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Wyner-Ziv Coding over Broadcast Channels:

Digital Schemes
Jayanth Nayak, Ertem Tuncel, Deniz Gündüz

Abstract

This paper addresses lossy transmission of a common source over a broadcast channel when there is correlated

side information at the receivers. The quadratic Gaussian and binary Hamming cases are especially targeted. Using

ideas from the lossless version of the problem, i.e., Slepian-Wolf coding over broadcast channels, and dirty paper

coding, several digital schemes are proposed and their single-letter distortion tradeoffs are characterized. These

schemes use layered coding where the common layer information is intended for both receivers and the refinement

information is destined only for the receiver that is chosen using an appropriately defined “combined” channel/side

information quality measure. When this quality is constant at each receiver, all the new schemes converge and

become optimal. When the source and the channel bandwidths are equal, it is shown that one of the proposed

schemes outperforms all the others as well as separate coding. For the quadratic Gaussian problem, it is also shown

that if the combined quality criterion chooses the worse channel as the refinement receiver, then the same scheme

also outperforms uncoded transmission. Unlike its lossless counterpart, however, the problem eludes a complete

characterization.

I. INTRODUCTION

Consider a sensor network where K + 1 nodes take periodic measurements of a common phenomenon. We

study the communication scenario where one of the sensors is required to transmit its measurements to the other

K nodes over a broadcast channel. The receiver nodes are themselves equipped with side information unavailable

to the sender, e.g., measurements correlated with the sender’s data. This scenario, which is depicted in Figure 1,

can be of interest either by itself or as a part of a larger scheme where all nodes are required to broadcast their

measurements to all the other nodes. Finding the capacity of a broadcast channel is a longstanding open problem,

and thus, limitations of using separate source and channel codes in this scenario may never be fully understood. In

contrast, a very simple joint source-channel coding strategy is optimal for the special case of lossless coding [18].

More specifically, it was shown in [18] that in Slepian-Wolf coding over broadcast channels (SWBC), as the lossless

case was referred to, for a given source X , side information Y1, . . . , YK, and a broadcast channel pV1...VK |U , lossless

transmission (in the Shannon sense) is possible with κ channel uses per source symbol if and only if there exists

a channel input distribution U such that

H(X |Yk) ≤ κI(U ; Vk) (1)

for k = 1, . . . , K. This result exhibits some striking features which are worth summarizing here.
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Fig. 1. Block diagram for Wyner-Ziv coding over broadcast channels.

(i) The optimal coding scheme is not separable in the classical sense, but consists of separate components that

perform source and channel coding in a broader sense. This results in separation of source and channel

variables as in (1).

(ii) If the broadcast channel is such that the same input distribution achieves capacity for all individual channels,

then (1) implies that one can utilize all channels in full capacity. Binary symmetric channels and Gaussian

channels are the widely known examples of this phenomenon.

(iii) The optimal coding scheme does not necessarily involve binning, which is commonly used in network

information theory. Instead, with the simple coding strategy of [18], the channel performs the binning

automatically in a virtual manner1.

In this paper, we consider the general lossy coding problem in which the reconstruction of the source at the

receivers need not be perfect. We shall refer to this problem setup as Wyner-Ziv coding over broadcast channels

(WZBC). We present coding schemes and analyze their performances in the quadratic Gaussian and binary Hamming

cases. These schemes use ideas from SWBC [18] and dirty paper coding (DPC) [3], [6] as a starting point.

The SWBC scheme is modified to a) allow quantization of the source, and b) additionally handle channel state

information (CSI) at the encoder by using DPC. These modifications are then employed in layered transmission

schemes with K = 2, where there is common layer (CL) information destined for both receivers and refinement

layer (RL) information meant for only one of the receivers. Varying the encoding and the decoding orders of these

two layers, we initially obtain four different schemes. In each scheme, the channel codewords corresponding to the

two layers are superposed, and to mitigate the resultant interference, we either use successive decoding or DPC.

We then show that one of these four schemes prevail as the best for the quadratic Gaussian problem. The same is

1An alternative binning-based scheme using block Markov encoding and backward decoding can be found in [7].
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observed experimentally for the binary Hamming problems, although an analytical proof is difficult to devise.

DPC is used in this work in a manner quite different from the way it was used in [2], which concentrated on

sending private information to each receiver in a broadcast channel setting, where the information that forms the

CSI and the information that is dirty paper coded are meant for different receivers. Therefore, although the DPC

auxiliary codewords are decoded at one of the receivers, unlike in our schemes, this is of no use to that receiver.

For our problem, this difference leads to an additional interplay in the choice of channel random variables. To

the best of our knowledge, the DPC techniques in this work are most similar to those in [15], [19], where, as in

our schemes, the CSI carries information about the source and hence decoding the DPC auxiliary codeword helps

improve the performance. However, our results indicate a unique feature of DPC in the framework of WZBC. In

particular, in our best layered scheme, the optimal Costa parameter for the quadratic Gaussian problem turns out

to be either 0 or 1. When it is 0, there is effectively no DPC, and when it is 1, the auxiliary codeword is identical

to the channel input corrupted by the CSI. To the best of our knowledge, although the latter choice is optimal for

binary symmetric channels, it has never been optimal for a Gaussian channel in a scenario considered before.

When an appropriately defined “combined” channel and side information quality is constant at each receiver,

the new schemes are shown to be optimal in the quadratic Gaussian case. We also derive conditions for the same

phenomenon to occur in the binary Hamming case, albeit not as elegantly as in the quadratic Gaussian problem.

Unlike in [18], however, the schemes that we derive are not always optimal. A simple alternative approach is to

separate the source and channel coding. Both Gaussian and binary symmetric broadcast channels are degraded.

Hence their capacity regions are known [4] and further, there is no loss of optimality in confining ourselves to two

layer source coding schemes. The corresponding source and side information pairs are also degraded. Although

a full characterization of the rate-distortion performance is available for the quadratic Gaussian case [16], only a

partial characterization is available for the binary Hamming problem [14], [16]. In any case, we obtain the distortion

tradeoff of separate source and channel coding by combining the known rate-distortion results with the capacity

results. For the quadratic Gaussian problem, we show that one of our schemes always outperforms the others as

well as separate coding. The same phenomenon is numerically observed for the binary Hamming case.

For the two examples we consider, a second alternative is uncoded transmission if there is no bandwidth expansion

or compression. This scheme is optimal in the absence of side information at the receivers in both the quadratic

Gaussian and binary Hamming cases. However, in the presence of side information, the optimality may break

down. We show that, depending on the quality of the side information, our schemes can indeed outperform uncoded

transmission as well. In particular, if the combined quality criterion chooses the worse channel as the refinement

receiver (because it has much better side information), then the best layered scheme also outperforms uncoded

transmission for the quadratic Gaussian problem.
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The paper is organized as follows. In Section II, we formally define the problem and present relevant past work.

Our main results are presented in Section III and Section IV: we develop extensions of the scheme in [18]. We

then apply them to the quadratic Gaussian and binary Hamming cases in Sections V and VI, respectively. For these

cases, we compare the derived schemes among themselves, with separate source and channel coding, and finally

with uncoded transmission. Section VII concludes the paper by summarizing the results and pointing to the future

work.

II. BACKGROUND AND NOTATION

Let (X, Y1, . . . , YK) ∈ X ×Y1×· · ·×YK be random variables denoting a source with independent and identically

distributed (i.i.d.) realizations. The X sequence is to be transmitted over a memoryless broadcast channel defined

by pV1···VK |U(v1, . . . , vK|u), u ∈ U , vk ∈ Vk, k = 1, . . .K. Decoder k has access to side information Yk in addition

to the channel output Vk. Let single-letter distortion measures dk : X × X̂k → [0,∞) be defined at each receiver,

i.e.,

dk(x
n, x̂n

k) =
1

n

n
∑

j=1

dk(xj, x̂kj)

for k = 1, . . . , K. We denote the variance of a random variable A by A. Also, all logarithms are base 2.

Definition 1: An (m, n, f, g1, . . . , gK) code consists of an encoder

f : X n → Um

and decoders at each receiver

gk : Vm
k × Yn

k → X̂ n
k .

The rate of the code is κ = m
n channel uses per source symbol.

Definition 2: A distortion tuple (D1, . . . , DK) is said to be achievable at a rational rate κ if for every ε > 0,

there exists n0 such that for all integers m > 0, n > n0 with m
n

= κ, there exists an (m, n, f, g1, . . . , gK) code

satisfying

1

n
E
[

dk(X
n, X̂n

k )
]

≤ Dk + ε

where X̂n
k = gk(V

m
k , Y n

k ) and V m
k denotes the channel output corresponding to f(Um

k ).

In this paper, we present some general WZBC techniques and derive the corresponding achievable distortion

regions. We study the performance of these techniques for the following cases.

• Quadratic Gaussian: All source and channel variables are real-valued. The source and side information are

jointly Gaussian and the channels are additive white Gaussian, i.e., Vk = U + Wk where Wk is Gaussian and

Wk ⊥ U . There is an input power constraint on the channel:

1

m
E





m
∑

j=1

U2
j



 ≤ P
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where Um = f(Xn). Without loss of generality, we assume that X = Y1 = · · · = YK = 1 and Yk = ρkX+Nk

with Nk ⊥ X and ρk > 0. Thus, Nk = 1 − ρ2
k, denotes the mean squared-error in estimating Yk from X , or

equivalently, X from Yk . Reconstruction quality is measured by squared-error distance: dk(x, x̂k) = (x− x̂k)2.

• Binary Hamming: All source and channel alphabets are binary. The source is Ber( 1
2), where Ber(ε) denotes

the Bernoulli distribution with P [1] = ε. The channels are binary symmetric with transition probabilities pk ,

i.e., Vk = Uk ⊕ Wk where Wk ∼ Ber(pk) and Wk ⊥ Uk with ⊕ denoting modulo 2 addition (or the XOR

operation). The side information sequences at the receivers are also noisy versions of the source corrupted

by passage through virtual binary symmetric channels. Therefore Yk = Xk ⊕ Nk with Nk ∼ Ber(βk) and

Nk ⊥ Xk. Reconstruction quality is measured by Hamming distance: dk(x, x̂k) = x ⊕ x̂k.

The problems considered in [9], [12], [18] can all be seen as special cases of the WZBC problem. However, the

quadratic Gaussian and the binary Hamming cases with non-trivial side information have never, to our knowledge,

been analyzed before. Nevertheless, separate source and channel coding and uncoded transmission are obvious

strategies and we shall present numerical comparisons of the new schemes with those.

