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ABSTRACT

Motivated by surveillance applications with wireless cameras
or drones, we consider the problem of image retrieval over
a wireless channel. Conventional systems apply lossy com-
pression on query images to reduce the data that must be
transmitted over a bandwidth and power limited wireless link.
We first note that reconstructing the original image is not
needed for retrieval tasks; hence, we introduce a deep neu-
tral network (DNN) based compression scheme targeting the
retrieval task. Then, we completely remove the compres-
sion step, and propose another DNN-based communication
scheme that directly maps the feature vectors to channel in-
puts. This joint source-channel coding (JSCC) approach not
only improves the end-to-end accuracy, but also simplifies
and speeds up the encoding operation which is highly ben-
eficial for power and latency constrained IoT applications.

Index Terms— Joint source-channel coding, retrieval,
person re-identification, IoT, deep learning

1. INTRODUCTION

Internet of Things (IoT) devices have become widespread
in recent years. Typically, these are small, non-standard
computers designed to perform certain tasks, including mea-
surement, recording, or computing, and use wireless links to
transmit their measurements. Since the transmission power is
the main source of energy consumption for IoT devices, they
typically employ compression methods to reduce the amount
of data they transmit, while retaining the information required
to achieve the underlying goal. There are many lossless/lossy
compression techniques in the literature for various types of
information sources, e.g. audio, image, video, etc. However,
in many IoT applications, the receiver does not require the
entire source data, as its goal is typically to use some of the
information carried by the data. Such application scenar-
ios can benefit from novel and more effective task-oriented
compression schemes [1, 2].

In this paper, we consider one of the most challenging
retrieval tasks – person re-identification (re-ID), carried out
over a wireless channel. It aims at matching a query image
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of a person recorded by a remote wireless camera, to an im-
age of the same person, stored in a large database (gallery)
available at the access point. The matching is typically done
by extracting features from images and then computing the
similarity score between the features rather than the source
images. We consider two types of approaches. In the “digi-
tal” scheme, the features are first compressed for the task, and
the compressed bits are encoded with a channel code for reli-
able transmission. This approach suffers from the cliff effect:
desired performance achieved only at the target channel qual-
ity, and degrades sharply if the experienced channel is worse
than the target value. Therefore, the performance of digital
schemes depends critically on accurate channel estimation,
and requires high performance codes for channel coding and
compression. Such codes are available for long blocklengths,
hence not appropriate for some of the low-latency IoT ap-
plications. The second approach is based on joint source-
channel coding (JSCC), which does not require converting
either the image or the feature vector into bits. Instead, the
source measurements are directly mapped to channel sym-
bols. A deep neural network (DNN) based JSCC has recently
been shown to outperform state-of-the-art digital schemes for
wireless image transmission [3, 4, 5]. Here, we consider both
digital and JSCC architectures for image retrieval over wire-
less channels, which can be considered as task-based JSCC.
Our contributions can be summarized as follows:

• We propose a task-based compression scheme for in-
put images for the re-ID task, which combines a re-
ID baseline with a feature encoder, followed by scalar
quantization and entropy coding.

• We propose an autoencoder-based architecture and
training strategy for robust JSCC of feature vectors,
generated by a retrieval baseline, under noisy and
bandwidth-limited channel conditions.

• We perform extensive evaluations under different
signal-to-noise ratio (SNR) and bandwidth constraints,
and show that the proposed JSCC scheme outperforms
the digital one.

• We evaluate the proposed schemes on the person re-ID
task, and show that the performance close to the noise-



less bound can be achieved even under very harsh SNR
and bandwidth constraints.

Recently, JSCC was evaluated for a classification task in
[6]. However, for classification it is not necessary to send fea-
ture vectors, as the transmitter can perform the task locally
and send only the class label. This requires the reliable trans-
mission of only log2 10 bits for the CIFAR10 dataset consid-
ered in [6]. In contrast, in the retrieval problem, the transmit-
ter does not have access to the gallery, thus cannot compute
the similarity scores between the query and the gallery images
locally.

