solar irradiance data is taken from the database reported

in [25]. Each EH interval is of duration ∆ = 1 hour, T = 200
ms, resulting in L = 18000 frames. The harvested power from

the irradiance data can be calculated as, pharv = I[Watt/m2]×
Area[m2] × ρ, where ρ is the efficiency of the harvester. A

hypothetical solar panel of variable area is assumed. The area

of the panel is adjusted such that we have the EH profile shown

in Fig. 4 at the RX. In Fig. 4, the harvested power to noise

ratio (HPN) in each EH interval
erk

∆σ2 is shown.

Using this EH profile, throughput of different feedback

policies is shown in Fig. 5. In Fig. 5, OEA represents the

proposed policy in which the energy vector is obtained by

using the OEA algorithm, and then the optimal time span

of feedback τ∗k is obtained by solving (20). In the greedy

scheme, the consumed energy is equal to the harvested energy

in that interval, i.e., qk = erk/L, and then optimization is

performed only over τk, given qk. The performance of the

above policies when the feedback bits are rounded to the

largest previous integer is also shown. We can see that the

proposed approach outperforms the greedy policy by 1.6 dB

at a rate of 4 bits/s/Hz. Also the rate loss due to bit rounding is

negligible. In Fig. 6, feedback bit allocation is shown for the

above mentioned policies for a downlink SNR of 10 dB. From

Fig. 6, we can see that with the proposed strategy, feedback

bit allocation is equalized as much as possible.

We now consider the case in which both the TX and the

RX harvest energy, with similar EH profiles. The same EH

profile in Fig. 4 is separately used at both the RX and the TX,

hence the EH profiles are similar. In Fig. 7, the throughput

of different schemes is shown at various mean HPN values at

the TX. The mean HPN at the TX is varied by increasing the

harvester area at the TX, i.e., the EH profile is multiplied by

a positive number (area), while keeping the same shape and

efficiency. In Fig. 7, OEA represents the proposed policy in

which the energy vector at the TX and the RX is obtained by

using the OEA algorithm, and then the optimal time span of

feedback τ∗k is obtained by solving (29). In the greedy scheme,
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Figure 5. Ergodic rate with only an EH RX, and M = 4.
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Figure 6. Feedback load at downlink SNR of 10 dB, M = 4.

the allocated energy is equal to the harvested energy in that

interval, i.e., at the TX pk = etk/LT , at the RX qk = erk/L,

and then optimization is performed only over τk, given pk
and qk. The difference in throughput between the greedy and

OEA is small when the average HPN is low, and it increases

with the HPN. In contrast to the OEA scheme, using the

greedy approach with the solar EH profile results in some EH

intervals being allocated zero energy, and therefore does not

scale by increasing the harvester area. This particularly hurts

the greedy policy’s throughput in the high HPN regime as the

multiplexing gain (pre-log factor) is reduced.

Finally, we consider a case with non-similar EH profiles,

where the EH profiles are generated independently at the

TX and the RX, and they are i.i.d. with exponential distri-

bution. EH profiles are verified not to be similar according

to Definition 4. Similarly to Fig. 7, in Fig. 8, the mean

HPN at the TX is varied by multiplying the EH profile by

a constant, while keeping the same shape. Since we could

not find a simple algorithm in this case, CVX solver is used

to solve the optimization problem [20], and is denoted as

CVX in Fig. 8. As we can see, the heuristic of using the

OEA approach performs quite well even in the non-similar

EH profile scenario. The energy allocation at the TX and the
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Figure 7. Ergodic rate for similar EH profiles, M = 4.
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Figure 8. Ergodic rate for non-similar EH profiles, M = 4.

RX are shown in Fig. 9 for the above mentioned policies at

an average per frame HPN of 0.5 dB at the TX. Different

from Fig. 7, in Fig. 8 the rate scaling with average HPNs is

same for both the greedy and the OEA policies. For the greedy

policy, the allocated energy in an EH interval scales with the

increasing mean HPN, in contrast to the solar EH profile, for

which the allocated energy is zero in some intervals.