A. Wyner-Ziv Coding over Point-to-point Channels

Before analyzing the WZBC problem in depth, we shall briefly discuss known results for Wyner-Ziv coding over

a point-to-point channel, i.e., the case K = 1. The Wyner-Ziv rate-distortion performance is characterized in [21]

as

RWZ(D)
4
= min

Z, g : Y − X − Z
E [d(X,g(Z, Y ))] ≤ D

I(X ; Z|Y ) (2)

where Z ∈ Z is an auxiliary random variable, and the capacity of the channel pV |U is well-known (cf. [4]) to be

C = max
U

I(U ; V ) .

It is then straightforward to conclude that combining separate source and channel codes yields the distortion

D = DWZ(κC) (3)

where DWZ , the distortion-rate function, is the inverse of RWZ , i.e.,

DWZ(R)
4
= min

Z, g : Y − X − Z
I(X ;Z|Y ) ≤ R

E [d(X, g(Z, Y ))] .

On the other hand, a converse result in [13] shows that even by using joint source-channel codes, one cannot

improve the distortion performance further than (3).

We are further interested in the evaluation of DWZ(R), as well as the test channels achieving it, for the quadratic

Gaussian and binary Hamming cases. We will use similar test channels in our WZBC schemes.
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1) Quadratic Gaussian: It was shown in [20] that the optimal backward test channel is given by

X = Z + S

where Z and S are independent Gaussians. The rate then becomes

I(X ; Z|Y ) =
1

2
log

(

1 −N +
N

S

)

. (4)

The optimal reconstruction is a linear estimate g(Z, Y ) = a1Z + a2Y , which yields the distortion

E[d(X, g(Z, Y ))] =
N

1 −N + N

S

(5)

and therefore,

DWZ(R) = N2−2R . (6)

2) Binary Hamming: It was implicitly shown in [21] that the optimal auxiliary random variable Z ∈ Z =

{0, 1, λ} is given by

Z = E ◦ (X ⊕ S)

where X, E, S are all independent, E and S are Ber(q) and Ber(α) with 0 ≤ q ≤ 1 and 0 ≤ α ≤ 1
2 , respectively,

and ◦ is an erasure operator, i.e.,

a ◦ b =

{

λ a = 0

b a = 1
.

This choice results in

I(X ; Z|Y ) = qr(α, β) (7)

where

r(α, β) = H2(α ? β)− H2(α)

with ? and H2 denoting the binary convolution, i.e., a ? b = (1 − a)b + a(1− b), and the binary entropy function,

i.e.,

H2(p) = −p log p − (1− p) log(1− p)

respectively. It is easy to show that when 0 ≤ α, β ≤ 1
2 , r(α, β) is increasing in β and decreasing in α.

Since E[d(X, g(Z, Y ))] = Pr[X 6= g(Z, Y ))] and X ∼Ber(1
2 ), the corresponding optimal reconstruction function

g boils down to a maximum likelihood estimator given by

g(z, y) = argmax
x

pY Z|X(y, z|x)

= argmax
x

pZ|X(z|x)pY |X(y|x)

=















y z = λ or z = y

z z 6= λ, z 6= y and β > α

y z 6= λ, z 6= y and β ≤ α

.
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The resultant distortion is given by

E[d(X, g(Z, Y ))] = q min{α, β}+ (1 − q)β (8)

implying together with (7) that

DWZ(R) = min
0 ≤ q ≤ 1,0 ≤ α ≤ β :

q r(α,β) ≤ R

[

qα + (1− q)β

]

(9)

where the extra constraint α ≤ β is imposed because α > β is a provably suboptimal choice. It also follows from

the discussion in [21] that there exists a critical rate R0(β) above which the optimal test channel assumes q = 1

and 0 ≤ α ≤ α0(β) ≤ β, and below which it assumes α = α0(β) and 0 ≤ q < 1. The reason why we discussed

other values of (q, α) above is because we will use the test channel in its most general form in all WZBC schemes.

B. A Trivial Converse for the WZBC Problem

At each terminal, no WZBC scheme can achieve a distortion less than the best distortion achievable by ignoring

the presence of the other terminal. Thus,

Dk ≥ DWZ
k (κCk) (10)

where Ck is the capacity of channel k. For the source-channel pairs we consider, (10) can be further specialized.

For the quadratic Gaussian case, we obtain using (6) and

Ck =
1

2
log

(

1 +
P

Wk

)

that

Dk ≥ Nk

(1 + P
Wk

)κ
. (11)

For the binary Hamming case, using (9) and Ck = 1 − H2(pk), the converse becomes

Dk ≥ min
0 ≤ q ≤ 1,0 ≤ α ≤ βk :

q r(α,β) ≤ κ[1 − H2(pk)]

qα + (1 − q)βk

C. Separate Source and Channel Coding

For a general source and channel pair, the source and channel coding problems are extremely challenging. The

set of all achievable rate triples (common and two private rates) for broadcast channels has not been characterized.

The corresponding source coding problem has not been explicitly considered in previous work either. But there is

considerable simplification in the quadratic Gaussian and binary Hamming cases since in both cases, the channel

and the side information are degraded: we can assume that one of the two Markov chains, U−V1−V2 or U−V2−V1,

holds (for arbitrary channel input U ) for the channel, and similarly either X − Y1 − Y2 or X − Y2 − Y1 holds

for the source. The capacity region for degraded broadcast channels is fully known. In fact, since any information
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sent to the weaker channel can be decoded by the stronger channel, we can assume that no private information is

sent to the weaker channel. As a result, two layer source coding, which has been considered in [14], [16], [17], is

sufficiently general.

For simplicity, we denote the random variables, rates, and distortion levels associated with the good channel by

the subscript g and those associated with the bad one by b, i.e., the channel variables always satisfy U − Vg − Vb

where g is either 1 or 2 and b takes the other value. A distortion pair (Db, Dg) is achievable by separate source

and channel coding with κ channel uses per source symbol if and only if

R(Db, Dg) ∩ κC 6= ∅

where, as shown in [1], [5], κC is the convex closure of all (Rb, Rg) such that there exist a channel input U ∈ U

and an auxiliary random variable Ub ∈ Ub satisfying Ub − U − Vg − Vb, the power constraint (if any) E[U2] ≤ P ,

and

Rb ≤ κI(Ub; Vb) (12)

Rg ≤ κ[I(Ub; Vb) + I(U ; Vg|Ub)] . (13)

Note that we use cumulative rates at the good receiver.

As for R(Db, Dg), despite the simplification brought by degraded side information, there is no known complete

single-letter characterization for all sources and distortion measures when X−Yb −Yg . Let R∗(Db, Dg) be defined

as the convex closure of all (Rb, Rg) such that there exist source auxiliary random variables (Zb, Zg) ∈ Zb×Zg with

either (Yb, Yg)−X −Zb −Zg or (Yb, Yg)−X −Zg −Zb, and reconstruction functions gk : Zk ×Yk → X̂ , k = b, g

satisfying

E[dk(X, gk(Zk, Yk))] ≤ Dk (14)

for k = b, g, and

Rb ≥ I(X ; Zb|Yb) (15)

Rg ≥
{

I(X ; Zb|Yb) + [I(X ; Zg|Yg)− I(X ; Zb|Yg)]
+ if X − Yg − Yb

I(X ; Zg|Yg) + [I(X ; Zb|Yb)− I(X ; Zg|Yb)]
+ if X − Yb − Yg

. (16)

It was shown in [14] that R(Db, Dg) = R∗(Db, Dg) when X − Yg − Yb. On the other hand, [16] showed that

even when X − Yb − Yg, R(Db, Dg) = R∗(Db, Dg) for the quadratic Gaussian problem. For all other sources and

distortion measures, we only know R(Db, Dg) ⊃ R∗(Db, Dg) in general when X − Yb − Yg .

We next specialize the discussion to the quadratic Gaussian and binary Hamming problems.
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1) Quadratic Gaussian: For the Gaussian channel, κC is achieved by Gaussian Ub and U−Ub with Ub ⊥ U−Ub,

using which (12) and (13) become (cf. [4])

Rb ≤ κ

2
log

(

1 +
νP

ν̄P + Wb

)

(17)

Rg ≤ κ

2
log

(

[

1 +
νP

ν̄P + Wb

]

[

1 +
ν̄P

Wg

])

(18)

where 0 ≤ ν ≤ 1 and ν̄ = 1 − ν control the power allocation between Ub and U − Ub. On the other hand,

R(Db, Dg) = R∗(Db, Dg) is also achieved by the test channel X = Zk + Sk with Zk ⊥ Sk for k = b, g. From (4)

and (5), this implies that for any k, k′ ∈ {b, g}

I(X ; Zk|Yk′) =
1

2
log

(

1− Nk′ +
Nk′

Sk

)

=







1
2 log Nk

Dk
k = k′

1
2 log

(

Nk′

Dk
+ 1 − Nk′

Nk

)

k 6= k′ . (19)

Combining (15), (17), and (19), we obtain

Nb

Db
≤
(

1 +
νP

ν̄P + Wb

)κ

. (20)

Similarly, (16), (18), and (19) yields

N2
bNg

Dg [NgNb + Db (Nb −Ng)]
≤
(

1 +
νP

ν̄P + Wb

)κ
(

1 +
ν̄P

Wg

)κ

(21)

when X − Yg − Yb, and

Ng

min
{

Dg, Db + DbDg

NbNg
(Ng − Nb)

} ≤
(

1 +
νP

ν̄P + Wb

)κ
(

1 +
ν̄P

Wg

)κ

(22)

when X −Yb −Yg . The next lemma, whose proof we defer to Appendix A, characterizes the (Db, Dg) tradeoff for

both X − Yg − Yb and X − Yb − Yg for the important case κ = 1. This result will be useful when we compare our

schemes to separate coding.