2. METHODS

In this work we consider both the digital (separate) and the
JSCC approaches. In both methods, feature vectors are first
extracted from the images as low-dimensional representation
of human identities (Section 2.1), and are transmitted over
the wireless channel. The features cannot be transmitted in
a lossless fashion due to finite channel capacity. The recov-
ered feature vector at the receiver is compared to the vectors
in a local image database, called the gallery, to find the near-
est neighbour, thus to identify the person. Note that we do
not consider the traditional image compression schemes, i.e.,
transmitting the images directly instead of the features, as our
bandwidth limitations prevent from sending even highly com-
pressed images.

While our proposed JSCC method can be trained with any
differentiable channel model, we consider an additive white
Gaussian noise (AWGN) channel in this paper. In particular,
given a channel input vector x ∈ RB , the channel output vec-
tor y ∈ RB is given by y = x+ z, where z is the noise vec-
tor consisting of independent and identically distributed noise
component, drawn from a zero-mean normal distribution with
variance σ2. We impose an average power constraint of P
for every channel input vector, i.e., 1

B

∑B
i=1 x

2
i ≤ P . We

evaluate the re-ID performance for different channel SNRs
given by P

σ2 . To calculate the minimum SNR requirement
for the digital scheme, we use the Shannon capacity formula
C = 1

2 log2
(
1 + P

σ2

)
.

2.1. Person re-ID baseline

Following the state-of-the-art person re-ID methods [7, 8, 9,
10] we employ the ResNet-50 network [11], pretrained on Im-
ageNet [12], for feature extraction. This ensures that similar
results can be expected in different setups. In more detail,
we use ResNet-50 with batch normalization layers applied
after each convolution. As input, we use images resized to
a common 256 × 128 resolution with bicubic interpolation.
For the last layer we use average pooling across all the chan-
nels, which results in a 2048-dimensional feature vector. Dur-
ing training we use stochastic gradient descent (SGD) with a
learning rate of 0.01 and a momentum of 0.9. We also apply
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Fig. 1: The digital transmission scheme. Input is transformed
into a feature vector, which is compressed using a DNN. At
the receiver, latent representation is classified into IDs to com-
pute the loss. Arithmetic coding is bypassed during training.
Channel coding step is not shown for better readability.

L2 regularization, weighted by 5 · 10−4 to the ResNet-50 pa-
rameters. We refer to this architecture as the re-ID baseline.

2.2. Digital transmission of compressed feature vectors

An overview of the proposed digital scheme is shown in Fig.
1. We first extract features using the re-ID baseline described
in Section 2.1. The feature vector is then compressed into
as few bits as possible through lossy compression followed
by arithmetic coding. The compressed bits are then channel
coded, with introduced structured redundancy to counter the
channel noise. The lossy feature encoder consists of a single
fully-connected (FC) layer for dimensionality reduction, fol-
lowed by quantization. On the receiver side we use the quan-
tized latent representation as a feature vector, which is passed
through a FC layer for ID classification. Note that the IDs
are used for calculating the loss during training only. During
retrieval, the feature vectors are used for nearest neighbour
search.

For quantization, we adopt the quantization noise from
[13] as a differentiable approximation of this operation dur-
ing training. In order to model the density of the unknown
prior Pq of the low-dimensional quantized representation we
adopt a flexible model based on its cumulative distribution
function from [14]. The model consists of learnable param-
eters and can be trained together with a neural network to
assign likelihood of occurrence of each element within the
latent representation. Probability distribution estimated this
way is subsequently used to compute Shannon entropy of the
latent representation and produce rate loss which is jointly
minimized with cross-entropy loss. To enable a smooth trade-
off between re-ID performance and the compression rate, we
minimize the weighted loss of the two objectives:

L = − log2 Pq + λ · lce, (1)

where lce is the cross-entropy between the predicted classes
(identities) and the ground truth for the person re-ID task. The
first part of the loss function corresponds to the Shannon en-
tropy of the quantized vector.
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Fig. 2: Training of JSCC for person re-ID. The feature vector
is directly mapped to channel inputs. Noisy received signal is
decoded and processed by a FC layer to obtain ID predictions,
which are then compared to the ground truth.