VII. CONCLUSION

In contrast to the existing literature on the design of energy

harvesting communication systems, we have assumed in this

paper that the perfect channel state information is available

only at the receiver side; and we have studied the problem

of CSI feedback design in a p2p MISO channel under EH

constraints at both the TX and the RX. Since the exact expres-

sions of throughput are complicated, concave upper bounds

have been used in the optimization problems. We have first

considered the case in which only the RX harvests energy, and

optimized the feedback policy under EH constraints. Later, the

general case, in which both the TX and the RX harvest energy,

is analyzed. We have shown that, if EH profiles are similar,

the optimization problem can be considerably simplified. We
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Figure 9. Energy allocation at the TX and the RX, M = 4.

remark that the result obtained in Proposition 4 is general, and,

for example, it can be used in a network setting in which a

concave utility is to be maximized in the presence of EH nodes

with similar harvesting profiles and infinite size energy buffers.

Numerical results show that the proposed policies not only

outperform the greedy policy, but also achieve performances

very close to the theoretical upper bound. Our work sheds

light on the design of feedback-enabled multi-antenna systems

when the nodes depend on EH devices for their energy.

APPENDIX

A. Proof of Lemma 1

Let X1 = [x1 y1 t1]
T
, X2 = [x2 y2 t2]

T
, we have

h (λX1 + (1− λ)X2)

= Θg

(

λy1 + (1− λ) y2
Θ

,
f
(

x, t
)

Θ

)

(a)

≥ Θg

(

λy1 + (1− λ) y2
Θ

,
λf1 + (1− λ) f2

Θ

)

= Θg

(

Θ1y1
Θα1

+
Θ2y2
Θα2

,
Θ1f1
Θα1

+
Θ2f2
Θα2

)

(b)

≥ Θ1g

(

y1
α1

,
f1
α1

)

+Θ2g

(

y2
α2

,
f2
α2

)

= λh (X1) + (1− λ) h (X2) ,

(32)

where x , λx1 + (1− λ) x2, t , λt1 + (1− λ) t2,

f1 , f (x1, t1), f2 , f (x2, t2), Θ1 , λ
(

1− t1
T

)

and

Θ2 , (1− λ)
(

1− t2
T

)

,Θ = Θ1 + Θ2, α1 ,
(

1− t1
T

)

,

α2 ,
(

1− t2
T

)

. Here

(a) follows from the fact that f (x, t) is concave, and g (y, z)
is monotonically increasing in each argument,

(b) follows from the fact that Θ1

Θ + Θ2

Θ = 1, and g (y, z) is

concave.

B. Proof of Proposition 1

Reproducing the ergodic rate bound in (8) with pk = P, ∀k,

we have

Ru (qk, τk) = tk log2

(

1 +
Pfk
tk

)

, (33)
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where tk , 1− τk
T
, fk , (M −M − 1(1 + qk

τkσ2 )
−τk
M−1 ).

Since bk in (3) is concave in qk and τk, it can be easily seen

that 2−
bk

M−1 =
(

1 + qk
τkσ2

)

−τk
M−1

is convex, and hence, fk is

concave. Using Lemma 1 with g (y, z) = log2 (1 + z) and fk,

we can see that Ru
k is concave. Since the objective function

in (15) is the summation of Ru
k ’s, it is also concave.

C. Proof of Proposition 3

First, we show that g (y, z) = log2 (1 + (1 + y) z) , (y, z) ∈
R2

+ is concave for y ≥ 0, z ≥ 1. The Hessian of g is given by

J =
1

β

(

−z2 1

1 − (1 + y)2

)

, (34)

where β = loge 2 (1 + (1 + y) z)
2
> 0. Consider uT

Ju =

− 1
β

(

a2z2 + b2 (1 + y)
2
− 2ab

)

, where u = [a b]
T

∈

R
2. It can be easily seen that uT

Ju ≤ 0 for ab ≤
0. For ab > 0, since z (1 + y) ≥ 1, uT

Ju =

− 1
β

[

(az − b (1 + y))2 + 2ab (z (1 + y)− 1)
]

≤ 0. As Hes-

sian is negative semidefinite, g (y, z) is concave. Reproducing

the ergodic rate bound in (22), we have

Rub
k = tk log2

(

1 +

(

1 +
pk
tk

)

fk
tk

)

, (35)

where tk and fk are as defined before.

By following the similar steps in Proposition 1, fk can be

shown to be concave. Using Lemma 1 with g (y, z) and fk,

we can see that Rub
k is concave. Since the objective function

in (26) is the summation of Rub
k ’s, it is also concave.