Lemma 1: For the quadratic Gaussian case with κ = 1, the distortion pair (Db, Dg) with DWZ
b (Cb) ≤ Db ≤ Nb

is achievable using separate coding if and only if Dg ≥ DSEP(Db) where DSEP(Db) is the convex hull of

D∗
SEP(Db) =

NgN
2
bWgDb

(

DbNb + Ng(Nb − Db)
)(

(Wg − Wb)Nb + (P + Wb)Db

) (23)

when X − Yg − Yb, and

D∗
SEP(Db) =

Ng
(

(Wg −Wb)Nb + (P + Wb)Db

) max

{

WgDb,
Nb

(

NgWg − (P + Wb)Db − Nb(Wg −Wb)
)

Ng − Nb

}

(24)

when X − Yb − Yg.
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2) Binary Hamming: For the binary symmetric channel, κC is achieved by Ub ∼ Ber( 1
2) and U = Ub ⊕Ug with

Ug ∼ Ber(θ) and Ug ⊥ Ub. The parameter θ serves as a tradeoff between Rb and Rg. The conditions (12) and (13)

then become (cf. [4])

Rb ≤ κ[1− H2(θ ? pb)] (25)

Rg ≤ κ[H2(θ ? pg) − H2(pg)] . (26)

For the source coding part, we evaluate R∗(Db, Dg) only with Zb = Zg = {0, 1, λ}, where the test channels are

also confined to degraded versions of those that achieve DWZ(R), as shown in Figure 2 for the case (Yb, Yg) −

X − Zg − Zb. More specifically,

Zg = Eg ◦ (X ⊕ Sg)

Zb = Eb ◦ (X ⊕ Sb)

where Eg, Eb, Sg, and Sb are all Bernoulli random variables with parameters qg, qb, αg, and αb, respectively. To

obtain a Markov relation X − Zg − Zb, it suffices to enforce qb ≤ qg and αb ≥ αg. In that case, one can find

0 ≤ q′b ≤ 1 and 0 ≤ α′
b ≤ 1

2 such that qb = qgq
′
b and αb = αg ? α′

b, and Zb can alternatively be written as

Zb =

{

E ′
b ◦ (Zg ⊕ S ′

b) Zg 6= λ

λ Zg = λ

where E ′
b and S ′

b are Ber(q′b) and Ber(α′
b), respectively. Similarly, to obtain the other Markov chain, X −Zb −Zg ,

we need qb ≥ qg and αb ≤ αg.

These simple choices may potentially result in degradation of the separate coding performance, as the bounds

on the alphabet sizes for Zb and Zg in [14], [16], [17] are much larger. However, our limited choice of (Zb, Zg)

can be justified in two ways: (i) to the best of our knowledge, there is no other choice known to achieve better

rates, and (ii) to be fair, we use the same choice in our joint source-channel coding schemes.

As in the quadratic Gaussian case, we can write

I(X ; Zk|Yk′) = qkr(αk, βk′) (27)

for k, k′ ∈ {b, g}. Combining (15), (25), and (27) yields

qbr(αb, βb) ≤ κ[1− H2(θ ? pb)] . (28)

Similarly, combining (16), (26), and (27), we obtain

qbr(αb, βb) + [qgr(αg, βg) − qbr(αb, βg)]
+ ≤ κ[H2(θ ? pg) − H2(pg)] (29)

when X − Yg − Yb, and

qgr(αg, βg) + [qbr(αb, βb)− qgr(αg, βb)]
+ ≤ κ[H2(θ ? pg)− H2(pg)] (30)

when X − Yb − Yg.
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X ZbZg

0 0

1 1

λ

q̄g
q̄g

q̄′b
q̄′b

qgᾱg

qgᾱg

qgαg

qgαg

q′bᾱ
′
b

q′bᾱ
′
b

q′bα
′
b

q′bα
′
b

Fig. 2. Auxiliary random variables for binary source coding. The edge labels denotes transition probabilities. We also use the convention

that ā = 1− a.

D. Uncoded Transmission

If the rate κ = 1, and if the source and channel alphabets are compatible, uncoded transmission is a possible

strategy. For the quadratic Gaussian case, the distortion achieved by uncoded transmission is given by

Dk =
NkWk

Wk + NkP
(31)

for k = 1, 2. This, in turn, is also because the channel is the same as the test channel up to a scaling factor. More

specifically, when
√

PX is transmitted and corrupted by noise Wk, one can write X = Zk + Sk with Sk ⊥ Zk ,

where Zk is an appropriately scaled version of the received signal
√

PX + Wk and

Sk =
Wk

Wk + P
.

Substituting this into (5) then yields (31). Comparing with (11), we note that (31) achieves DWZ
k (Ck) only when

Nk = 1 or when Wk → ∞, which, in turn, translate to trivial Yk or zero Ck , respectively.

For the binary Hamming case, this strategy achieves the distortion pair

Dk = min{pk, βk} (32)

for k = 1, 2. That is because the channel is the same as the test channel that achieves DWZ(R) with q = 1. The

distortion expression in (32) then follows using (8). One can also show that (32) coincides with DWZ
k (Ck) only

when βk = 1
2 or pk = 1

2 . Once again, these respectively correspond to trivial Yk and zero Ck .

III. BASIC WZBC SCHEMES

In this section, we present the basic coding schemes that we shall then develop into the schemes that form the

main contributionS of this paper.
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The first scheme, termed Scheme 0, is a basic extension of the scheme in [18] where the source is first quantized

before transmission over the channel. Even though our layered schemes are constructed for the case of K = 2

receivers, Scheme 0 can be utilized for any K ≥ 2.

Theorem 1: A distortion tuple (D1, . . . , DK) is achievable at rate κ if there exist random variables Z ∈ Z ,

U ∈ U and functions gk : Z ×Yk → X̂k with (Y1, . . . , YK) − X − Z such that

I(X ; Z|Yk) < κI(U ; Vk) (33)

E[dk(X, gk(Z, Yk))] ≤ Dk (34)

for k = 1, . . . , K.

Here and in what follows, we only present code constructions for discrete sources and channels. The constructions

can be extended to the continuous case in the usual manner. Our coding arguments rely heavily on the notion of

typicality. Given a random variable X ∼ PX(x), x ∈ X the typical set at block length n is defined as [10]

T n
δ (X) ,

{

xn ∈ X n :

∣

∣

∣

∣

N (a|xn)

n
− PX(a)

∣

∣

∣

∣

≤ δPX(a), ∀a ∈ X
}

where N (a|xn) denotes the number of times a appears in xn.

Proof: Pick random variables satisfying (33) and (34). For a fixed δ, δ′, δ′′ > 0, the coders will operate as

follows. The encoder constructs a source codebook CZ , {zn(i), i = 1, . . . , M} by choosing sequences from

T n
δ (Z) uniformly at random. The codebook size, M , is to be determined later. Similarly, the encoder constructs

a channel codebook CU , {um(i), i = 1, . . . , M} from T m
δ (U). Given a source sequence Xn, the encoder finds

i∗ ∈ {1, . . . , M} such that (Xn, zn(i∗)) ∈ T n
δ′ (X, Z) and transmits um(i∗). The encoder declares an error if it

cannot find i∗. The decoder at terminal k finds the smallest i ∈ {1, . . . , M} such that (um(i), V m
k ) ∈ T m

δ′′ (U, Vk)

and simultaneously (Y n
k , zn(i)) ∈ T n

δ′′(Yk, Z). If no such i is found, the decoder sets i = 1. Once i is found,

coordinate-wise reconstruction is performed using gk with Y n
k and zn(i).

Defining the error events

E1 =

〈

∀i, (Xn, zn(i)) 6∈ T n
δ′ (X, Z)

〉

E2(k) =

〈

(Y n
k , zn(i∗)) 6∈ T n

δ′′(Yk, Z)

〉

E3(k) =

〈

(um(i∗), V m
k ) 6∈ T m

δ′′ (U, Vk)

〉

E4(k) =

〈

∃i 6= i∗, (Y n
k , zn(i)) ∈ T n

δ′′(Yk, Z) and (um(i), V m
k ) ∈ T m

δ′′ (U, Vk)

〉

it suffices to show that the probability of all the error events go to zero uniformly as n → ∞. Using standard

arguments, we have that Pr[E1] < ε for any ε > 0 and large enough n if

M ≥ 2n[I(X ;Z)+ε1(δ,δ′,δ′′)]
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where ε1(δ, δ
′, δ′′) → 0 as δ, δ′, δ′′ → 0. That Pr[E2(k)] < ε and Pr[E3(k)] < ε for large enough n also follow from

standard arguments. As for Pr[E4(k)], it is easy to show using properties of typical sequences that

Pr[E4(k)] ≤ M2−n[I(Yk;Z)−ε2(δ,δ′,δ′′)]2−m[I(U ;Vk)−ε2(δ,δ′,δ′′)]

= M2−n[I(Yk;Z)+κI(U ;Vk)−(κ+1)ε2(δ,δ′,δ′′)]

for large enough n, where ε2(δ, δ
′, δ′′) → 0 as δ, δ′, δ′′ → 0. Pr[E4(k)] then vanishes if

M ≤ 2n[I(X ;Z)+2ε1(δ,δ′,δ′′)]

and

I(X ; Z|Yk) ≤ κI(U ; Vk) − (κ + 1)ε2(δ, δ
′, δ′′) − 2ε1(δ, δ

′, δ′′)]

which will be granted when δ, δ′, δ′′ → 0. It is also straightforward to show that when none of the error events

occur,

E[dk(X
n, gk(z

n(i∗), Y n
k )] ≤ Dk + ε

for sufficiently high n as δ, δ′, δ′′ → 0. The proof is therefore complete.

Note that, as in the proof of the achievability part of Theorem 6 in [18], there is no explicit binning of the source

codebook and an equivalent operation (i.e., virtual binning) is automatically performed by the channel.

Next, we give a dirty-paper version of Theorem 1 which will be useful in some of our achievable schemes.

Suppose that there is CSI available solely at the encoder, i.e., the broadcast channel is defined by the transition

probability pV1V2|US(v1, v2|u, s) and the CSI Sm ∈ T m
η (S) with some η > 0, where S is some fixed distribution

defined on the CSI alphabet S , is available non-causally at the encoder. Given a source and side information at

the decoders (X, Y1, Y2), codes (m, n, f, g1, g2) and achievability of distortion pairs is defined as in the WZBC

scenario except that the encoder now takes the form f : X n × Sm → Um.

Theorem 2: A distortion pair (D1, . . . , DK) is achievable at rate κ if there exist random variables Z ∈ Z ,

T ∈ T , U ∈ U and functions gk : Z ×Yk → X̂ with (Y1, . . . , YK) − X − Z and T − (U, S)− (V1, . . . , VK) such

that

I(X ; Z|Yk) < κ
[

I(T ; Vk) − I(T ; S)
]

(35)

E[dk(X, gk(Z, Yk))] ≤ Dk (36)

for k = 1, . . . , K.