For training the feature encoder, the FC classifier and the
density model, we use SGD with learning rate 0.01 and mo-
mentum 0.9. We further apply L2 regularizer to the encoder
parameters, weighted by 5 ·10−3. We train the whole network
for 30 epochs, reduce the learning rate to 0.001 and train for
another 30 epochs.

The quantized latent variables are arithmetically encoded,
and transmitted with a channel code. Note that any channel
code will introduce some errors; therefore, there is an inher-
ent trade-off between the compression rate and the channel
coding rate for a given constraint on the channel bandwidth.
Compressing the feature vector further leads to increased
distortion, but also allows to introduce more redundancy,
and hence, increased reliability against noise. In general,
the optimal compression and channel coding rates depend on
the distortion-rate function of the compression scheme and
the error-rate of the channel code. To simplify this task, we
assume capacity-achieving channel codes over the channel,
as well as reliable transmissions. This provides an upper
bound on the performance that can be achieved by any digital
scheme that uses the above architecture.

2.3. JSCC of feature vectors

In the proposed JSCC approach, called JSCC AE and illus-
trated in Fig. 2, we use the re-ID baseline to produce the
feature vector for a given input. The feature vector is mapped
directly to the channel input symbols via a multi-layer FC en-
coder (Fig. 3a). We set the dimensionality of the channel
input vector to B, which denotes the available channel band-
width. We will consider small B values modeling stringent
bandwidth and latency constraints, typical for surveillance
applications. This low-dimensional representation is normal-
ized to satisfy the average power constraint of P = 1, and
transmitted over an AWGN channel with different SNR val-
ues. The noisy channel output vector at the receiver is mapped
back to the high-dimensional feature space by decoder (Fig.
3b), which mirrors the architecture of the encoder. The result-
ing feature vector is compared to the database feature vectors
to find the nearest neighbour.

Our training strategy consists of three steps. First, we at-
tach a single FC layer at the end of the re-ID baseline that
maps 2048-dimensional feature vectors directly to the class
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Fig. 3: Proposed encoder and decoder architecture for the
JSCC AE scheme. In the encoder, dimensionality reduction
is performed by the first FC layer, which is inverted at the
decoder.

predictions. We then pre-train the network for 30 epochs with
batch size of 16, using cross-entropy between class predic-
tions and the ground truth as the loss function. In the second
step we use the pretrained re-ID baseline to extract features
from the images in the training dataset. We use these features
as inputs to the proposed autoencoder network. To provide
a good weight initialization, we pre-train the autoencoder us-
ing L1-loss for 200 epochs with SGD optimizer, learning rate
0.1, reduced to 0.01 after 150 epochs, and momentum of 0.9.
We apply L2 regularizer to the autoencoder model, weighted
by 5 · 10−4. Finally, we train the whole network jointly, the
autoencoder and the re-ID baseline, for 30 epochs, using the
cross-entropy loss with learning rate 0.01, and for further 10
epochs with learning rate of 0.001, applying the same opti-
mizer and L2 regularization as in the previous two steps. Note
that we use the FC layer removed from the re-ID baseline af-
ter the first step to map feature vectors to class predictions.

We also investigate replacing the feature encoder and de-
coder in the JSCC architecture in Fig 2 by a single FC layer
and an identity mapping, respectively. We call the revised
model JSCC FC. We train the whole network end-to-end for
50 epochs with cross-entropy loss, learning rate of 0.01, re-
duced to 0.001 after 30 epochs, and a momentum of 0.9. We
also apply L2 regularization, weighted by 5 · 10−4, to all
the parameters, including ResNet-50, feature encoder and FC
classifier.

3. RESULTS

In this section we will evaluate the performance of the pro-
posed JSCC AE and JSCC FC architectures, and compare
with that of the digital scheme presented in Section 2.2. Be-
fore presenting the results, we will first discuss the experi-
mental setup and the dataset used for the evaluations.