D. Proof of Proposition 4

First, (p∗, q∗) is shown to be the solution of (30) and then

τ ∗ is obtained by (31). Before solving (30), we prove that

(p∗, q∗) =arg max
g,pk,qk

K
∑

k=1

g (pk, qk)

s.t. ∀k, (pk, qk) ∈ J̃, g ∈ C,

(36)

where C is the set of all continuous concave functions. As (30)

is a special case of (36), (p∗, q∗) is also the solution of (30).

Before starting, we note that the notations and properties

of the OEA algorithm discussed in Section IV-A are used

throughout the proof. By contradiction, let us assume that there

exists a [p̂T q̂T]
T

6= [p∗T q∗T]
T

and (p̂, q̂) be the solution

of (36). Then, by Theorem 3 we have,

[

p̂T q̂T
]T

�
[

pT qT
]T

, ∀ (p, q) ∈ J̃. (37)

Since (p∗, q∗) ∈ J̃, by (37) and Definition 3,

[

p̂T q̂T
]T

=
[

p∗T q∗T
]T

D. (38)

By the feasibility constraint in (26b),

Bi
∑

j=Bi−1+1

q̂j ≤ Vi =

Bi
∑

j=Bi−1+1

erj/L, (39)

where Bi’s are the energy band indices as explained in Section

IV-A.

Applying (39) for i = 1, and remembering that B0 = 0, we

get
B1
∑

j=1

q̂j =

B1
∑

j=1

K
∑

i=1

q∗i di,j ≤ V1. (40)

By (P1) and (P2) in Section IV-A, q∗i = q∗(1) + Li, where

Li = 0 ∀i ∈ [1 : B1] ,

Li > 0 ∀i ∈ [B1 + 1 : K] .
(41)

From (40) and (41)

B1
∑

j=1

K
∑

i=1

q∗(1)di,j +

B1
∑

j=1

K
∑

i=B1+1

Lidi,j ≤ V1. (42)

Using the fact that D is doubly stochastic and by (P1),

B1q
∗
(1) = V1, and we have

B1
∑

j=1

K
∑

i=B1+1

Lidi,j ≤ 0. (43)

From (41) and (43), we get

di,j = 0, ∀i ∈ [B1 + 1 : K] , ∀j ∈ [1 : B1] . (44)

As D is doubly stochastic, using (P1) and (44),

q̂j =

B1
∑

i=1

q∗(1)

B1
∑

i=1

di,j = q∗(1) = q∗j , ∀j ∈ [1 : B1] . (45)

Since D is doubly stochastic, using (44), we get

B1
∑

i=1

K
∑

j=1

di,j = B1,

B1
∑

i=1

di,j = 1, ∀j ∈ [1 : B1] . (46)

We can rewrite (46) as

B1
∑

i=1

K
∑

j=1

di,j =

B1
∑

i=1

B1
∑

j=1

di,j +

B1
∑

i=1

K
∑

j=B1+1

di,j , (47)

from which it follows that

B1
∑

i=1

K
∑

j=B1+1

di,j = 0, (48)

and hence,

di,j = 0, ∀i ∈ [1 : B1] , ∀j ∈ [B1 + 1 : K] . (49)

Then applying (39) for i = 2,

B2
∑

j=B1+1

q̂j =

B2
∑

j=B1+1

K
∑

i=1

q∗i di,j ≤ V2. (50)

By (P1) and (P2), we have q∗i = q∗(2) + Li, where

Li < 0 ∀i ∈ [1 : B1] ,

Li = 0 ∀i ∈ [B1 + 1 : B2] ,

Li > 0 ∀i ∈ [B2 + 1 : K] .

(51)
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From (50) and (51),

B2
∑

j=B1+1

K
∑

i=1

Lidi,j +

B2
∑

j=B1+1

K
∑

i=1

q∗(2)di,j ≤ V2. (52)

Since D is doubly stochastic, by (P1), we obtain

(B2 −B1) q
∗
(2) = V2, and using (49) and (51) in (52), we

get
B2
∑

j=B1+1

K
∑

i=B2+1

Lidi,j ≤ 0, Li > 0. (53)

From (51) and (53) it can be concluded that

di,j = 0, ∀i ∈ [B2 + 1 : K] , ∀j ∈ [B1 + 1 : B2] . (54)

As D is doubly stochastic, using (P1) together with (49) and

(54), we have

q̂j = q∗(2)

B2
∑

i=B1+1

di,j = q∗(2) = q∗j , ∀j ∈ [B1 + 1 : B2] . (55)

Again, since D is doubly stochastic, using (49) and (54),

B2
∑

i=B1+1

K
∑

j=1

di,j = B2 −B1,

B2
∑

i=B1+1

di,j = 1, ∀j ∈ [B1 + 1 : B2] .