Proof: The code construction, which will be referred to as Scheme 0 with DPC, is as follows. As before,

for fixed δ, δ′, δ′′ > 0, a source codebook CZ , {zn(i), i = 1, . . . , M} is chosen from T n
δ (Z). A set of M bins

CT (i) = {tm(i, j), j = 1, . . . , M ′}, where each tm(i, j) is chosen randomly at uniform from T m
δ (T ), is also

constructed. Given a source word Xn and CSI Sm, the encoder tries to find a pair (i∗, j∗) such that (Xn, zn(i∗)) ∈
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T n
δ′ (X, Z) and (Sm, tm(i∗, j∗)) ∈ T m

δ′ (S, T ). If it is unsuccessful, it declares an error. If it is successful, the

channel input is drawn from the distribution
∏m

l=1 pU |TS(ul|tl(i∗, j∗), Sl). At terminal k, the decoder goes through

all pairs (i, j) ∈ {1, . . . , M} × {1, . . . , M ′} until it finds the first pair satisfying (Y n
k , zn(i)) ∈ T n

δ′′(Yk, Z) and

(V m
k , tm(i, j)) ∈ T m

δ′′ (Vk, T ) simultaneously. If there is no such pair, the decoder sets i = 1, j = 1. Once (i, j) is

decided, coordinate-wise reconstruction is performed using gk with Y n
k and zn(i) as in Scheme 0.

This time we define the error events as

E1 =

〈

∀(i, j), either (Xn, zn(i)) 6∈ T n
δ′ (X, Z) or (Sm, tm(i, j)) 6∈ T m

δ′ (S, T )

〉

E2(k) =

〈

(Y n
k , zn(i∗)) 6∈ T n

δ′′(Yk, Z)

〉

E3(k) =

〈

(V m
k , tm(i∗, j∗)) 6∈ T m

δ′′ (Vk, T )

〉

E4(k) =

〈

∃(i 6= i∗, j), (Y n
k , zn(i)) ∈ T n

δ′′(Yk, Z) and (V m
k , tm(i, j)) ∈ T m

δ′′ (Vk, T )

〉

.

Again, using standard typicality arguments, it can be shown that for fixed δ, δ′, δ′′, if

M ≥ 2n[I(X ;Z)+ε1(δ,δ′,δ′′)]

and

M ′ ≥ 2m[I(S;T )+ε1(δ,δ′,δ′′)]

then Pr[E1] < ε, and that Pr[E2(k)] < ε and Pr[E3(k)] < ε for any ε > 0 and large enough n. Similarly, it follows

that if

M ≤ 2n[I(X ;Z)+2ε1(δ,δ′,δ′′)]

and

M ′ ≤ 2m[I(S;T )+2ε1(δ,δ′,δ′′)]

then

Pr[E4(k)] ≤ M · M ′ · 2−n[I(Yk;Z)−ε2(δ,δ′,δ′′)]2−m[I(T ;Vk)−ε2(δ,δ′,δ′′)]

= M · M ′ · 2−n[I(Yk;Z)+κI(T ;Vk)−(κ+1)ε2(δ,δ′,δ′′)]

≤ 2n[I(X ;Z|Yk)−κ{I(T ;Vk)−I(S;T )}+(κ+1)ε2(δ,δ′,δ′′)+2(κ+1)ε1(δ,δ′,δ′′)] .

This probability also vanishes if δ, δ′, δ′′ → ∞ thanks to (35). This completes the proof.

Corollary 1: The coding scheme in the proof can also decode tm(i∗, j∗) successfully.

Proof: Define

E5(k) =

〈

∃j 6= j∗, (V m
k , tm(i∗, j)) ∈ T m

δ′′ (Vk, T )

〉

.
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It then suffices to show that Pr[E5(k)] < ε for large enough n. Indeed, since I(T ; Vk)− I(S; T ) > 0,

Pr[E5(k)] ≤ M ′2−m[I(T ;Vk)−ε2(δ,δ′,δ′′)]

≤ 2−m[I(T ;Vk)−I(S;T )−ε2(δ,δ′,δ′′)−2ε1(δ,δ′,δ′′)]

≤ ε .

The assumption I(T ; Vk)− I(S; T ) > 0 is not restrictive at all, because otherwise no information can be delivered

to terminal k to begin with.

The significance of this corollary is that decoding tm(i∗, j∗) provides information about the CSI Sm. This

information, in turn, will be very useful in our layered WZBC schemes where the CSI is self-imposed and related

to the source Xn itself.

Examining the proofs of Theorems 1 and 2, we notice an apparent separation between source and channel coding

in that the source and channel codebooks are independently chosen. Furthermore, successful transmission is possible

as long as the source coding rate for each terminal is less than the corresponding channel capacity for a common

channel input. However, the decoding must be jointly performed and neither scheme can be split into separate

stand-alone source and channel codes. Nevertheless, due to the quasi-independence of the source and channel

codebooks we shall refer to source codes and channel codes separately when we discuss layered WZBC schemes.

This quasi-separation was shown to be optimal for the SWBC problem and was termed operational separation

in [18].

IV. LAYERED WZBC SCHEMES

In Scheme 0, the same information is conveyed to both receivers. However, since the side information and channel

characteristics at the two receiving terminals can be very different, we might be able to improve the performance

by layered coding, i.e., by not only transmitting a common layer (CL) to both receivers but also additionally

transmitting a refinement layer (RL) to one of the two receivers. The resultant interference between the CL and RL

can then be mitigated by successive decoding or by dirty paper encoding. This motivates us to initially consider

four extensions of Scheme 0, one for each possible order of channel encoding and decoding (at the receiver which

decodes both layers) the CL and the RL. We term our schemes CR-CR, CR-RC, RC-CR, and RC-RC, where the

first and the second permutations of C and R respectively represent the encoding and the decoding orders. We

then show that the effective capacity region of Scheme CR-RC is always inferior to that of Scheme CR-CR, and

Scheme CR-CR, in turn, becomes a special case of Scheme RC-CR under the regime where the channel codeword

in Scheme CR-CR is constrained to be the “addition” of the CL codeword and an independent RL codeword, which

is the case in both the quadratic Gaussian and the binary Hamming problems.

Unless the better channel also has access to better side information, it is not straightforward to decide which

receiver should receive only the CL and which should additionally receive the RL. For ease of exposition, we rename
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the source and channel random variables by replacing the subscripts 1 and 2 by c and r and defer the decision

on which receiver is which. For the quadratic Gaussian problem, we will later develop an analytical decision tool.

For all other sources and channels, one can combine the distortion regions resulting from the two choices, namely,

c = 1, r = 2 and c = 2, r = 1.

As mentioned earlier, the inclusion of an RL codeword changes the effective channel observed while decoding

the CL. It is on this modified channel that we send the CL using Scheme 0 or Scheme 0 with DPC and the capacity

expressions in (33) and (35) must be modified in a manner that we describe in the following subsections where we

also present the capacity of the effective channel for transmitting the RL.

The RL is transmitted by separate source and channel coding. In coding the source, we restrict our attention to

systems where the communicated information satisfies (Yc, Yr) − X − Zr − Zc where Zc corresponds to the CL

and Zr is the RL. The source coding rate for the RL is therefore I(X ; Zr|Zc, Yr) (cf. [16]). This has to be less

than the RL capacity. Due to the separability of the source and channel variables in the required inequalities, for

all four schemes, we can say that a distortion pair (Dc, Dr) is achievable if

RWZBC(Dc, Dr) ∩ κCWZBC 6= ∅ .

Here, RWZBC(Dc, Dr) is the set of all triplets (Rcc, Rcr, Rrr) so that there exist (Zc, Zr) and reconstruction

functions gc : Zc × Yc → X̂c and gr : Zr × Yr → X̂r satisfying (Yc, Yr) − X − Zr − Zc and

I(X ; Zc|Yc) ≤ Rcc (37)

I(X ; Zc|Yr) ≤ Rcr (38)

I(X ; Zr|Zc, Yr) ≤ Rrr (39)

E[dc(X, gc(Zc, Yc))] ≤ Dc (40)

E[dr(X, gr(Zr, Yr))] ≤ Dr . (41)

The subscripts cc and cr are used to emphasize transmission of the CL to receivers c and r, respectively. Similarly,

the subscript rr refers to transmission of RL to receiver r. The expressions for the source rates do not depend on

the encoding and decoding orders.

Characterizing the effective capacity region CWZBC for the various schemes is the task of the rest of the section.

We will only sketch the proofs of the theorems, as they rely only on Scheme 0, Scheme 0 with DPC, and other

standard tools.

A. Scheme CR-CR

Consider the system shown in Figure 3, where RL is superposed over CL. This is the simplest extension of

Scheme 0.
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Theorem 3: Let CCRCR be the union of all (Ccc, Ccr, Crr) for which there exist Uc in some auxiliary alphabet

Uc and U ∈ U with Uc − U − (Vc, Vr) such that

Ccc ≤ I(Uc; Vc) (42)

Ccr ≤ I(Uc; Vr) (43)

Crr ≤ I(U ; Vr|Uc) . (44)

Then CCRCR ⊆ CWZBC.

Remark 1: To see that Scheme 0 is indeed a special case of Scheme CR-CR, it suffices to use the trivial

superposition U = Uc.

Proof: Given random variables U and Uc such that Uc − U − (Vc, Vr) and (42)-(44) are satisfied, each Um
c (i)

in the CL channel codebook is chosen uniformly and independently from T m
δ (Uc). Similarly, for each i, codewords

Um(j ′|i) to be transmitted over the channel are chosen uniformly and independently from T m
δ′ (U |Uc). It then follows

from Theorem 1 that (42) and (43) are sufficient for successful decoding of both Zn
c (i) and Um

c (i) simultaneously at

both decoders. It also follows from standard arguments that (44) is sufficient for reliable transmission of additional
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information with rate Crr to the refinement receiver.

B. Scheme CR-RC

This scheme is depicted in Figure 4. The CL is encoded as in Scheme CR-CR. The RL, however, is sent using

dirty paper coding with the CL codeword as encoder CSI.

Theorem 4: Let CCRRC be the union of all (Ccc, Ccr, Crr) for which there exist Uc ∈ Uc, Ur ∈ Ur , and T ∈ T

with T − (Ur, Uc) − (Vr, Vc) and (Ur, Uc) − U − (Vr, Vc) such that

Ccc ≤ I(Uc; Vc) (45)

Ccr ≤ I(Uc; T, Vr) (46)

Crr ≤ I(T ; Vr) − I(T ; Uc) . (47)

Then CCRRC ⊆ CWZBC.

Remark 2: To specialize Scheme CR-RC to Scheme 0, one needs to set U = Uc and trivially pick T as a random

variable independent of Uc and Ur.
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Proof: Since RL is to be sent by separate source and channel codes, the channel coding part can proceed as

in standard dirty-paper coding (cf. [6]), if (47) is satisfied. Note that as in Corollary 1, the auxiliary codeword Tm

can also be decoded in the process of decoding the RL. With high probability, this codeword is typical with the

CL codeword Um
c in addition to V m

r . Subsequently, for decoding the CL, the channel output at the r decoder can

be taken to be a pair (V m
r , Tm). Therefore, as in Scheme CR-CR, Zn

c (i) can be successfully decoded given that

(45) and (46) hold.