3.1. Experimental setup

In order to measure the performance of the re-ID task, we em-
ploy widely used CUHK03 [15] benchmark for person re-ID
that contains 14096 images of 1467 identities taken from two
different camera views. The evaluation measure is the top-1
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Fig. 4: Person re-ID top-1 accuracy as a function of channel SNR when the training and test SNR are the same in (a) and (c),
and when they differ (b).

recognition accuracy, which calculates the fraction of correct
IDs at the top of the ranked list retrieved for each query.

For the JSCC AE and JSCC FC schemes we consider dif-
ferent channel SNRs for training, varying between SNRtrain =
−10dB and SNRtrain = ∞dB, which corresponds to zero
noise power. In the digital scheme, we allow for different
dimensionality of the latent representation, between 64 and
512, estimate and minimize its entropy in the training phase
by varying the value of parameter λ. In the testing phase,
we perform rounding to the nearest integer on each element
of the latent representation and arithmetic coding, which is
based on the probabilistic model learned by the entropy esti-
mator, as described in [14]. This model assigns a probability
estimate to each quantized symbol, which is then passed to
the arithmetic encoder. We further calculate the average num-
ber of bits required to encode the latent representations, and
evaluate the corresponding SNR to deliver those many bits
to the receiver, assuming capacity-achieving codes (which is
a loose bound on the real performance as practical codes are
far from the capacity bound in the short blocklength regime
considered here).

3.2. Performance for different methods

We plot the accuracy achieved by various schemes as a func-
tion of the test SNR in Fig. 4a. It is clear that JSCC provides
a significant gain compared to the digital approach (despite
assuming capacity-achieving channel codes), and it meets the
noiseless bound at sufficiently high SNR values. Among the
two JSCC architectures, the autoencoder-based JSCC AE out-
performs the JSCC FC – fully-connected encoder without a
decoder. The low accuracy of the scheme without decod-
ing may stem from the fact that the noise directly affects the
low-dimensional feature vector, while the autoencoder-based
scheme introduces certain level of denoising, which improves
the feature estimates at the receiver.

In addition to its performance, the JSCC approach can re-
liably accommodate channel variations. In Fig. 4b, we plot

the accuracy results as a function of the test SNR, for net-
works trained for different SNRtrain values. We can see that
the JSCC AE scheme achieves graceful degradation with the
channel quality. This also means that there is no need to train
a separate network for every SNR value. The networks trained
at a single moderate SNR value of 0dB or −3dB give satis-
factory results tested for a wide range of SNR values. For the
considered scenario, channel SNR of at least 10dB is needed
to recover the original re-ID baseline accuracy.

3.3. Performance for different bandwidths

In the last experiment we investigate the effect of the chan-
nel bandwidth B on the re-ID performance. The accuracy as
a function of channel SNR is plotted in Fig. 4c for different
channel bandwidth values of 64, 128, 256, 512 and 1024. It
can be seen that the accuracy and robustness increases sig-
nificantly with the bandwidth, but the relative gain becomes
smaller as we approach the original feature vector dimension.
Therefore, from accuracy-bandwidth trade-off perspective the
best choice is to aim for a bandwidth of B = 512 or B = 256
as they provide a significant accuracy gain, while still operat-
ing over a reasonable bandwidth.

4. CONCLUSIONS

In this work we studied image retrieval over wireless chan-
nels. We first introduced a digital approach using a state-
of-the-art deep image compression algorithm adapted to our
problem, followed by capacity-achieving channel codes. We
then proposed a JSCC scheme for robust transmission of fea-
ture vectors over an extremely limited channel bandwidth. We
showed that the proposed autoencoder-based JSCC scheme
achieves superior results in comparison to the digital scheme
and the JSCC scheme trained without the feature decoding
phase. This result shows that DNN-based JSCC schemes will
be essential to meet the harsh latency and bandwidth con-
straints of retrieval applications over wireless links.
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