(56)

We can rewrite (56) as

B2
∑

i=B1+1

K
∑

j=1

di,j =

B2
∑

i=B1+1

B2
∑

j=B1+1

di,j +

B2
∑

i=B1+1

K
∑

j=B2+1

di,j .

(57)

From (57) we can see that

B2
∑

i=B1+1

K
∑

j=B2+1

di,j = 0, (58)

and hence,

di,j = 0, ∀i ∈ [B1 + 1 : B2] and ∀j ∈ [B2 + 1 : K] . (59)

Continuing this approach for i = 3, ..., (|S| − 1), we get

q̂ = q∗. Since the EH profiles are similar, replacing q̂ by p̂ and

erj by etj/T in the above proof, we reach the similar conclusion

for p̂, i.e., p̂ = p∗. Therefore, [p̂T q̂T]
T
= [p∗T q∗T]

T
.

E. Proof of Lemma 2

Assume that at least one of the pk, qk is not monotonically

increasing in k. Without loss of generality (w.l.o.s) we consider

the cases in which pk > pk+1, qk ≥ qk+1 and pk < pk+1, qk >
qk+1. In the case of pk > pk+1, qk ≥ qk+1, we can construct

a new feasible policy,

p̃k = p̃k+1 =
pk + pk+1

2
,

q̃k = q̃k+1 =
qk + qk+1

2
.

(60)

Since the objective function is concave, by Jensen’s inequality,

the new policy strictly increases the objective. Finally consid-

ering the case where pk < pk+1, qk > qk+1, we can construct

another feasible policy,

p̃k = pk, p̃k+1 = pk+1,

q̃k = qk+1, q̃k+1 = qk.
(61)

The function Rub with variables p, q, τ can be written as,

Rub (p, q, τ) = t log2

(

1 +

(

1

t
+

p

t2

)

f

)

, (62)

where f , M − (M − 1)
(

1 + q
τσ2

)
−τ

M−1 , t , 1 − τ
T

and

0 ≤ τ < T . The second order partial derivative of Rub (p, q, τ)
is given by,

∂2Rub

∂p∂q
=

∂f
∂q

t (1 + f/t+ pf/t2)
2 . (63)

Since f is monotonic in q, (63) is positive. As ∂2Rub

∂p∂q
> 0, by

the definition of derivative,

Rub (p, q, τ) +Rub (p+ δ, q + α, τ) >

Rub (p+ δ, q, τ) +Rub (p, q + α, τ) , δ, α > 0.
(64)

Since (64) holds for all 0 ≤ τ < T , we have

R̃ub (p, q) + R̃ub (q + δ, q + α) >

R̃ub (p+ δ, q) + R̃ub (p, q + α) ,
(65)

where R̃ub is obtained by,

R̃ub (p, q) = max
τ

Rub (p, q, τ) . (66)

Finally, using (61) and (65) we can see that the newly

constructed policy strictly increases the objective.

F. Proof of Lemma 3

Let us assume that the transmission rates in the k-th

and the k + 1-th intervals are different, i.e., R̃ub (pk, qk) 6=
R̃ub (pk+1, qk+1). Before the k+1-th interval, the energy in the

buffers of TX and the RX are ∆r ,
∑k

i=1 e
r
i −L

∑k
i=1 qi and

∆t ,
∑k

i=1 e
t
i−LT

∑k
i=1 pi, respectively. W.l.o.s, we assume

that ∆r ≤ ∆t. We can construct another feasible policy

p̃k = pk + δ, p̃k+1 = pk+1 − δ,

q̃k = qk + δ, q̃k+1 = qk+1 − δ,
(67)

where δ is chosen such that δ < ∆r and q̃k < q̃k+1. Now,

(67) can be written as

p̃k = αpk + (1− α) pk+1, p̃k+1 = (1− α) pk + αpk+1,

q̃k = αqk + (1− α) qk+1, q̃k+1 = (1− α) qk + αqk+1,
(68)

where α = 1− δ/ (qk+1 − qk). Using Jensen’s inequality

k+1
∑

j=k

R̃ub (p̃j , q̃j) >

k+1
∑

j=k

R̃ub (pj , qj) , (69)

which concludes the proof.
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