C. Scheme RC-CR

As shown in Figure 5, in this scheme, the CL codeword is now dirty paper coded with the RL codeword acting

as CSI. The next theorem provides the effective capacity region for Scheme RC-CR.

Theorem 5: Let CRCCR be the union of all (Ccc, Ccr, Crr) for which there exist Uc ∈ Uc, Ur ∈ Ur , and T ∈ T

with T − (Ur, Uc) − (Vr, Vc) and (Ur, Uc) − U − (Vr, Vc) such that

Ccc ≤ I(T ; Vc) − I(T ; Ur) (48)

Ccr ≤ I(T ; Vr) − I(T ; Ur) (49)
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Crr ≤ I(Ur; T, Vr) . (50)

Then CRCCR ⊆ CWZBC.

Remark 3: In Scheme RC-CR, a trivial Ur together with T = U achieves the same performance as Scheme 0.

Proof: We construct an RL codebook with elements from T m
δ (Ur). We then use the Scheme 0 with DPC

construction with the chosen RL codeword acting as CSI. It follows from Theorem 2 that the CL information can

be successfully decoded (together with the auxiliary codeword Tm) at both receivers if (48) and (49) are satisfied.

This way, the effective communication system for transmission of RL becomes a channel with Um
r as input and

the pair Tm and V m
r as output. For reliable transmission, (50) is then sufficient.

D. Scheme RC-RC

As shown in Figure 6, the encoding is performed as in Scheme RC-CR, but the decoding order is reversed. Since

RL is decoded first at the r receiver, the CL codeword purely acts as noise. But the r decoder then has access to

the RL codeword. So for that receiver, the CSI is also available at the decoder. The following theorem makes use

of these observations.
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Theorem 6: Let CRCRC be the union of all (Ccc, Ccr, Crr) for which there exist Uc ∈ Uc, Ur ∈ Ur , and T ∈ T

with T − (Ur, Uc) − (Vr, Vc) and (Ur, Uc) − U − (Vr, Vc) such that

Ccc ≤ I(T ; Vc) − I(T ; Ur) (51)

Ccr ≤ I(T ; Vr|Ur) (52)

Crr ≤ I(Ur; Vr) . (53)

Then CRCRC ⊆ CWZBC.

Remark 4: Similar to the Scheme RC-CR, choosing a trivial Ur and setting T = U reduces this scheme to

Scheme 0.

Proof: Since RL is both encoded and decoded first, (53) is necessary and sufficient for successful decoding of

Um
r . Once Um

r is decoded, the channel between CL and receiver r reduces to one with input Um
c , output (V m

r , Um
r ),

and CSI Um
r . It then follows from Theorem 2 that (51) and (52) suffices for reliable transmission of Zm

c . Note that

the right-hand side of (52) is equivalent to I(T ; Ur, Vr) − I(T ; Ur).

E. Comparison of Schemes

In this section, we compare the four schemes in highest generality possible. We first show that the performance

of Scheme CR-CR is always superior to that of Scheme CR-RC, regardless of channel statistics. Thus, it will not

be necessary to consider the latter in our performance comparisons. We also show that under the regime where

U = Uc + Ur where + is an appropriately defined addition operation and Uc ⊥ Ur, Scheme CR-CR becomes a

special case of Scheme RC-CR. Thus, for both the quadratic Gaussian and the binary Hamming cases, we need

not discuss the performance of Scheme CR-CR either.

Lemma 2: CCRRC ⊆ CCRCR .

Proof: Let (Ccc, Ccr, Crr) ∈ CCRRC . Then there must exist U
(1)
c , U

(1)
r , T , and U with T−(U

(1)
c , U

(1)
r )−(Vc, Vr)

and (U
(1)
c , U

(1)
r ) − U − (Vc, Vr) so that (45)-(47) are satisfied. Now define U

(2)
c = U and let

C(1)
cc = I(U (1)

c ; Vc)

C(1)
cr = I(U (1)

c ; Vr)

C(1)
rr = I(U ; Vr|U (1)

c )

and

C(2)
cc = I(U (2)

c ; Vc) = I(U ; Vc)

C(2)
cr = I(U (2)

c ; Vr) = I(U ; Vr)

C(2)
rr = I(U ; Vr|U (2)

c ) = 0 .
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By definition, both (C
(1)
cc , C

(1)
cr , C

(1)
rr ) and (C

(2)
cc , C

(2)
cr , C

(2)
rr ) belong to CCRCR. So does any convex combination of

the two triplets. That is because if we define Q ∼ Ber(λ), so that

p(q, uc, u, vc, vr) = p(u, vc, vr)p(q)p(uc|u, q)

we can then write any convex combination as

C(λ)
cc = I(U (Q)

c ; Vc|Q) = I(U (Q)
c , Q; Vc)

C(λ)
cr = I(U (Q)

c ; Vr|Q) = I(U (Q)
c , Q; Vr)

C(λ)
rr = I(U ; Vr|U (Q)

c , Q) .

Defining U
(λ)
c = (U

(Q)
c , Q), one can see that (C

(λ)
cc , C

(λ)
cr , C

(λ)
rr ) ∈ CCRCR.

It is clear that

C(1)
cr ≤ I(U (1)

c ; T, Vr) . (54)

It also follows from the Markov chain (U
(1)
c , T )− U − Vr that

I(U (1)
c , T ; Vr) ≤ I(U ; Vr) . (55)

A fact which is not as obvious is

C(1)
cr + C(1)

rr ≥ I(U (1)
c ; T, Vr) . (56)

Towards proving (56), we observe using (55) that

I(U ; Vr) ≥ I(U (1)
c , T ; Vr)

= I(U (1)
c ; Vr|T ) + I(T ; Vr)

= I(U (1)
c ; T, Vr) + I(T ; Vr) − I(T ; U (1)

c ) . (57)

But since C
(1)
cr + C

(1)
rr = I(U ; Vr), this yields (56) directly.

Next, we choose λ so that

C(λ)
cr = I(U (1)

c ; T, Vr) .

That this can always be done follows from (54) and (56) together with the observation that C
(1)
cr + C

(1)
rr = C

(2)
cr .

We then simultaneously have

C(λ)
cc ≥ Ccc (58)

C(λ)
cr ≥ Ccr (59)

C(λ)
rr ≥ Crr . (60)
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Here, (58) follows from the fact that Ccc ≤ I(U
(1)
c ; Vc) = C

(1)
cc ≤ C

(2)
cc . The fact that Ccr ≤ I(U

(1)
c ; T, Vr) = C

(λ)
cr

yields (59). Finally, (60) follows because

C(λ)
rr = I(U ; Vr) − C(λ)

cr

= I(U ; Vr) − I(U (1)
c ; T, Vr)

≥ I(T ; Vr)− I(T ; U (1)
c ) (61)

≥ Crr

where we used (57) in showing (61).

Lemma 3: If in Scheme CR-CR, U = Uc + Ur with Uc ⊥ Ur so that the addition operation has an inverse, i.e.,

Ur = U − Uc, then we obtain a special case of Scheme RC-CR.

Proof: Given Uc and Ur so that Uc ⊥ Ur, we can pick T = Uc in Scheme RC-CR, which achieves the

performance

Ccc = I(T ; Vc) − I(T ; Ur)

= I(Uc; Vc)

Ccr = I(T ; Vr) − I(T ; Ur)

= I(Uc; Vr)

Crr = I(Ur; T, Vr)

= I(Ur; Uc) + I(Ur; Vr|Uc)

= I(Ur + Uc; Vr|Uc)

= I(U ; Vr|Uc) .

Thus, Scheme CR-CR is a special case of Scheme RC-CR.

V. PERFORMANCE ANALYSIS FOR THE QUADRATIC GAUSSIAN PROBLEM

In this section, we analyze the distortion tradeoff of the proposed WZBC schemes for the quadratic Gaussian

case. While Scheme 0 with DPC is developed only as a tool to be used in layered WZBC codes, Scheme 0 itself

is a legitimate WZBC strategy. We thus analyze its performance in some detail first before proceeding with the

layered schemes. It turns out that, somewhat surprisingly, Scheme 0 may in fact be the optimal strategy for an

infinite family of source and channel parameters. Understanding the performance of Scheme 0 also gives insight

into which receiver should be chosen as receiver c, and which one as receiver r.



24

A. Scheme 0

Using the test channel X = Z + S with Gaussian S and Z where S ⊥ Z, and a Gaussian channel input U , (33)

becomes (cf. (4))

1

2
log

(

1 − Nk +
Nk

S

)

≤ κ

2
log

(

1 +
P

Wk

)

for k = 1, . . . , K. In other words,

1

S
≤ 1 + min

k

(

1 + P
Wk

)κ − 1

Nk

.

Investigating (5), it is clear that S should be chosen so as to achieve the above inequality with equality. Substituting

that choice in (5) yields

1

Dk
=

1

Nk
+ min

k′

(

1 + P
Wk′

)κ − 1

Nk′

. (62)

For all k∗ that achieve the minimum in (62), we have

1

Dk∗

=

(

1 + P
Wk∗

)κ

Nk∗

.

Thus, as seen from (11), Dk∗ = DWZ
k∗ (κCk∗). This, in particular, means that if

(

1 + P
Wk

)κ
− 1

Nk

is a constant, Scheme 0 achieves the trivial converse and there is no need for a layered WZBC scheme. Specialization

of (62) to the case κ = 1 is also of interest:

1

Dk
=

1

Nk
+

P

maxk′

{

Wk′Nk′

} . (63)

In particular, all k∗ maximizing Wk∗Nk∗ achieve Dk∗ = DWZ
k∗ (Ck∗). Thus, the trivial converse is achieved if

WkNk is a constant.

B. Layered WZBC Schemes

We begin by analyzing the channel coding performance for Schemes RC-CR and RC-RC separately, and then

the source coding performance in terms of achievable capacities. Then closely examining the capacity regions, we

determine whether c = 1, r = 2, or c = 2, r = 1 is more advantageous given κ, P , Nc, Nr, Wc, and Wr. The

resultant expression when κ = 1 exhibits an interesting phenomenon which we will make use of in deriving closed

form expressions for the (Dc, Dr) tradeoff in both schemes.
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1) Effective Capacity Regions: For Scheme RC-CR, we choose channel variables Uc and Ur as independent

zero-mean Gaussians with variances νP and ν̄P , respectively, with 0 ≤ ν ≤ 1, and use the superposition rule

U = Uc +Ur . Motivated by Costa’s construction for the auxiliary random variable T , we set T = γUr +Uc. Using

(48)-(50), we obtain achievable (Ccc, Ccr, Crr) as

Ccc = I(γUr + Uc; Uc + Ur + Wc)− I(Ur; γUr + Uc)

= h(Uc + Ur + Wc) + h(Uc)− h(γUr + Uc, Uc + Ur + Wc)

=
1

2
log

[P + Wc]νP

det

[

γ2ν̄P + νP γν̄P + νP

γν̄P + νP P + Wc

]

=
1

2
log

1 + P
Wc

1 + ν̄P
(

γ2

νP + (1−γ)2

Wc

) (64)

Ccr = I(γUr + Uc; Uc + Ur + Wr) − I(Ur; γUr + Uc)

=
1

2
log

1 + P
Wr

1 + ν̄P
(

γ2

νP + (1−γ)2

Wr

) (65)

Crr = I(Ur; γUr + Uc, Uc + Ur + Wr)

= h(γUr + Uc, Uc + Ur + Wr) − h(Uc, Uc + Wr)

= h(γUr + Uc, Uc + Ur + Wr) − h(Uc) − h(Wr)

=
1

2
log

det

[

γ2ν̄P + νP γν̄P + νP

γν̄P + νP P + Wr

]

νPWr

=
1

2
log

(

1 + ν̄P

(

γ2

νP
+

(1− γ)2

Wr

))

. (66)

Here, (65) follows by replacing Wc with Wr in (64).

For Scheme RC-RC, using the same random variables as in Scheme RC-CR, (51)-(53) translate to the achievability

of

Ccc = I(γUr + Uc; Uc + Ur + Wc) − I(γUr + Uc; Ur)

=
1

2
log

1 + P
Wc

1 + ν̄P
(

γ2

νP
+ (1−γ)2

Wc

) (67)

Ccr = I(γUr + Uc; Uc + Ur + Wr|Ur)

= I(Uc; Uc + Wr)

=
1

2
log

(

1 +
νP

Wr

)

(68)

Crr = I(Ur; Uc + Ur + Wr)

=
1

2
log

(

1 +
ν̄P

νP + Wr

)

(69)

where (67) follows from (64). Since the choice of γ affects only Ccc, it can be picked so as to maximize Ccc. In
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fact, this choice coincides with Costa’s optimal γ for the point-to-point channel between Uc and Vc, where the CSI

Ur is available at the encoder [3]. In other words, the optimal choice is given by (cf. [3, Equation (7)])

γ =
νP

νP + Wc

yielding

Ccc =
1

2
log

(

1 +
νP

Wc

)

. (70)

2) Source Coding Performance: We choose the auxiliary random variables so that X = Zr+Sr and Zr = Zc+S ′
c

where Sr and S ′
c are Gaussian random variables satisfying Sr ⊥ Zr and S ′

c ⊥ Zc. This choice imposes the Markov

chain X − Zr − Zc, and implies X = Zc + Sc with Sc ⊥ Zc and 1 ≥ Sc ≥ Sr. Using (4), one can then conclude

Rcc =
1

2
log

(

1 −Nc +
Nc

Sc

)

(71)

Rcr =
1

2
log

(

1 −Nr +
Nr

Sc

)

(72)

Rrr =
1

2
log

(

1 −Nr + Nr

Sr

1 −Nr + Nr

Sc

)

. (73)

For any achievable triplet (Ccc, Ccr, Crr), (71)-(73) can be used to find the corresponding best (Dc, Dr). More

specifically, (71)-(73) and (37)-(39) together imply

1

Sc
≤ min

{

22κCcc − 1

Nc
,
22κCcr − 1

Nr

}

+ 1 (74)

1

Sr
≤

22κCrr

(

1 −Nr + Nr

Sc

)

− 1

Nr
+ 1 . (75)

Since we have from (5) that

Dk =
Nk

1 −Nk + Nk

Sk

(76)

it is easy to conclude that both (74) and (75) should be satisfied with equality to obtain the best (Dc, Dr), which

becomes

Dc =
Nc

1 + Ncφ
(77)

Dr =
Nr

1 + Nrφ
2−2κCrr (78)

where

φ = min

{

22κCcc − 1

Nc
,
22κCcr − 1

Nr

}

. (79)

Now, if

22κCcc − 1

Nc
≥ 22κCcr − 1

Nr
(80)
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then Dr = Nr2
−2κ(Ccr+Crr). But in both Schemes RC-CR and RC-RC, we have Ccr +Crr = Cr = 1

2 log
(

1 + P
Wr

)

,

implying Dr = DWZ
r (κCr), regardless of the chosen parameters. Thus, it suffices to consider only

22κCcc − 1

Nc
≤ 22κCcr − 1

Nr
(81)

because equality in (81) already gives Dr = DWZ
r (κCr). We thus have

Dc = Nc2
−2κCcc (82)

Dr =
Nr

1 + Nr

Nc
[22κCcc − 1]

2−2κCrr

=
Nr

1 + Nr

[

1
Dc

− 1
Nc

]2−2κCrr . (83)

3) Choosing the Refinement Receiver: Note that setting ν = 1 reduces both Scheme RC-CR and Scheme RC-RC

to Scheme 0. This is regardless of which receiver is designated as c or r. This simple observation, along with the

discussion in Section V-A, leads to the following lemma.

Lemma 4: In order to maximize the performance of any of the layered WZBC schemes, one must set c and r

so that
(

1 + P
Wc

)κ − 1

Nc
≤

(

1 + P
Wr

)κ − 1

Nr
. (84)

Remark 5: When κ = 1, (84) translates to

WcNc ≥ WrNr . (85)

Therefore, the product WkNk determines the combined channel and side information quality, so that the “better”

receiver is chosen to receive the RL information. Recall from the discussion in Section V-A that if WkNk is

constant, then in fact there is no need for refinement, as Scheme 0 already achieves the optimal performance.

Proof: When ν = 1, i.e., when all the power is allocated to the CL, the layered schemes uniformly achieve

the Scheme 0 performance. In particular, they achieve the capacity point

Ccc = Cc =
1

2
log

(

1 +
P

Wc

)

Ccr = Cr =
1

2
log

(

1 +
P

Wr

)

Crr = 0 .

If (84) does not hold, then from (62), it follows that the schemes also achieve Dr = DWZ
r (κCr) and some

Dc > DWZ
c (κCc). Now, if we set ν < 1, it is obvious that Dr cannot be lowered any further. We claim that Dc

cannot be lowered either. Therefore, none of the layered schemes would be able to achieve a better (Dc, Dr) than

what Scheme 0 achieves. On the other hand, sending the refinement to receiver c could potentially result in a better

performance than that.
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Towards proving the above claim, observe from (79) that it suffices to show that neither Ccc nor Ccr can increase

when ν < 1 compared to the case ν = 1. That, in turn, follows by closely examining the expressions for Ccc and Ccr

in Section V-B1. In particular, expressions in (68) and (70) can obviously never increase, and for Scheme RC-CR,

both (64) and (65) will be maximized by their corresponding optimal Costa parameters, i.e., by γ = νP
νP+Wc

and

by γ = νP
νP+Wr

, respectively. This results in Ccc = 1
2 log

(

1 + νP
Wc

)

and Ccr = 1
2 log

(

1 + νP
Wr

)

as the maximum

possible values, which are strictly smaller than Cc and Cr , respectively. Therefore, the proof is complete.

C. Performance Comparisons for κ = 1

We first derive closed-form (Dc, Dr) tradeoffs for both Scheme RC-CR and RC-RC, and show that the former

is superior to the latter. Thus, for the quadratic Gaussian problem, Scheme RC-CR prevails as the best among all

the layered WZBC schemes we proposed.

Lemma 5: A distortion pair (Dc, Dr) is achievable using Scheme RC-CR if and only if Dr ≥ DRCCR(Dc),

where DRCCR(Dc) is the convex hull of

D∗
RCCR(Dc) =

NrN
2
c

DcNc + Nr(Nc − Dc)
·
{

WrDc

(Wr−Wc)Nc+(P+Wc)Dc
Wc ≥ Wr

Wc

P+Wc
Wc < Wr

(86)

for

NcWc

P + Wc
≤ Dc ≤ Dmax

c

with

Dmax
c = Nc ·















min
{

1,
Nr(Wc−Wr)

(P+Wc)(Nr−Nc)

}

Nc < Nr, Wc > Wr

1 Nc ≥ Nr, Wc ≥ Wr

Wc

P+Wc
+ P (WcNc−WrNr)

(P+Wc)(Nc−Nr)Wr
Nc > Nr, Wc < Wr

. (87)

Remark 6: The cases Nc ≤ Nr, Wc < Wr and Nc < Nr, Wc = Wr are not considered in (87) because they

are prohibited by the rule (85). The same rule also guarantees NcWc

P+Wc
≤ Dmax

c ≤ Nc.

As a byproduct of the proof, which is deferred to Appendix B, we observe that the Costa parameter γ is either

0 or 1, depending on whether Wc ≥ Wr or Wc < Wr, respectively. When it is 0, we have T = Uc, and as we

argued in the proof of Lemma 3, this reduces Scheme RC-CR to Scheme CR-CR. On the other hand, when γ = 1,

we have T = U = Uc + Ur. Thus, setting the auxiliary codeword Tm to be the same as the channel input Um

constitutes the optimal choice. To the best of our knowledge, this choice, which is typically encountered in DPC

for binary symmetric channels, was never the optimal choice involving Gaussian channels.

Lemma 6: A distortion pair (Dc, Dr) is achievable using Scheme RC-RC if and only if Dr ≥ DRCRC(Dc),

where DRCRC(Dc) is the convex hull of

D∗
RCRC(Dc) =

NrWr

P + Wr
·
DcNc + NcWc

Wr
(Nc − Dc)

DcNc + Nr(Nc − Dc)
(88)

for

NcWc

P + Wc
≤ Dc ≤ Nc .
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Proof: It follows from (82), (83), and (109) that

Dc =
NcWc

νP + Wc

(89)

Dr =
Nr

1 + Nr

[

1
Dc

− 1
Nc

] · νP + Wr

P + Wr
(90)

provided

νP

NcWc
≤ νP

NrWr
.

Therefore, because of (85), (89) and (90) are always valid. Solving for ν in (89) and substituting it in (90) gives

the desired result.

Lemma 7: For the quadratic Gaussian problem with κ = 1, the performance of Scheme RC-CR is superior to

that of RC-RC.

Proof: See Appendix C.

We next compare Scheme RC-CR, our best scheme, to separate coding and uncoded transmission, case by case.

1) It is obvious by comparing (23) and (86) that when Wc ≥ Wr and Nc ≥ Nr, Scheme RC-CR obtains the

exact same performance as in separate source and channel coding (Note that r = g, c = b in this case). This

was expected because in this case, Scheme RC-CR is identical to Scheme CR-CR, and according to (42) and

(43), the quality of the CL information is limited by the quality of the worse receiver, as in separate coding.

This behavior is displayed in Figures 7(d) and (e).

As for uncoded transmission, it can be better than the digital schemes. For example, consider the case

Nc = Nr = 1 depicted in Figure 7(e), which corresponds to useless side information at both receivers. In

this case, uncoded transmission actually achieves the trivial converse, and therefore, is the optimal strategy.

2) When Wc > Wr and Nc < Nr, it follows from (24) and (86) that a sufficient condition for superiority of

Scheme RC-CR over separate coding is given by

NrWrDc

(Wr − Wc)Nc + (P + Wc)Dc
≥ NrN

2
cWrDc

(

DcNc + Nr(Nc − Dc)
)(

(Wr −Wc)Nc + (P + Wc)Dc

)

which simplifies to

1 ≥ N
2
c

DcNc + Nr(Nc − Dc)

and is therefore granted since Nc < Nr. Moreover, equality is satisfied, i.e., the two schemes have equal

performance, only when Dc = Dmax
c = Nc. This behavior is exemplified in Figures 7(b) and (c). The

difference between the two examples is that Dmax
c = Nc in (b), whereas Dmax

c < Nc in (c).

Even though Nc = Nr = 1 is prohibited in this case, one can consider Nc = 1 − ε and Nr = 1 with

arbitrarily small ε > 0. Uncoded transmission is also superior to all the digital schemes in this limiting case

also.
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Fig. 7. Performance comparison for Gaussian sources and channels. In (a)-(e), var(N1)var(W1) > var(N2)var(W2), and therefore the

choice c = 1, r = 2 is made. In addition, in (e), var(N1) = var(N2) = 1, implying that there is no side information at either receiver and

hence uncoded transmission is optimal. In (f), var(N1)var(W1) = var(N2)var(W2) making Scheme 0 optimal.
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3) Finally, when Wc < Wr and Nc > Nr, since r = b, c = g in this case, we need to explicitly write the best

Dc for a given Dr for Scheme RC-CR. From (86), it follows that Scheme RC-CR can achieve

Dc =
NcNr

Nc −Nr

[

NcWc

(P + Wc)Dr
− 1

]

(91)

for DWZ
r (Cr) ≤ Dr ≤ NcNrWc

NcWc+PNr
. On the other hand, (24) implies that the minimum Dc that can be

achieved by separate coding must necessarily satisfy

Dc ≥
NcNr

(

NcWc − (P + Wr)Dr −Nr(Wc − Wr)
)

(

(Wc − Wr)Nr + (P + Wr)Dr

)

(Nc −Nr)

=
NcNr

Nc −Nr

[

NcWc

(Wc −Wr)Nr + (P + Wc)Dr
− 1

]

. (92)

Superiority of Scheme RC-CR over separate coding then easily follows from (91) and (92). An example of

this case is shown in Figure 7(a).

We next show that Scheme RC-CR always outperforms uncoded transmission in this case. In fact, uncoded

transmission is even worse than Scheme 0. Since Scheme 0 achieves Dr = DWZ
r (Cr), it suffices to compare

the Dr values. Comparing (31) and (63), this reduces to showing

NrWr

Wr + NrP
≥ NrNcWc

NcWc + NrP

or equivalently

Wr ≥ NcWc .

But since Wr > Wc, this is trivially true.

In Figure 7(f), we also include an example where NcWc = NrWr, i.e., where the combined channel and

side information qualities are the same. Scheme 0 achieves the trivial converse as discussed in Section V-A. We

also observed that uncoded transmission may achieve a distortion pair below the best known digital tradeoff, as

shown in Figures 7(d) and (e). This was expected because it is well-known that the optimal scheme is uncoded

transmission when there is no side information at either receiver, as is the case in Figure 7(e). For cases other than

NcWc = NrWr, one could roughly say that the proposed digital schemes are better than uncoded transmission

when the quality of the side information is sufficiently high, although we do not currently have the analytical means

for comparison.

VI. PERFORMANCE ANALYSIS FOR THE BINARY HAMMING PROBLEM

In this section, we first analyze Scheme 0 for the binary Hamming problem and show that it can be optimal in

this case as well. We then analyze the layered WZBC schemes and compare all the schemes numerically.
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A. Scheme 0

It follows from Theorem 1 and Equations (7) and (8) that in the binary Hamming case, if there exists 0 ≤ q ≤ 1

and 0 ≤ α ≤ 1
2 such that

qr(α, βk) ≤ κ[1− H2(pk)] (93)

for all k, then

Dk = (1 − q)βk + q min{α, βk} (94)

can be achieved by Scheme 0. Unlike in the quadratic Gaussian case, the constraint (93) does not result in a single

best value for q and α. Therefore, Scheme 0 produces a tradeoff of Dk’s rather than one best point.

As discussed at the end of Section II-A, the distortion-rate function DWZ
k (R) is achieved either by q = 1 and

α ≤ α0(βk), or by 0 ≤ q < 1 and α = α0(βk). The implication of this fact regarding Scheme 0 is the following:

1) If βk are not identical, neither are α0(βk), and thus we need q = 1 and some α ≤ mink α0(βk) to attain all

DWZ
k (κCk) simultaneously, i.e.,

r(α, βk) = κ[1 − H2(pk)] (95)

for all k. When this happens, we must necessarily have Dk = α i.e., Dk does not depend on k.

2) If βk = β for k = 1, . . . , K, and thus DWZ
k (R) does not depend on k, we need Ck = C (and hence pk = p)

so that the same test channel (q, α) achieves DWZ
k (Ck) simultaneously. But, this makes the problem trivial.

B. Layered WZBC Schemes

To evaluate Rcc, Rcr and Rrr, we first fix Zc and Zr as in Section II-C2 where subscripts g and b are to be

replaced by r and c, respectively. Since we only analyze the Markov relation X − Zr − Zc, it suffices to analyze

the case qc ≤ qr and αc ≥ αr. This results in

Rcc = qcr(αc, βc)

Rcr = qcr(αc, βr)

Rrr = qrr(αr, βr) − qcr(αc, βr) .

We next make channel variable choices and derive the resulting channel coding rates for each scheme individually.

Unlike in the quadratic Gaussian case, there is no power allocation parameter to vary. However, we have freedom

in choosing the distributions of Uc and Ur as Ber(γc) and Ber(γr), respectively, as well as in choosing the auxiliary

random variable as either T = Uc (which reduces Scheme RC-CR to CR-CR) or T = Uc ⊕ Ur.
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1) Scheme RC-CR: In this case, with T = Uc, (45)-(47) become

Ccc = I(Uc; Uc ⊕ Ur ⊕ Wc)

= r(γr ? pc, γc)

Ccr = I(Uc; Uc ⊕ Ur ⊕ Wr)

= r(γr ? pr, γc)

Crr = I(Uc ⊕ Ur; Uc ⊕ Ur ⊕ Wr|Uc)

= I(Ur; Ur ⊕ Wr)

= r(pr, γr) . (96)

But since r(·, ·) is increasing in its second argument, we have γc = 1
2 as the optimal value achieving

Ccc = 1 − H2(γr ? pc) (97)

Ccr = 1 − H2(γr ? pr) . (98)

On the other hand, if T = Uc ⊕ Ur, we obtain

Ccc = I(Uc ⊕ Ur; Uc ⊕ Ur ⊕ Wc) − I(Ur; Uc ⊕ Ur)

= r(pc, γc ? γr) − r(γc, γr) (99)

Ccr = I(Uc ⊕ Ur; Uc ⊕ Ur ⊕ Wr)− I(Ur; Uc ⊕ Ur)

= r(pr, γc ? γr)− r(γc, γr) (100)

Crr = I(Ur; Uc ⊕ Ur, Uc ⊕ Ur ⊕ Wr)

= I(Ur; Uc ⊕ Ur)

= r(γc, γr) . (101)

2) Scheme RC-RC: Making the same choices as in Scheme RC-CR, it follows from (45)-(47) that when T = Uc,

Ccc = I(Uc; Uc ⊕ Ur ⊕ Wc)

= r(pc ? γr, γc) (102)

Ccr = I(Uc; Uc ⊕ Ur ⊕ Wr|Ur)

= I(Uc; Uc ⊕ Wr)

= r(pr, γc) (103)

Crr = I(Ur; Uc ⊕ Ur ⊕ Wr)

= r(pr ? γc, γr) (104)
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and when T = Uc ⊕ Ur, (102) is replaced by

Ccc = I(Uc ⊕ Ur; Uc ⊕ Ur ⊕ Wc) − I(Ur; Uc ⊕ Ur)

= r(pc, γc ? γr) − r(γc, γr) . (105)

After some algebra, the difference between the right-hand sides of (102) and (105) can be written as

r(pc ? γr, γc)− [r(pc, γc ? γr) − r(γc, γr)] = r(γc, γr) − r(pc, γr) .

Recalling the fact that r(·, ·) is decreasing in its first argument, we see that if γc ≥ pc, one should use T = Uc⊕Ur ,

and otherwise, use T = Uc.

C. Performance Comparisons for κ = 1.

Analytical performance comparisons prove more difficult for the binary Hamming problem. Even which receiver

should be designated as c and which as r is not straightforward to decide. That is because (i) there is no power

allocation parameter we can control, and (ii) even Scheme 0 can produce a curve which could achieve both

Dc = DWZ
c (κCc) and Dr = DWZ

r (κCr), rather than a single best point.

It is also not clear that our choice of source random variables are the best. As mentioned earlier, our main

motivation in adopting the same test channel as in point-to-point coding for all digital schemes is its simplicity. The

alphabet size bounds in [14], [16], however, are much higher and therefore it might be possible to further improve

the performance of all the tested digital schemes.

The performance of the various schemes for certain source-channel pairs at rate κ = 1 is presented in Figure 8.

For each of the new schemes, convex hull of two curves is shown, where in one c = 2, r = 1 and in the other

c = 1, r = 2. In all our examples, Scheme RC-CR is at least as good as Scheme RC-RC and separate source and

channel coding. In Figures 8(a)-(d), the parameters β1, β2, and p1 are fixed so that (95) is satisfied for k = 1,

and p2 is varying. As p2 increases, the collective behavior of the schemes dramatically changes. In Figure 8(a),

c = 1, r = 2 is consistently the best choice among all schemes. As the quality of the second channel decreases,

and reaches the point where (95) is also satisfied for k = 2, Scheme 0 becomes optimal, as shown in Figure 8(b).

When p2 is increased even further, as in Figure 8(c), c = 2, r = 1 becomes the better choice. When p2 reaches

the point where the first receiver has access to both the better channel and the better side information, as in

Figures 8(d) and (e), separate coding and Scheme RC-CR become identical as in the quadratic Gaussian case.

However, uncoded transmission can still outperform all the digital schemes as shown in Figure 8(e) for the case

of trivial side information. Finally, Figure 8(f) exemplifies the interesting phenomenon mentioned above, where

Scheme 0 produces a curve, rather than a point, which happens to be the best along with the layered WZBC

schemes.



35

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

0.03

0.04

0.05

0.06

0.07

0.08

0.09

β1 = 0.25, p1 = 0.090414, β2 = 0.3, p2 = 0.06

D1

D
2

 

 

Converse
Uncoded
Scheme 0
RC-CR
RC-RC
Separate

(a)

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

0.05

0.1

0.15

0.2

0.25

0.3

D1

D
2

β1 = 0.25, p1 = 0.090414, β2 = 0.3, p2 = 0.074368

 

 

Converse
Uncoded
Scheme 0
Separate

(b)

0.05 0.06 0.07 0.08 0.09 0.1

0.05

0.1

0.15

0.2

0.25

0.3

D1

D
2

β1 = 0.25, p1 = 0.090414, β2 = 0.3, p2 = 0.08

 

 

Converse
Uncoded
Scheme 0
RC-CR
RC-RC
Separate

(c)

0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 0.09

0.1

0.15

0.2

0.25

0.3

β1 = 0.25, p1 = 0.090414, β2 = 0.3, p2 = 0.1

D1

D
2

 

 

Converse
Uncoded
Scheme 0
RC-CR
RC-RC
Separate

(d)

0.25 0.3 0.35 0.4 0.45 0.5

0.2

0.25

0.3

0.35

0.4

0.45

0.5

β1 = 0.5, p1 = 0.3, β2 = 0.5, p2 = 0.2

D1

D
2

 

 

Converse
Uncoded
Scheme 0
RC-CR and RC-RC
Separate

(e)

0.226 0.227 0.228 0.229 0.23 0.231 0.232

0.266

0.268

0.27

0.272

0.274

0.276

0.278

D1

D
2

β1 = 0.25, p1 = 0.35, β2 = 0.3, p2 = 0.3423

 

 

Converse
Uncoded
Scheme 0, RC-CR, and RC-RC
Separate

(f)

Fig. 8. Performance comparison for binary sources and channels. In (a)-(d), β1, β2, and p1 are fixed, and as p2 increases, how all the

schemes compare changes. In (e), uncoded transmission is optimal. In (f), Scheme 0, along with all the other layered schemes, is the best.

It is also noteworthy to observe that it touches both trivial converse bounds simultaneously.
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VII. CONCLUSIONS AND FUTURE WORK

We proposed coding schemes for the WZBC problem, and analyzed their distortion performance for the quadratic

Gaussian and binary Hamming cases. Even though our schemes are for a general rate κ channel uses per source

symbol, the achievability regions are easiest to compute for κ = 1. In fact, for the quadratic Gaussian case, we

were able to derive closed form expressions for the entire distortion tradeoff and show that our best scheme, namely

Scheme RC-CR, is always at least as good as (in fact, except for one certain case, always better than) separate

coding. By numerical comparisons, we observed the same phenomenon for the binary Hamming case under the

regime where all the test channels are constrained to be of the form which achieves the Wyner-Ziv rate-distortion

function. On the other hand, even Scheme RC-CR may not achieve the same performance as uncoded transmission.

This is not surprising, since when there is no (or trivial) side information, it is known that uncoded transmission

is optimal.

In an upcoming paper, we combine the digital schemes we proposed with uncoded transmission to extract the

benefits of both methods. In fact, as we show in a preliminary version [8], the hybrid scheme is more than the sum

of its parts and distortions outside the convexification of the digital and analog regions are achievable.

APPENDIX

A. Proof of Lemma 1

The key to the proof is the observation that for optimal performance, (20) needs to be satisfied with equality for

any κ. To see this, assume that (Db, Dg) with Db < Nb satisfies (20) with strict inequality for some 0 < ν ≤ 1.

Then one can decrease ν until equality is obtained in (20), and still satisfy (21) or (22), depending on whether

X − Yg − Yb or X − Yb − Yg, respectively. That, in turn, follows because the right-hand side of either of (21) or

(22) are decreasing in ν.

When κ = 1, equality in (20) translates to

ν̄P =
Db(P + Wb)

Nb
−Wb .

For the case X − Yg − Yb, (21) then becomes

Dg ≥ NgN
2
bWgDb

(

DbNb + Ng(Nb − Db)
)(

(Wg −Wb)Nb + (P + Wb)Db

) .

If X − Yb − Yg , on the other hand, (22) implies

Dg ≥ NgWgDb
(

(Wg −Wb)Nb + (P + Wb)Db

)

and

Dg ≥
NbNg

(

NgWg − (Wg −Wb)Nb − (P + Wb)Db

)

(

(Wg − Wb)Nb + (P + Wb)Db

)

(Ng −Nb)

simultaneously, which is the desired result.
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B. Proof of Lemma 5

It follows from (82) and (83) that by varying ν and γ , we obtain the tradeoff

Dc = Nc
Pa(ν, γ) + Wc

P + Wc

(106)

Dr =
Nr

1 + Nr

[

1
Dc

− 1
Nc

] · 1

1 + Pb(ν,γ)
Wr

(107)

where

a(ν, γ) = ν̄

(

Wc

νP
γ2 + (1 − γ)2

)

b(ν, γ) = ν̄

(

Wr

νP
γ2 + (1− γ)2

)

.

We next fix Dc, which, in turn, fixes a(ν, γ) as

a(ν, γ) =
Dc[P + Wc]− WcNc

NcP
(108)

and minimize Dr, which reduces to maximizing b(ν, γ). Since neither Ccc nor Ccr can be negative, we need both

a(ν, γ) ≤ 1 and b(ν, γ) ≤ 1 to be satisfied. The former requirement is guaranteed because we naturally limit

ourselves to Dc ≤ Nc. The latter, on the other hand, becomes vacuous since rewriting (81) gives

b(ν, γ) ≤ Nc[Pa(ν, γ) + Wc]− NrWr[1− a(ν, γ)]

Nc[Pa(ν, γ) + Wc] + PNr[1− a(ν, γ)]
(109)

whose right-hand side is always less than or equal to 1.

Now if Wc ≥ Wr, we always have a(ν, γ) ≥ b(ν, γ) since

b(ν, γ) = a(ν, γ)− ν̄γ2

νP
[Wc −Wr] .

Thus, among all choices of γ and ν which satisfy (108), the one that potentially minimizes Dr is γ = 0 and

ν =

(

1 − Dc

Nc

)(

1 +
Wc

P

)

.

That is because with this choice we have b(ν, γ) = a(ν, γ). It then remains to check (109), which can be written

after some algebra as

NcNr[Wc −Wr] ≥ Dc[P + Wc][Nr −Nc] .

This is granted if Nr ≤ Nc and is equivalent to

Dc ≤
NcNr[Wc − Wr]

[P + Wc][Nr −Nc]
(110)

if Nr > Nc. The constraint (110), on the other hand, is in effect only if

Nc(P + Wc) < Nr(P + Wr)
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for otherwise, it is trivially satisfied because Dc ≤ Nc. Substituting b(ν, γ) = a(ν, γ) in (107) yields

Dr =
NrWrN

2
cDc

(

DcNc + Nr(Nc − Dc)
)(

(Wr −Wc)Nc + (P + Wc)Dc

) .

On the other hand, if Wc < Wr, it is more helpful to write

b(ν, γ) =
Wr

Wc
a(ν, γ)− ν̄(1 − γ)2

[

Wr

Wc
− 1

]

as this reveals b(ν, γ) ≤ Wr

Wc
a(ν, γ). Thus, the optimal choice of parameters is potentially γ = 1 and

ν =
WcNc

Dc[P + Wc]

provided this choice satisfies (109). Once again, after some algebra, that translates to

Dc ≤
NcP [WcNc −WrNr] + WcWrNc[Nc −Nr]

[P + Wc][Nc −Nr]Wr

Substituting b(ν, γ) = Wr

Wc
a(ν, γ) in (107) yields

Dr =
NrN

2
cWc

(

DcNc + Nr(Nc − Dc)
)(

P + Wc

) .

Combining all the above results yields (86) and (87).

C. Proof of Lemma 7

Let us first compare (88) to (86) for the Wc ≥ Wr case. We shall show for all NcWc

P+Wc
≤ Dc ≤ Nc that

NrN
2
c

DcNc + Nr(Nc − Dc)
· WrDc

(Wr − Wc)Nc + (P + Wc)Dc
≤ NrWr

P + Wr
·
DcNc + NcWc

Wr
(Nc − Dc)

DcNc + Nr(Nc − Dc)

or equivalently that

DcNc(P + Wr) ≤
(

Dc +
Wc

Wr

(Nc − Dc)

)

(

(Wr −Wc)Nc + (P + Wc)Dc

)

. (111)

Adding DcNc(Wc − Wr) to both sides of (111) yields

DcNc(P + Wc) ≤
(

Dc +
Wc

Wr
(Nc − Dc)

)

(P + Wc)Dc +
Wc

Wr
(Nc − Dc)(Wr −Wc)Nc . (112)

Taking the first term on the right-hand side of (112) to the left-hand side, we obtain

Dc(P + Wc)(Nc − Dc)

(

1 − Wc

Wr

)

≤ Wc

Wr
(Nc − Dc)(Wr − Wc)Nc

or equivalently

Dc(P + Wc) ≥ WcNc

which is guaranteed. Equality is satisfied in only three trivial cases: (i) When Dc = DWZ
c (Cc), which coincides

with Scheme 0, (ii) when Wc = Wr, and (iii) when Dc = Nc, which should be excluded if Dmax
c < Nc.
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As for the Wc < Wr case, to prove that Scheme RC-CR is superior, we need to show

NrN
2
c

DcNc + Nr(Nc − Dc)
· Wc

P + Wc

≤ NrWr

P + Wr

·
DcNc + NcWc

Wr
(Nc − Dc)

DcNc + Nr(Nc − Dc)

or equivalently that

NcWc

P + Wc

≤ DcWr + Wc(Nc − Dc)

P + Wr

. (113)

Rearranging (113), we have

NcWc(P + Wr) ≤ (P + Wc)
(

Dc(Wr −Wc) + WcNc

)

which is once again equivalent to

Dc(P + Wc) ≥ WcNc .

Equality in this case is satisfied if and only if Dc = DWZ
c (Cc).
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